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Abstract

Polaritons are quasi-particles consisting of a superposition of photons and excitons, which can be
created inside semiconductor quantum wells in optical cavities. In this master thesis, we study
a system in which multiple semiconductor layers are coupled through a single photonic cavity
mode. A momentum-dependent complex phase in the coupling of the excitons to the light field
gives rise to intrinsic non-trivial topological properties of the polariton bands. In particular, the
system possesses chiral edge modes, which can be excited by optical pumping near the sample
boundary. We simulate the dynamics of the driven system in the semi-classical approximation
using a dissipative Gross-Pitaevskii equation, which allows us to study topologically protected
chiral transport along the edges of a finite sample. We further discuss the dynamics of a lattice
version of the topological polariton model, from which we can obtain time-resolved spectral
information and demonstrate the selective excitation of the edge modes. These results pave the
way for future study of optical control and many-body physics in polaritonic systems.

Zusammenfassung

Polaritonen sind Quasiteilchen, die aus einer Superposition von Photonen und Exzitonen be-
stehen und in Halbleiterebenen innerhalb eines optischen Hohlraums erzeugt werden können.
In dieser Masterarbeit wird ein System aus mehreren Halbleiterebenen untersucht, die über eine
einzelne photonische Hohlraummode miteinander wechselwirken. Durch eine impulsabhängige
komplexe Phase in der Kopplung zwischen den Exzitonen und dem Lichtfeld erhält das System
nicht-triviale topologische Eigenschaften. Insbesondere entstehen chirale Randmoden, die durch
optisches Pumpen in der Nähe des Probenrandes angeregt werden können. Wir simulieren die
Dynamik dieses getriebenen Systems im Rahmen der semiklassischen Näherung mithilfe einer
dissipativen Gross-Pitaevskii-Gleichung. Dies erlaubt die Untersuchung des topologisch geschütz-
ten chiralen Transports entlang des Randes einer endlichen Probe. Weiterhin betrachten wir die
Dynamik der topologischen Polaritonen in einem Gittermodel, mit dessen Hilfe wir zeitabhängige
Spektraldichten berechnen und damit die selektive Anregung der Randmoden zeigen können.
Diese Ergebnisse legen die Grundlage für die weitere Untersuchung von optischer Kontrolle und
Vielteilcheneffekten in Polaritonsystemen.
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Notation reference

1. The sets of natural, integer, real, and complex numbers are denoted by N, Z, R, and C,
respectively. The positive integers are denoted by N+.

2. The imaginary unit is i. The complex conjugate of z ∈ C is denoted by z∗, the real (imaginary)
part by Re z (Im z), the absolute value by |z|, and the principal branch of the argument by
Arg z = ImLog z ∈ [0, 2π).

3. For integer ranges we will write [n,m]Z := {k ∈ Z | n ≤ k ≤ m} = [n,m] ∩ Z where
m,n ∈ Z.

4. Vectors will usually be denoted by bold italic symbols v. Unit vectors will be marked with a
check v̌ and ěµ denotes the canonical unit vector in µ direction. The euclidean norm of a
vector v is written as ‖v‖ :=

√∑
j |vj |2 or just v.

5. Matrices will usually be denoted by bold symbolsA. The n× n identity matrix is written as
In or I, if the dimension is clear from context. For matrices A,B we denote

a) the transpose byA>;

b) the conjugate transpose byA†;

c) the direct sum by

A⊕B =

(
A 0

0 B

)
;

d) unitary equivalence (i.e., the existence of a unitary matrixU such thatA = U†BU)
byA ∼ B.

6. The Pauli matrices are

σx :=

(
0 1

1 0

)
, σy :=

(
0 −i

i 0

)
, σz :=

(
1 0

0 −1

)
.

We will also use the formal vector of Pauli matrices ~σ := (σx,σy,σz)>.
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List of figures

7. The set of complex Hermitian n× n matrices is written as

Hn := {A | A† = A} ⊆ Cn×n.

8. Quantum mechanical operators will usually be marked with a hat â.

9. We will use units with ~ = 1 throughout this thesis.
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1 Introduction

Strongly-coupled light-matter systems are of central importance in the realm of condensed matter
physics. Light fields can be tuned experimentally to high degrees of precision and over a wide
range of frequencies and amplitudes, which makes them a versatile tool in the study of chemical
and solid state systems. Results obtained from spectroscopy have informed many of the theoretical
developments in understanding the structure of matter [1]. It is also possible to alter the properties
of solids by optical means, allowing the study of a diverse range of equilibrium and non-equilibrium
phenomena. This includes light-induced superconductivity [2] and topological phases [3, 4].

In semiconductor cavities [5], strong coupling of the photon cavity modes to elementary electronic
excitations, called exitons, gives rise to light-matter quasiparticles known as exciton-polaritons [6,
7]. They possess strongly non-linear properties derived from the constituent excitons while the
coupling to the light field allows for experimental control and probing. Among the effects observed
in such systems are Bose-Einstein condensation and superfluidity [8, 9, 10], vortex formation [11],
four-wave mixing [12], and bright and dark solitons [13, 14], in part mirroring similar experimental
developments in the field of ultra-cold quantum gases [15]. Polaritonic devices have possible
technological applications, such as the realization of all-optical logical elements [16] and routers
[17], which could be useful as building blocks for quantum computing and simulation [18].

Another subject which has received considerable interest in recent times are topological properties
of solids [19, 20, 21]. In particular, several works are aiming at the realization of topological
insulators in photonic systems. For instance, Haldane and Raghu [22, 23] have proposed a scheme
to create a topological bandstructure in an otherwise trivial system via optical driving, leading to
so-called Floquet topological insulators.

In 2015, various publications [24, 25, 26] have suggested a setup in which the coupling between
exciton and photon modes, both topologically trivial by themselves, gives rise to non-trivial
topology featuring chiral edge states. A stable scheme for topologically protected chiral transport
of polariton population would provide another useful piece for the toolbox of polaritonic devices.
In a similar vein, Peano et al. [27] have studied topologically protected chiral transport in a kagomé
lattice of optomechanical arrays.
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1 Introduction

In a recent publication, Klembt et al. [28] have presented an experimental realization of chiral
polariton transport based on the theoretical proposals of Refs. [25, 26], demonstrating the feasibility
of creating and controlling topological polaritons in real-world systems.

The goal of this thesis is to study the properties of the chiral edge states in the model of Karzig et al.
[24] and how they can be selectively excited via optical driving. We will discuss the microscopic
structure of the topological polariton model and show results of numerical simulations of chiral
transport in a driven bulk system.

The rest of this thesis is structured as follows: In Chapter 2, wewill briefly review some fundamental
concepts regarding semiconductor cavities and topological properties of matter. In Chapter 3, we
will introduce the polariton model at the heart of this thesis and discuss its topological properties
as well as an extension to multiple semi-conductor layers. In Chapter 4, we will introduce a tight-
binding lattice version of the topological polariton model, allowing us to study band structure and
edge states. Further, we will introduce a driven time-dependent version of the lattice model and
discuss its time evolution in the semi-classical picture. In Chapter 5, we will present a selection of
results of a numerical simulation of the continuous bulk system using the driven dissipative Gross-
Pitaevskii and discuss the optical excitation of chiral edge modes. We will also show time-resolved
spectroscopy results for the driven lattice model. Finally, we will conclude in Chapter 6.
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2 Physical background

This chapter will introduce and give references for several physical concepts that will be used
throughout the rest of this thesis.

2.1 Exciton-polaritons in semiconductor cavities

In an optical cavity, photons are trapped between reflecting surfaces. For the physical setup that
motivates the models studied in this thesis, the cavity consists of two parallel planar reflectors
normal to the z or cavity axis. The reflectors are separated by a distance Lz which is usually of
the order of micrometers or nanometers, in which case the cavity is referred to as microcavity or
nanocavity. Typically, the reflectors are assumed to be either perfect metallic mirrors (the so-called
Fabry-Péirot cavity) [5] or distributed Bragg reflectors (DBRs) [9]. A DBR consist of several layers
of semiconducting materials with alternating index of refraction. This structure causes destructive
interference between transmitted waves, almost completely eliminating the transmission of light
over a range of wavelengths called the stop band. The cavity modes are populated with photons
by optical pumping. The lifetime of the cavity photons is finite and typically of the order of several
to hundreds of picoseconds [10]. A typical setup is shown in Fig. 2.1.

The reflectors impose boundary conditions on the electromagnetic field in the cavity. For the
Fabry-Péirot cavity they have the form

ěn ×E = 0 and ěn ·B = 0 (2.1)

where ěn is the unit vector normal to the reflecting plane and E and B are the electric and
magnetic field, respectively. Making a plane-wave ansatz for the solution of Maxwell’s equations
inside the cavity, the boundary conditions restrict the z component of the wave vector to

qz =
πν

Lz
(2.2)

where ν ∈ N and Lz is the distance between the reflectors. The values of the projection of the
wave vector to the x-y plane q⊥ := (qx, qy)

> are unrestricted, as long as an infinite extent of the
cavity in x and y direction is assumed. The photon dispersion is given by (recall that ~ = 1)

ωC(q) = c
√
q2⊥ + q2z (2.3)

13



2 Physical background

Figure 2.1 | Semiconductor cavity setup as described in the text. Several isolated quantum wells are
placed between two distributed Bragg reflectors (DBRs). The cavity photons are populated
by optical pumping and couple via dipole interaction to excitons within the planar quantum
wells which have the same in-plane momentum q⊥. Image by Byrnes, Kim, and Yamamoto
[10].
Reprinted by permission from Springer Nature Customer Service Centre GmbH: Nature Physics, Byrnes, Kim, and
Yamamoto, “Exciton-polariton condensates,” Copyright 2014.

where c is the speed of light within the medium. For small q⊥ (taking qz to be constant), we can
expand

ωC(q⊥) ≈ ωC,0 +
q2⊥
2mC

. (2.4)

This shows that the photons obtain a finite effective mass mC within the x-y plane which is
proportional to the quantized out-of-plane momentum qz. Explicitly,

ωC,0 = cqz and mC =
qz
c
. (2.5)

This photon mass is typically several orders of magnitude smaller than the exciton mass [7, 9].

In order to build a semiconductor cavity [9], several layers of a semiconducting material are placed
between the reflectors. These layers are separated by a material with a larger band gap, so that
the layers are effectively isolated from each other. The confinement potential has the form of a
quantum well (QW) in z direction.

We will now introduce the concept of excitons, following the review by Deng, Haug, and Yamamoto
[9] and the textbook by Combescot and Shiau [29]. An elementary excitation from the ground
state of a solid is given by exciting a single electron from the valence into the conduction band.
This process leaves a hole in the valence band. The energy associated with the creation of such
a pair is very small in a metal. To produce this excitation in a semiconductor, larger energies
of the order of several electron volt are required [29]. Electron and hole have opposite charge
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2.1 Exciton-polaritons in semiconductor cavities

and therefore attract each other through the Coulomb force. This can lead to the formation of a
bound pair which can be treated as a quasi-particle called aWannier exciton. In a simplified picture,
this is analogous to the hydrogen atom, where an electron and a proton are bound together by
the Coulomb interaction [5]. “The binding energy of a semiconductor exciton is of the order of
10meV to 100meV and its Bohr radius is about 10Å to 100Å, extending over tens of atomic sites
in the crystal” [9].

Let v̂†q and ĉ†q be valence-band hole and conduction electron creation operators of crystal momen-
tum q, respectively. Then, the exciton creation operator of center-of-mass momentumQ is given
by [9]

â†Q,ν =
∑
q,q′

δQ,q+q′φν

(
mhq −meq

′

mh +me

)
ĉ†q v̂

†
q′ . (2.6)

Here, φn(q) is the Fourier transform of the hydrogen-like wavefunction of relative motion of the
bound electron-hole pair with quantum number ν. The constants me and mh are the electron
and hole masses, respectively. Assuming me = mh and introducing the relative coordinate
q− := 1

2(q − q
′), this can be brought into the form

â†Q,ν =
∑
q−

φν(q−)ĉ
†
q−+Q/2v̂

†
q−−Q/2. (2.7)

Excitons are composite bosons, i.e., quasiparticles consisting of two fermions that approximately
obey the bosonic canonical commutation relations. Explicitly, exciton operators satisfy [29]

[âQ,ν , âQ′,ν′ ] = 0, (2.8)

[âQ,ν , â
†
Q′,ν′

] = δQQ′δνν′ − D̂Q,ν;Q′,ν′ , (2.9)

The deviation operators D̂Q,ν;Q′,ν′ correspond to the exchange of fermions between two composite
bosons. They are commonly neglected with the argument that their contributions are small
unless the average inter-particle spacing approaches the order of the exciton Bohr radius which
corresponds to high exciton densities [9]. However, Combescot and Shiau [29] point out that
they can still play an important role in the many-body physics of Wannier excitons outside this
limit. We will treat excitons as bosonic particles for the remainder of this thesis. The extent of
the semiconductor QWs in the cavity direction is assumed to be of the order of the exciton Bohr
radius. This confines their motion to a plane and allows us to treat the system as two-dimensional
in the models we will discuss here.

Excitons have a non-zero dipole moment which couples them to the electric field of the cavity
light modes. Neglecting resonance-broadening mechanisms due to impurities and exciton-phonon
interaction, an exciton state with momentum q is coupled only to cavity photons with the same
in-plane momentum [5]. Within the rotating-wave approximation the exciton-photon interaction
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2 Physical background

is bilinear [18]. Thus, it can be written in the form

ĤXC =
∑
q

g(q)â†X,qâC,q + H.c. (2.10)

where now â†X (â†C) denotes an exciton (photon) creation operator. The prefactor is usually assumed
to be a real constant g(q) = g0 given by the exciton-photon dipole interaction strength [9].
The non-trivial topological properties of the model studied in this thesis arise from adding a
momentum-dependent complex phase to g(q), which we will discuss in more detail in Sect. 3.1
and Appendix A.

2.2 Topological properties of matter

In general terms, topological properties of physical systems are those properties that are invariant
under a suitable class of continuous transformations. They play a role in many different kinds
of physical systems. In solid state physics, the band structure of periodic Hamiltonians can be
classified in terms of topological quantum numbers [21, 30, 31]. In quantum gases, gauge fields
akin to electromagnetism can be created for neutral particles using Berry phase effects [32], giving
rise to the study of artificial gauge fields [33, 34, 35, 36]. Further, topological properties are
important in the theory of magnetic skyrmions [37]. A more mathematical treatment of the
concepts discussed here in the framework of differential geometry is given by Nakahara [38].

2.2.1 Berry phase, connection, and curvature

Consider a general finite-dimensional HamiltonianH(q) ∈ HN which depends continuously on
a parameter q ∈ Q from someM -dimensional manifold Q. In the context of spatially periodic
systems in condensed matter physics, q is usually the lattice momentum [31]. However, the same
treatment is possible for Hamiltonians depending on position [33] or other continuous variables.
Due to Hermicity, this matrix has a full set of real eigenvalues (εj(q))Nj=1 with orthonormal
eigenvectors (wj(q))

N
j=1. We will assume both εj and wj to be continuously differentiable

functions of q in the remainder. Also, we assume the absence of band crossings and degeneracies
in the spectrum of H(q) for now, i.e., εj(q) 6= εj′(q) for all j 6= j′. However, the more general
case will also be discussed below.

The orthonormality condition requires by definition 〈wi(q)|wj(q)〉 = δij and thus the normal-
ization wj(q) = 1. This still only determines the eigenvectors up to a complex phase, i.e., if
H(q)wj(q) = εj(q)wj(q), then this also holds for Tχwj(q) := eiχ(q)wj(q) where χ(q) ∈ R. In
other words, the eigenvectors posses a separate U(1) gauge freedom at each q.
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2.2 Topological properties of matter

The Berry connection Aj(q) is a vector of dimensionM with components

Aj
µ(q) := −i〈wj(q)|∂µwj(q)〉 (2.11)

for j ∈ [1, N ]Z and µ ∈ [1,M ]Z. By a slight abuse of notation, this is usually written as

Aj(q) = −i〈wj(q)|∇qwj(q)〉. (2.12)

It contains information on the U(1) gauge and transforms under a differentiable phase change as

TχAj(q) = Aj(q)− i∇qχ(q). (2.13)

One can then define the Berry curvature as

F j
µν(q) := ∂µA

j
ν(q)− ∂νA

j
µ(q). (2.14)

The Berry curvature is gauge independent. InM = 3 dimensions, the Berry curvature tensor
has three independent components which can be computed in analogy to the magnetic field via
∇q ×Aj(q). InM = 2 dimensions, the Berry curvature has only one independent component
which we write as

F j(q) := F j
12(q) = ∂1A

j
2(q)− ∂2A

j
1(q). (2.15)

So far, we have introduced the Berry connection and curvature as abstract quantities, emerging
from the structure of the eigenstates of a parameter-dependent Hamiltonian. However, the effects
arising from this structure can have measurable physical consequences. Berry [32] pointed out in
a seminal paper published in 1984 how they play a role in the adiabatic time-evolution of quantum
states. We will briefly summarize this result in the next paragraph, following Berry’s publication.

Consider a closed path parametrized by p : [0, 1] → Q, p(0) = p(1). For simplicity, we assume
M = 2, i.e., a two-dimensional parameter space (which is not part of Berry’s original argument). If
the time evolution is sufficiently slow, it is governed by the adiabatic theorem [39, 40]. Then, if the
system is in an eigenstate ψ(0) = wj(p(0)) at t = 0, it will remain in an instantaneous eigenstate
for all times. The time evolution introduces the dynamical phase factor which is given by

φ(t) =

∫ t

0
εj(p(s)) ds. (2.16)

However, the state also acquires the so-called geometrical phase or Berry phase given by the line
integral

γj [p] = i

∮
p
Aj(q) · dq (2.17)

over the Berry connection corresponding to the jth eigenstate as defined above along the path p.

Due to Stoke’s theorem, this phase can also be written as the integral

γj [p] = i

∫
A
F j(q) d2q (2.18)
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2 Physical background

of the Berry curvature F j over the area A enclosed by p. Since F j is gauge invariant, so is the
Berry phase. Further, it only depends on the path, not on the chosen parametrization (as long as
the time-evolution satisfies the conditions of the adiabatic theorem). If the phase is also invariant
under continuous deformations of the path, it can be called a topological phase.

In conjuction with Berry’s publication, Simon [41] presented an interpretation of the Berry phase
in terms of holonomy, relating the result to the mathematical fields of topology and differential
geometry [38].

The gauge invariance of the geometric phase and its physical implications are the central result of
Berry’s work. In his publication, he explores its influence on the adiabatic transport of a spin-12
particle around a band degeneracy and further provides an interpretation of the Aharonov-Bohm
effect [42] in terms of the geometric phase. The definition of the Berry curvature (2.14) has the
same form as the electromagnetic field tensor with vector potential Aj . This analogy plays a
central role in the theory of artificial gauge fields [33, 34, 36].

Wilczek and Zee [43] have discussed the generalization of Berry connection and curvature to the
case of multiple degenerate bands. In this case, these quantities are defined for a set of potentially
degenerate bands which are still required to be energetically separated from the rest of the spectrum.

2.2.2 Quantum Hall effect and Chern number

In solid state physics, topological effects became prominent with the explanation of the Quantum
Hall effect (QHE) in terms of a topologically invariant quantity. We will discuss this briefly,
following the review of Hasan and Kane [44]. The QHE refers to the quantization of the Hall
conductance of a two-dimensional electron gas in a uniform magnetic field. The Hall conductance
has the form

σH =
e2

h
C, (2.19)

where e and h are the electron charge and Planck constant, respectively, and with an integer
number C ∈ Z. This occurs whenever the Fermi energy lies within a band gap. The effect was first
observed experimentally by Klitzing, Dorda, and Pepper [45]. Subsequently, Thouless et al. [30]
(TKNN) presented an explicit way to compute this integer. Kohmoto [46] connected this result
to the geometrical concepts studied by Berry and Simon. Explicitly, the Hall conductance can be
written as

σH =
e2

h

∑
j∈occ

Cj , (2.20)

18



2.2 Topological properties of matter

where occ := {j | εj < EF} denotes the set of bands below the Fermi energy EF. The integer
Cj ∈ Z in known as the Chern number of the jth band and is given explicitly by

Cj =
1

2π

∫
T2

F j(q) d2q. (2.21)

It is restricted to integer values due to the geometry of the space of eigenstates over the torical
Brillouin zone T2 [46]. The Chern number is a topological invariant in the sense that it cannot
change under continuous deformations of the spectrum, as long as no band degeneracies are
introduced. Thus, if two systems with different bulk Chern numbers are brought into contact, a
gap closing must exist at the boundary. This gives rise to the existence of metallic edge states, a
property which is known as the bulk-boundary correspondence [47, 48]. These states are called
topologically protected since they cannot be removed without changing the symmetry of the
system or closing the bulk gap [21].

A system can posses different types of topological invariants, depending on its dimension and
symmetries [49, 50]. It is possible to classify all possible kinds of topological invariants in terms of
these properties, providing what has been called by Kitaev [51] a “periodic table of topological
superconductors”. The full classification scheme in terms of ten symmetry classes is known as the
tenfold way [52].

2.2.3 Numerical calculation of Berry curvature and Chern numbers

In numerical calculations, the eigenvectors are only known at a discrete set of points {kl}Nl=1

in reciprocal space. This leaves the question of how to efficiently compute the Chern number
from this data. As a first approach, one could replace the derivative in the definition of the Berry
connection (2.11) by a finite difference approximation, e.g.,

Dµf(k) :=
f(k + δkµ)− f(k)

‖δkµ‖
, (2.22)

giving the expression

Ãj
µ(k) = −i〈wj(k)|Dµwj(k)〉. (2.23)

Here, δkµ denotes the difference vector pointing to the next discrete k point in µ direction. This
numerical Berry connection then allows the computation of the Berry curvature which can be
summed to get an approximation of the Chern number. However, in order for the expression (2.23)
to be well defined, a gauge must be chosen so that the eigenvectors wj(k) are smoothly differen-
tiable with respect to k. This is difficult to achieve in practice, as the phase of the eigenvectors is
often the result of implementation choices within the numerical diagonalization routine used.
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2 Physical background

The solution to this difficulty is to find a representation of the Berry curvature that does not involve
derivatives of the eigenvectors with respect to k. One such form is the Kubo-type formula [31,
Eq. 1.13]

F j
µν = −2 Im

∑
l 6=j

v
(µ)
lj v

(ν)
jl

(εl − εj)2
, (2.24)

where v(µ)lj := 〈wl|∂µH|wj〉 are the matrix elements of the velocity operator in the eigenbasis of
H and the sum runs over all other bands. In this equation, the derivatives apply to the Hamiltonian
instead of the eigenstates, which makes it particularly useful if those are known analytically. It is
also possible, however, to apply a finite difference scheme to the Hamiltonian. Equation (2.24) is
manifestly gauge invariant, since |wj〉 and its dual 〈wj | both occur together in each term.

An alternative method has been described by Fukui, Hatsugai, and Suzuki [53]. It also does not
require specific gauge-fixing conditions and works well even for for coarse discretizations of the
Brillouin zone. In the following, we will first discuss the case of one band and then a generalization
to multiple degenerate bands. Both cases make use of the overlap matrix

S
(µ)
j1j2

(kl) := 〈wj1(kl)|wj2(kl + δkµ)〉. (2.25)

We assume the k-points to be known on an equally-spaced square grid over the Brillouin zone.

For the case of a single band j, we define the link variable

U j
µ(kl) :=

S
(µ)
jj (kl)

|S(µ)
jj (kl)|

, (2.26)

In the following, the band index j will be suppressed for readability. Since Uµ(kl) is a complex
number of unit norm, it is completely defined by the phase

φµ(kl) := ArgUµ(kl). (2.27)

Define now the lattice field strength

F̃ (kl) := Arg
[
U1(kl)U2(kl + δk1)U1(kl + δk2)

−1U2(kl)
−1
]

= φ1(kl) + φ2(kl + δk1)− φ1(kl + δk2)− φ2(kl),
(2.28)

which is exactly the phase acquired by moving around a single plaquete in clockwise direction
starting at kl (Fig. 2.2). Now, the Chern number can be computed as the sum of these phases over
the whole k-space lattice,

C̃ =
1

2π

∑
l

F̃ (kl). (2.29)
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2.2 Topological properties of matter

Figure 2.2 | Illustration of Eq. (2.28) for computing the local Chern field F̃ (kl), which is obtained by
accumulating the phase factors U j

µ(k) around a plaquette starting at kl as shown.

The definition of the Chern number can be generalized to multiple bands [43, 53], which is described
here following Aidelsburger [35]. Consider the family of n distinct band indices j ∈ [1, N ]nZ
(jr 6= js for r 6= s) and define the overlap matrices Wj

µ(kl) ∈ Cn×n by

W j
µ,rs(kl) := S

(µ)
jrjs

(kl) = 〈wjr(kl)|wjs(kl + δkµ)〉. (2.30)

The multi-band analogon of the link variable (2.26) is then given by

U j
µ(kl) :=

detWj
µ(kl)

|detWj
µ(kl)|

, (2.31)

which reduces to Eq. (2.26) for n = 1. Now, as in the one-band case of Eqs. (2.28) and (2.29), the
multi-band Chern number can be computed as

C̃j =
1

2π

∑
l

F̃ j(kl) (2.32)

using

F̃ j(kl) = Arg
[
U j
1 (kl)U

j
2 (kl + δk1)U

j
1 (kl + δk2)

−1U j
2 (kl)

−1
]
. (2.33)

Note that the multi-band Chern number remains well-defined even in the presence of degeneracies
of the bands in j, as long as those bands are still energetically separated from the rest of the
spectrum.

Figure 2.3 displays an implementation of this algorithm which was used, alongside the numerical
evaluation of Eq. (2.24), for the computation of Chern numbers in the next chapter.
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2 Physical background

1 # Compute the link variable U j
µ(k)

2 function link_variable_U(w::Array{Complex128, 4})

3 # The eigenvector wj(kx[l], ky[m]) is w[l,m,:,j]

4 nx, ny, _, nbands = size(w)

5

6 # Shift wj(k) → wj(k + δkµ) for µ = x, y

7 w_x = circshift(w, (1, 0, 0, 0))

8 w_y = circshift(w, (0, 1, 0, 0))

9

10 U = Array{Complex128}(nx, ny, 2) # Unnormalized link variable

11

12 for ix in 1:nx, iy in 1:ny

13 # Compute the overlap matrix W j
µ(k)

14 W = Array{Complex128}(nbands, nbands, 2)

15 for ib1 in 1:nbands, ib2 in 1:nbands

16 W[ib1,ib2,1] = vecdot(w[ix,iy,:,ib1], w_x[ix,iy,:,ib2])

17 W[ib1,ib2,2] = vecdot(w[ix,iy,:,ib1], w_y[ix,iy,:,ib2])

18 end

19 # Compute the unnormalized link variable

20 for μ in 1:2

21 U[ix,iy,μ] = det(W[:,:,μ])

22 end

23 end

24

25 return U ./ abs.(U) # Return normalized link variable

26 end

27

28 # Compute the Chern field F j(k)

29 function chern_field_F(U::Array{Complex128, 3})

30 U_x = U[:,:,1]

31 U_y = U[:,:,2]

32 F = U_x .* circshift(U_y, (1, 0)) ./ circshift(U_x, (0, 1)) ./ U_y

33 return imag.(log.(F))

34 end

35

36 # Compute the Chern number C̃j = 1
2π

∑
k F

j(k)

37 chern_number_C(F::Array{Float64, 2}) = round(sum(F) / (2π))

Figure 2.3 | Example implementation of the method of Fukui et al. for computing the Chern number. The
code is written in the Julia language [54] (version 0.6.2).
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3 Topological polariton model

In this chapter, we introduce the key features of the topological polariton model which we will
study in the remainder of this thesis. First, we will discuss the single-layer version and then
generalize this model to multiple semiconductor layers.

3.1 Free model with one semiconductor layer

Consider a semiconductor quantumwell (QW) embedded within an optical cavity. The extent of the
QW in z direction is assumed to be constrained such that the system is effectively two-dimensional.
For now, the semiconductor is assumed to be infinite in the remaining two dimensions.

The basic Hamiltonian for this model is given by [24]

Ĥ0 =
∑
q

[
ωX(q)â

†
X,qâX,q + ωC(q)â

†
C,qâC,q + [g(q)â†X,qâC,q + H.c.]

]
(3.1)

which can be written in matrix form using the vector of operators âq := (âC,q, âX,q)
> as

Ĥ0 =
∑
q

â†qH(q)âq, H(q) =

(
ωC(q) g(q)

g∗(q) ωX(q)

)
, (3.2)

where âX,q (âC,q) is the creation operator of an exciton (photon) with in-plane momentum q. Both
photon and exciton operators satisfy bosonic canonical commutation relations1. The dispersion
relations are given by (Fig. 3.1)

ωX(q) = ωX,0 +
q2

2mX
,

ωC(q) = c
√
q2 + q2z

(3.3)

with qz = πν
Lz

for ν ∈ N+, cavity length Lz , and exciton massmX. The complex exciton-photon
interaction is characterized by the function

g(q) = g0e
imθ(q). (3.4)

1Though recall that this is an approximation for excitons.
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Figure 3.1 | Cavity-photon and exciton dispersions (3.3) (dashed lines), together with the upper and lower
polariton bands (solid lines) obtained by diagonalizing H(q) (3.2). All displayed quantities
are radially symmetric with respect to q.

Here, θ(q) = Arg(qx + iqy) is the polar angle of the in-plane vector q, m ∈ Z is the winding
number, and g0 a real constant. The complex phase of the exciton-photon interaction is the main
ingredient to achieve non-trivial topology in this model. For m = 0 the model reduces to the
textbook form of a polaritonic Hamiltonian [7, 9, 29]. Karzig et al. [24] have proposed a way to
include this phase in an exciton-photon system, which we briefly review in Appendix A.

The Pauli matrices together with the identity matrix I form a basis of the 4-dimensional real vector
space of 2× 2 Hermitian matrices. We can therefore decompose

H(q) =

(
ωC(q) g(q)

g∗(q) ωX(q)

)
= ω+(q)I+ d(q) · ~σ, (3.5)

with ω±(q) := 1
2(ωC(q) ± ωX(q)) and the vector of Pauli matrices ~σ := (σx,σy,σz)>. The

coefficients of the Pauli matrices are given in polar coordinates q = q (cos(θ), sin(θ))> by the
vector

d(q) =

 g0 cos(mθ)

−g0 sin(mθ)
ω−(q)

 ∈ R3. (3.6)

It has the norm

d(q) =
√
g20 + ω2

−(q). (3.7)

Define the normalized vector ď := d/d, which is referred to as pseudo-spin [3]. The behavior of ď
around the origin is shown in Fig. 3.2b. The eigenvectors ofH only depend on d (since ω+ just
gives a constant energy shift) and are simultaneous eigenvectors of the helicity operator H := ď · ~σ
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3.1 Free model with one semiconductor layer

(a)

Φ

Θ

ěx

ěy

ěz

ď

(b)

Figure 3.2 | a Pseudo-spin vector ď parametrized in spherical coordinates on the unit sphere (3.10) with
zenith (polar) angle Θ and azimuth angle Φ.
b Qualitative behavior of the pseudo-spin vector around the origin in momentum space. Im-
age by Everschor-Sitte and Sitte [56], released under the CC-BY-SA 3.0 license [57].

with eigenvalues ±1. Explicitly, the normalized eigenvectors are given by [55]

|±, q〉 = I±H(q)√
2(1± ďz(q))

(
1

0

)
=

1√
2

 √
1± ďz(q)

±eiθ
√

1∓ ďz(q)

 . (3.8)

This shows that the pseudo-spin component ďz = ω−/d (Fig. 3.3) determines the excitonic or
photonic content of the bands. Specifically, the lower band is purely excitonic (photonic) for
ďz(q) = +1 (−1) and vice versa for the upper band. Since we can write H = ω+I + dH, the
eigenvalues of H are given by E± = ω+ ± d (Fig. 3.1).

The pseudo-spin can be used to compute the Chern number via [3]

C± =
1

4π

∫
d2q ď · (∂1ď× ∂2ď). (3.9)

In order to evaluate this integral, we parametrize ď in spherical coordinates (Fig. 3.2a) as

ď(q) =

cosΦ(θ) sinΘ(q)

sinΦ(θ) sinΘ(q)

cosΘ(q)

 , (3.10)

with azimuth and zenith angles given by

Φ(θ) = −mθ,

cosΘ(q) = ďz(q) =
ω−(q)

d(q)
,

sinΘ(q) =
g0
d(q)

.

(3.11)
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Figure 3.3 | Pseudo-spin component ďz and band gap ∆ := 2d as functions of momentum along the cut
qy = 0. The zero crossings of ďz occur at the resonance momentum where ω−(q) = 0. This
plot uses the dispersion relations defined in Eq. (3.3) and coupling (3.4) from the text with
parameters c = 1, qz = 0.2,mX = 103, ωX,0 = 1, and g0 = 0.1.
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Figure 3.4 | Berry curvature F± as a function of momentum along the cut qy = 0. The only significant
contributions come from the singularity at the origin, due to F± ∝ q−1, and the band in-
version at the resonance momentum, due to F± ∝ ∂qďz [compare Eq. (3.21)]. The Berry
curvature displayed here has been computed by numerically evaluating Eq. (2.24) using a
finite-difference approximation for ∂µH. The parameters are the same as in Fig. 3.3.
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3.1 Free model with one semiconductor layer

This gives the Chern number [37]

4π C± =

∫ ∞

0
dq

∫ 2π

0
dθ

dΘ(q)

dq

dΦ(θ)

dθ
sinΘ(q) = ±[Φ(θ)]2πθ=0 [ďz(q)]

∞
q=0. (3.12)

The first factor is Φ(2π)− Φ(0) = −2πm.The second factor can be evaluated by rewriting

ďz(q) =

(
1 +

∣∣∣∣ g(q)ω−(q)

∣∣∣∣2
)−1/2

signω−(q). (3.13)

For limq→∞

∣∣∣ g(q)
ω−(q)

∣∣∣ = 0 this results in ďz(∞) = limq→∞ signω−(q). Assuming further that the

coupling g(q) vanishes at q = 0,2 we obtain ďz(0) = signω−(0) and therefore

[ďz(q)]
∞
q=0 = signω−(∞)− signω−(0) ∈ {0,±2}. (3.14)

From this equation, we can see that for C± 6= 0 it is necessary for ω− to have opposite sign at
q = 0 and q → ∞, i.e., for the exciton and photon bands to cross. If this is the case, then the Chern
number of the bands is given by the winding number of the coupling,

C± = ∓m. (3.15)

We have thus seen that the coupling (3.4) results in a splitting of the Chern number between upper
and lower polariton band, creating a topological system out of two otherwise trivial constituents.

We now present another way of computing the Berry curvature and Chern number directly from

the eigenvectors |±, q〉 of Eq. (3.8). Let s = ±1 and define fs(q) :=
√
1 + sďz(q). We write the

gradient operator in polar coordinates,

∇q = ěq∂q + q−1ěθ∂θ, (3.16)

with the polar basis vectors ěq = cos θěx + sin θěy and ěθ = − sin θěx + cos θěy and compute
the Berry connectionAs = As

qěq +As
θěθ using

As
θ = −iq−1〈s|∂θ|s〉 =

−i

2q

(
fs(q)

se−imθf−s(q)

)
·

(
0

simeimθf−s(q)

)
=
mf2−s(q)

2q
(3.17)

and

As
q = −i〈s|∂q|s〉 =

−i

2

(
fs(q)

se−imθf−s(q)

)
·

(
∂qfs(q)

seimθ∂qf−s(q)

)
= 0, (3.18)

2This assumption is not true for the model coupling from Eq. (3.4), which is undefined and non-analytic at q = 0 due
to the complex phase winding. However, Karzig et al. argue that this is an artifact of the simplified model and that
for small momenta the system they describe actually has a phase-winding coupling vanishing as q2 at the origin
[24, Appendix A].
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3 Topological polariton model

noting that

∂qfs =
s

2fs
∂qďz ⇒ fs∂qfs =

s∂qďz
2

. (3.19)

The Berry connection is thus given by

As(q) = m
f2−s(q)

2q
ěθ = m

1− sďz(q)

2q
ěθ. (3.20)

Using (∇q ×As)z = q−1[∂q(qA
s
θ)− ∂θA

s
q] we obtain the Berry curvature

F s(q) =
−sm∂qďz(q)

2q
. (3.21)

Integrating the Berry curvature over the whole space yields the Chern number

Cs =
1

2π

∫
F s(q)d2q =

1

2π

∫ 2π

0
dθ

∫ ∞

0
dq qF s(q)

=
−sm
2

∫ ∞

0
dq ∂qďz(q) =

−sm
2

[ďz(q)]
∞
q=0,

(3.22)

which is consistent with the result of Eq. (3.12) and thus, together with Eq. (3.14), again implies
C± = ∓m.

Figure 3.4 shows the Berry curvature computed numerically, which is consistent with the analytic
result (3.21). Integrating the numerical curvature F± also yields C± = ∓m. Note that the q−1

divergence of F± at the origin is due to the singularity of the phase factor eimθ there. With a
coupling of the form qeiθ = qx + iqy , which vanishes at the origin and is equivalent to the Dirac
monopole, only the peak at the circle of resonance {q | ω−(q) = 0} remains.

3.2 Free model with multiple semiconductor layers

The model (3.1) can be extended to cover multiple semiconductor layers embedded within the
cavity. We assume the separation between the layers is sufficiently large, so that they are not
directly coupled, and that all layers couple to the same cavity mode. For the remainder of this
thesis, we will denote the cavity mode by C and the exciton layers by X1, . . . ,XL or, alternatively,
use integer indices in [0, L]Z, specifically 0 for C and 0 < l ≤ L for Xl. If L = 1, we will still
write X for X1.

Let now âq := (âC,q, âX1,q
, . . . , âXL,q

)> and define the multi-layer Hamiltonian

Ĥ =
∑
q

â†qH(q)âq, (3.23)
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3.2 Free model with multiple semiconductor layers

with

H(q) =


ω0(q) g1(q) · · · gL(q)

g∗1(q) ω1(q)
... . . .

g∗L(q) ωL(q)

 =

(
ω0(q) g(q)

g†(q) ΩX(q)

)
∈ HL+1. (3.24)

The matrixH is written in the exciton-photon basis {|C〉, |X1〉, . . . , |XL〉} and is non-zero only on
the main diagonal and the first row and column. A matrix of this form is known as an arrowhead
matrix [58]. According to Cauchy’s interlace theorem [59], the eigenvalues of the principal
submatrix ΩX interlace the eigenvalues of H, i.e.,

E↑
l−1 ≤ ω↑

l ≤ E↑
l for all l ∈ [1, L]Z (3.25)

where {ω↑
l }

L
l=1 and {E

↑
l }

L
l=0 denote the eigenvalues ofΩX andH, respectively, sorted in ascending

order. As a consequence, if all exciton layers have the same dispersion ω1 = . . . = ωL, the system
exhibits an (L− 1)-fold degenerate band with the exact shape of the exciton dispersion.

To illustrate the structure of the multi-layer Hamiltonian, consider first the case L = 2 with equal
coupling g and exciton dispersion ωX, i.e.,

H =

ω0 g g

g∗ ωX 0

g∗ 0 ωX

 . (3.26)

Define the (anti-)symmetric linear combinations of the excitonic basis states

|X±〉 :=
1√
2
(|X1〉 ± |X2〉). (3.27)

The antisymmetric state |X−〉 is an eigenstate of the Hamiltonian with the eigenvalue ωX and
satisfies 〈C|H|X−〉 = 0, i.e., it does not couple to the photon mode and is therefore also called the
dark state. The symmetric state |X+〉 is orthogonal to |X−〉 and couples to the photon mode via

〈C|H|X+〉 =
√
2g. (3.28)

In the basis B = {|C〉, |X+〉, |X−〉} the Hamiltonian then has the form

HB =

 ω0

√
2g 0√

2g∗ ωX 0

0 0 ωX

 , (3.29)

with a coupling strength enhanced by a factor of
√
2. Since |X+〉 is coupled to the photon mode

with enhanced strength, it is called the bright state. The presence of a bright and a dark state as
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Figure 3.5 | Berry curvature F j(q) for the two-layer model. F 1 (F 3) corresponds to the lower (upper) po-
lariton band with Chern number C1/3 = ±1 while F 2 corresponds to the band of dark states
with C2 = 0. The parameters are the same as for the single-layer case (Figs. 3.3 and 3.4), ex-
cept for rescaling the coupling strength by a factor of 1/

√
2. The Berry curvature displayed

here has been computed by numerically evaluating Eq. (2.24) using a finite-difference approx-
imation for ∂µH.

demonstrated in this example is well known in the literature, both in quantum optics [60] and
polariton physics [61]. Figure 3.5 shows the Berry curvature of the two-layer system.

We now consider the case of an arbitrary number L of semiconductor layers (but still assuming
uniform coupling g and dispersion ωX). While there is no antisymmetric state for L > 2, it is
possible to construct the family of states

|Xm/L〉 :=
1√
L

L∑
l=1

ei2πml/L|Xl〉, m ∈ [0, L− 1]Z, (3.30)

with coefficients given by powers of the Lth roots of unity. This construction has been discussed
in more detail by Vetter et al. [62] for the study of subradiant states in the Dicke model. Note
that |X0/L〉 is totally symmetric. For L = 2 we recover the bright and dark state from above as
|X0/2〉 = |X+〉 and |X1/2〉 = |X−〉. Due to the properties of the roots of unity, the states are all
orthogonal

〈Xm/L|Xm′/L〉 = δm,m′ . (3.31)

The L− 1 non-symmetric states are dark,

〈C|H|Xm/L〉 = 0 m ∈ [1, L− 1]Z, (3.32)

while the symmetric state is bright, with coupling constant

〈C|H|X0/L〉 =
√
Lg. (3.33)
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3.2 Free model with multiple semiconductor layers

Thus, the Hamiltonian has two invariant subspaces: the two-dimensional bright subspace

Hbright = span{|C〉, |X0/L〉} (3.34)

and the (L− 1)-dimensional dark subspace

Hdark = span{|Xm/L〉 | m ∈ [1, L− 1]Z} (3.35)

and in the basis B′ = {|C〉, |X0/L〉, . . . , |XL−1/L〉} decouples into a direct sum

HB′ =

(
ω0

√
Lg√

Lg∗ ωX

)
⊕ diag(ωX, . . . , ωX) (3.36)

acting onHbright ⊕Hdark. In this sense, the bright subspace of the multi-layer system is equivalent
to the single-layer model with enhanced coupling

√
Lg. In particular, the complex phase of the

coupling is still present, so that the bright eigenstates will split into topologically non-trivial
polariton bands with Chern numbers determined by the winding number of the coupling. The
dark subspace cannot be populated by optical driving and its bands are degenerate, all having the
form ωX(q), and topologically trivial. For two layers, we have verified this numerically using the
same method as for the single-layer case (Fig. 3.5).

It is a natural extension to consider the case of distinct couplings, especially those of the form
gl = g0e

imlθ, where the winding number ml is allowed to differ between the semiconductor
layers. However, we have so far not been able to obtain a clear result for this case. The numerical
calculation of the Berry curvature and Chern number yield inconsistent results both with the
method used for Fig. 3.5 and Fukui’s method.
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4 Lattice model and edge states

In this chapter we will discuss a tight-binding lattice version of the polariton model (3.1) and show
the presence of topological edge states. Furthermore, we will introduce a time-dependent driving
to the model and derive the equations of motion that we will use for the numerical simulation in
Sect. 5.2.

4.1 General lattice model

Consider first a general lattice model

Ĥ =
∑
ij

∑
rs

trs(i, j)â
†
irâjs (4.1)

where i, j ∈ [1, N ]Z are lattice site indices and r, s ∈ [0, L]Z indices for the local Hilbert space
which, in this thesis, consist of a photon mode and L exciton layers. For each pair of sites
i, j, we have a coefficient matrix t(i, j) = (trs(i, j)) ∈ C(L+1)×(L+1). To make Ĥ Hermitian,
we need t†(i, j) = t(j, i).1 We assume translation invariance, i.e., t(i, j) only depends on the
distance rij := rj − ri between both lattice sites and thus can be described as a function t(δj)

of all possible lattice translations δj . The Hermitian symmetry condition now has the form
t†(δ) = t(−δ). Assuming non-zero t(δ) only for nearest neighbors (and for δ = 0) is the
tight-binding approximation, which yields a sparse matrix structure for the Hamiltonian.

Due to the translation invariance of the system, we can introduce the Fourier transforms of the
field operators

b̂ms :=
1√
N

∑
j

e−ikm·rj âjs. (4.2)

and reduce the Hamiltonian (4.1) to

Ĥ =
∑
m

∑
rs

hrs(km) b̂†mr b̂ms with h(km) =
∑
j

t(δj)e
ikm·δj (4.3)

1Note that the matrices t(i, j) themselves do not need to be Hermitian.
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4 Lattice model and edge states

wherem indexes the reciprocal lattice vectors km within the first Brillouin zone. The momentum-
dependent matrix h(k) ∈ HL+1 will be called the Bloch Hamiltonian in the following. It is
Hermitian, since

h†(k) =
∑
j

t†(δj)e
−ikl·δj =

∑
j

t(−δj)e−ikl·δj = h(k). (4.4)

The last equality follows by substituting δj → −δj .

4.2 Tight-binding model on a square lattice

Consider a square lattice with primitive vectors {`x, `y}. To obtain a tight-binding lattice version
of our model (3.1) we assume L = 1, i.e., two basis states per lattice site, one photonic and one
excitonic. For the hopping matrices, we set

t(0) =

(
−µC 0

0 −µX

)
, t(`x) =

(
tC ig0/2

ig0/2 tX

)
, t(`y) =

(
tC g0/2

−g0/2 tX

)
. (4.5)

Thus, the model includes local potentials µC and µX and nearest-neighbor hopping strengths tC
and tX for the exciton and photon field, respectively. Note that there is no on-site coupling between
both fields but only between neighboring sites, with coupling strength proportional to a constant
g0 but with different signs or phases, depending on the direction (x or y) of the corresponding
edge. Inserting the hopping matrices (4.5) into Eq. (4.3) gives the Bloch Hamiltonian

h(k) = τC(k)⊕ τX(k) + g0[sin(`xkx)σ
x − sin(`yky)σ

y] (4.6)

with the well-known tight-binding dispersion

τl(k) := 2tl
∑

µ∈{x,y}

cos(`µkµ)− µl, l ∈ {C,X}. (4.7)

The reciprocal lattice vectors for this configuration have the form

km = 2π

(
νm,x

Nx`x
,
νm,y

Ny`y

)
(4.8)

where Nµ denotes the number of lattice sites in µ direction and νm,µ ∈ [1, Nµ − 1]Z.

The coupling matrix element

g(k) := g0 [sin(`xkx) + i sin(`yky)] (4.9)

leads to the same phase winding as displayed by the original coupling term (3.4). Setting

tl := − 1

2ml
and µl := 4tl − ωl,0, (4.10)

34



4.2 Tight-binding model on a square lattice

we obtain modified versions of the exciton and photon dispersions (3.3) with the substitution
k2µ → 2− 2 cos(`µkµ).

Writing the Bloch Hamiltonian (4.6) in terms of Pauli matrices as in Eq. (3.5) yields

h(k) = τ+(k)IL + d(k) · ~σ (4.11)

with τ±(k) = 1
2(τC(k)± τX(k)) and

d(k) =

 g0 sin(`xkx)

−g0 sin(`yky)
τ−(k)

 . (4.12)

This model is, up to prefactors of the terms and the energy shift τ+, equivalent to the Qi-Wu-Zhang
(QWZ) model [63] which is also known as half Bernevig-Hughes-Zhang (half-BHZ) model [20],
because it has been used by these authors as part of a model to describe the quantum spin-Hall
effect in HgTe quantum wells [64]. Weiß [65, Ch. 4] has previously studied nonlinear bosonic
transport in the QWZ model.

The bands of the Bloch Hamiltonian (4.11) are given by

E± = τ+ ± d = τ+ ±
√
g20[sin

2(`xkx) + sin2(`yky)] + τ2− (4.13)

and are displayed for parameters corresponding to the free model of the previous sections in
Fig. 4.1a. The system is gapped unless d = 0, which requires dx = dy = 0 and thus (assuming
g0 > 0) restricts the gap closings to the Γ, X, and M points. A gap closing occurs whenever
τ−(k) = 0 ⇒ d(k) = 0 at one of those points [20]. In any other case, both bands have well-defined
Chern numbers which we can compute numerically (compare Fig. 4.2). Just as in the previous
sections, we see a Chern number splitting of C± = ∓1 or, if there is no band inversion, C± = 0.
Figure 4.3 shows the topological phases of the lattice model with respect to the parametersmX

and ωX,0.

Under the assumption g0 = tC− tX, our model reduces precisely to the QWZ model and its Chern
number only depends on the ratio u := (µX − µC)/g0. Explicitly, it is given by [20]

C± = ∓


−1, u ∈ [−2, 0],

+1, u ∈ [0, 2],

0, |u| > 2.

(4.14)

For the case of multiple semiconductor layers, we can generalize the hopping matrices to

t(0) = diag(−µC,−µX, . . . ,−µX) (4.15)
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4 Lattice model and edge states
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ď
z

Ba
nd

ga
p
∆

(|t
C
|)

Figure 4.1 | a Band structure and b exciton-photon component ďz together with the gap size ∆ = 2d

in units of |tC| for the lattice model. All quantities are plotted along the path through the
first Brillouin zone which connects the high-symmetry points Γ = 0, X = ( π

`x
, 0), and M =

( π
`x
, π
`y
) with straight line segments. The parameters used are mX = 103mC, ωX,0 = 2|tC|,

ωC,0 = 0, and g0 = 0.4|tC|.
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4.2 Tight-binding model on a square lattice

Figure 4.2 | Chern field of the lattice model for the lower (F−) and upper (F+) band (left and right panel,
respectively), computed using the method of Fukui et al. (Sect. 2.2.3) over the first Brillouin
zone discretized on a 512 × 512 grid. The parameters are the same as in Fig. 4.1. The sum
over the Chern fields yields C± =

∑
k F

±(k) = ∓1 for these parameters.

Figure 4.3 | Topological phases of the lattice model with respect to ωX,0 and mX. The plot shows the
Chern numberC− of the lower polariton band, obtained numerically via the method of Fukui
et al. For |mX| � |mC|, the exciton dispersion is essentially flat with a constant value of ωX,0,
which then determines the Chern number. The critical value of ωX,0 = 0 corresponds to a
gap closing at the Γ point, where τC = 0. The same applies for the critical value ωX,0 = 4|tC|
(ωX,0 = 8|tC|) and the X point (M point).
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4 Lattice model and edge states

x

y

Figure 4.4 | Structure of the lattice model with periodic boundary conditions in x and open boundary
conditions in y direction. Since the crystal momentum kx is still a good quantum number
in this setup (i.e., the lattice momentum operator P̂x still commutes with Ĥ), we can still
classify the spectrum in terms of a band structure with respect to x. Eigenstates can further
be classified as bulk or edge states depending on whether there are delocalized over y or
exponentially confined to the edges iy ∈ {1, Ny} (compare Ref. [20, Sect. 6.2]).

t(`x) =


tC ig0/2 · · · ig0/2

ig0/2 tX
... . . .

ig0/2 tX

 , t(`y) =


tC g0/2 · · · g0/2

−g0/2 tX
... . . .

−g0/2 tX

 , (4.16)

which are arrowhead matrices, just as the multilayer Hamiltonian (3.24) of the free model. Similar
to the free model, this results in additional sets of dark bands which exactly follow the uncoupled
tight-binding exciton dispersion τX(k) and which are topologically trivial, while a single bright
mode still hybridizes with the photonic state to from upper and lower polariton bands with non-
zero Chern number.

4.3 Cylindrical lattice geometry

In order to see the presence of edge states, we need to break the lattice translation symmetry
and introduce a boundary to the system. Here, we will introduce the boundary in y direction but
still use periodic boundary conditions in x direction, which corresponds to a cylindrical topology
of the lattice (Fig. 4.4). That way, the lattice momentum kx remains a viable quantum number,
allowing a band structure interpretation of the eigenvalues.

The Hamiltonian can still be written in the form of Eq. (4.1), but the with the lattice-site index i
only referring to the x direction. Additionally, states are labeled by y-layer indices iy ∈ [1, Ny]Z
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4.3 Cylindrical lattice geometry

and local indices l ∈ [0, L]Z. Introducing the operators

b̂m,iy ,l :=
1√
Nx

Nx∑
j=1

e−ikm·xj âj,iy ,l, (4.17)

where km := 2πm
Nx`x

, and assuming again the tight-binding form of Eq. (4.5) yields Ĥ =
∑

l ĥ(kl)

with

ĥ(km) :=

Ny∑
iy=1

b̂
†
km(iy)h

(0)
km
b̂km(iy) +

Ny−1∑
iy=1

[
b̂
†
km(iy)t(`y)b̂km(iy + 1) + H.c.

]
(4.18)

where b̂km(iy) := (b̂m,iy ,l=0, . . . , b̂m,iy ,l=L)
> and

h
(0)
k = t(0) + t(`x)e

ik`x + t†(`x)e
−ik`x . (4.19)

Unwrapping the indices (iy, l) in row-major order (i.e., with l being the fastest varying index), we
get the explicit block-tridiagonal matrix-form

h(k) =


h
(0)
k t(`y) 0

t†(`y)
. . . . . .
. . . . . . t(`y)

0 t†(`y) h
(0)
k

 ∈ H(L+1)Ny
(4.20)

for the single-particle Hamiltonian. Diagonalizing this matrix numerically, we obtain the band
structure shown in Fig. 4.5. This band structure displays 2Ny bands. Away from kx = 0, the bands
clearly separate into two sets of Ny exitonic and Ny photonic bands, respectively. In the region
where the bands cross, there is still a strong exitonic component of the eigenstates around ωX,0,
which changes into strongly photonic bands away from this energy. Figures 4.5c and d display
the same band structure for a reduced exciton mass, which shows an increase in the size of the
topological gap.

Increasing the interaction strength g0 opens another gap between the two bands crossing the
topological gap. This is a finite-size effect caused by the non-zero overlap between the the two
edge states localized on opposite sides of the system. The overlap results in an avoided crossing in
the band structure (see, e.g., Pertsova, Canali, and MacDonald [66] for a similar situation), which
vanishes if the number of y layers is increased (Fig. 4.6).
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Figure 4.5 | a Full band structure of the cylindrical lattice model (4.20) with Ny = 32 layers. The bands
are colored according to the photonic or excitonic content of the corresponding eigenstates,
from −1 (blue) for purely exitonic to +1 (red) for purely photonic bands. The parameters are
the same as for Fig. 4.1a, exceptmX = −500mC and g0 = 0.2|tC|.
b The same band structure as in Panel a, zoomed in on the topological gap by rescaling
the energy axis. The color indicates the localization of the eigenstates at the edges of the
cylinder. States localized close to the iy = 1 (iy = Ny) edge are colored in blue (red). The
topological gap around ωX,0 is crossed by two bands of states localized at opposite edges and
with opposite slope. Additionally, the band structure features to additional sets of edge states
outside the gap around |kx| = 3

4
π
`x
.

c–d Same as previous two panels, but with reduced exciton effective massmX = −10mC.
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4.4 Time-propagation of the driven lattice model
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Figure 4.6 | Band structure around the topological gap for varying number of y layers. For small Ny , the
avoided crossing between the edge states is clearly visible. This secondary gap vanishes with
increasingNy . The other parameters are the same as for Fig. 4.1a, except formX = −500mC.

4.4 Time-propagation of the driven lattice model

In this section, we will introduce a time-dependent driving field of the form Fi(t)â
†
i + H.c. to the

lattice Hamiltonian and derive the equations of motion for the two-time single-particle density
matrix (or, equivalently, the two-time lesser Green’s function). These results will be used for the
numerical simulation of the driven lattice model, which is discussed in Sect. 5.2.

4.4.1 Equations of motion

Consider the finite family of bosonic operators {âj , â
†
j}Nj=1 and a Hamiltonian of the form2

Ĥ = â†hâ+ â†F (t) + F †(t)â

=
N∑

i,j=1

â†ihij âj +
N∑
i=1

[
Fi(t)â

†
i + F ∗

i (t)âi

] (4.21)

with the vector of bosonic operators â = (â1, . . . , âN )>, the matrix h ∈ HN , and the time-
dependent on-site drivingF (t) ∈ CN . This general form encompasses the lattice Hamiltonian (4.1).

2For two column vectors v,w ∈ CN the scalar product is given by v†w =
∑N

j=1 v
∗
i wj ∈ C and the dyadic product

by vw† = (viw
∗
j )

N
i,j=1 ∈ CN×N .
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4 Lattice model and edge states

We write the operators in the Heisenberg picture, i.e., ÔH(t) := Û(t0, t) Ô(t) Û(t, t0) with time
propagator Û(t, t0) = T exp

(
−i
∫ t
t0
ds Ĥ(s)

)
and where Texp denotes the time-ordered expo-

nential. The operators then satisfy the Heisenberg equation of motion

idtÔ
H(t) = [Ĥ(t), ÔH(t)]. (4.22)

For the field operators, the equations of motion are given explicitly by (dropping the superscript H
from now on)

idtâl(t) =
N∑
j=1

hlj âj(t) + Fl(t) ⇔ idtâ(t) = hâ(t) + F (t). (4.23)

We now look at the single-particle density operators %̂ij := â†j âi arranged in a matrix %̂ = (%̂ij).
Note the reversed order of the indices, which leads to more natural equations of motion (the
equations for a†iaj contains additional matrix transposition) and is consistent with the definition
of the lesser Green’s function, e.g., by Stefanucci and Leeuwen [67]. First, we will only consider
the equal-time operator %̂ij(t) = â†j(t)âi(t). Using the relations

%̂†ij = %̂ji,

%̂ij = âiâ
†
j − δij ,

[%̂ij , â
†
l ] = δilâ

†
j ,

[%̂ij , âl] = −δjlâi,

[%̂ij , %̂lk] = δik%̂lj − δjl%̂ik,

(4.24)

we obtain the equations of motion

idt%̂lm =

N∑
j=1

[hlj %̂jm − %̂ljhjm] + Flâ
†
m − F ∗

mâl

⇔ idt%̂ = [h, %̂] + (F â† − âF †).

(4.25)

Without driving, F = 0, this equation of motion (4.25) implies

idtn̂i =
N∑
j=1

(hij %̂ji − %̂ijhji) (4.26)

for the density operator n̂i := %̂ii, which suggests the definition of a lattice current

Îij := 2i Im(hij %̂ji) (4.27)

so that the following discrete continuity equation holds:

dtn̂i +
N∑
j=1

Îij = 0. (4.28)
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4.4 Time-propagation of the driven lattice model

4.4.2 Coherent states and semi-classical approximation

The expectation valuesa(t) := 〈â(t)〉 ∈ CN and %(t) := 〈%̂(t)〉 ∈ CN×N obey the same equations
of motion, with the operators replaced by the respective expectations. Note that % is proportional
to the equal-time lesser Green’s function, %(t) = −iG<(t, t) [67]. All observables which are
at most quadratic in the bosonic operators can be expressed in terms of â and %̂. Thus, if their
expectation values are known for some initial state, the complete time evolution can be computed
by solving the ODE system given by Eqs. (4.23) and (4.25) which has dimension of the order ofN2.

When starting from a coherent initial state the time propagation can be simplified even more: Let
α ∈ CN and define the corresponding multi-mode coherent state as [68, 69]

|α〉 :=
N∏
j=1

D̂j(αj)|0〉 (4.29)

where |0〉 is the Fock vacuum and the displacement operator D̂j(α) := exp(αâ†j − α∗âj) creates a
single-mode coherent state. Note that D̂j(0) = îd and 〈α|β〉 = exp(−‖α‖2/2 +α†β − ‖β‖2/2)
and thus 〈α|α〉 = 1. The coherent states are eigenstates of the bosonic annihilators such that
âj |α〉 = αj |α〉. As a consequence, the expectation value of every normal-ordered operator with
respect to |α〉 can be obtained by replacing â(†)j → α

(∗)
j .

In a coherent initial state we have a(0) = α and %(0) = αα† = (αiα
∗
j )

N
i,j=0. Since the coherent

state is fully specified by α, the density matrix % and thus all observables can be obtained from
this vector. Define the covariance matrix

Γ := %− aa† ⇔ Γij = 〈â†j âi〉 − 〈â†j〉〈âi〉, (4.30)

which is zero precisely for coherent states. It evolves in time as

iΓ̇lm = %̇lm − alȧ
∗
m − ȧla

∗
m =

N∑
j=1

[hljΓjm − Γljhjm] (4.31)

or, in short,

idtΓ = [h,Γ]. (4.32)

The derivative is independent of F (t) and, since the time-evolution generated by Eq. (4.32) con-
serves the norm of the covariance matrix, Γ(0) = 0 implies Γ(t) = 0 for all times. It follows that if
the system is in a coherent state at t = 0, it will be in the coherent state given by a(t) for all times,
i.e., the many-body quantum state of the system is fully determined by this field. Assuming Γ = 0

and propagating only a(t) leads to an ODE system of size N and is known as the semi-classical
approximation, which we have found to be exact for the Hamiltonian under consideration here, as
long as we start in a coherent state.
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4 Lattice model and edge states

This discussion is a special case of the more general theory of Gaussian states [70, 71]. The manifold
of Gaussian states is invariant under the time evolution generated by Hamiltonians of up to second
degree in the field operators {âi, â†i}, such as Eq. (4.21), and for bosons these states are completely
defined by a and Γ, in our notation. This, together with Eq. (4.32), implies the exactness of the
semi-classical approximation for any coherent initial state. For general Gaussian initial states, i.e.,
Γ(0) 6= 0, it is necessary to also propagate Γ via its equation of motion (4.32).

The previous results also generalize to the two-times density matrix

%̂ij(t1, t2) = â†j(t2)âi(t1). (4.33)

More specifically, we find that (compare Stan, Dahlen, and Leeuwen [72] for F = 0)

∇t %̂(t) =

(
h%̂(t) + F (t1)â

†(t2)

−%̂(t)h− â(t1)F †(t2)

)
(4.34)

where t = (t1, t2) and ∇t = (∂t1 , ∂t2)
> denotes the gradient with respect to the two time

arguments. Futher, we have

∇t Γ(t) =

(
hΓ(t)

−Γ(t)h

)
, (4.35)

so that the time evolution preserves the relation

%(t1, t2) = a(t1)a
†(t2) (4.36)

also in the two-time case. This will be relevant for computing spectroscopic data in Sect. 5.2, which
requires the lesser Green’s functionG<(t1, t2) = i%(t1, t2). For t1 = t2, the directional derivatives
(1, 1)> ·∇t %̂(t, t) and (1, 1)> ·∇t Γ(t, t) reproduce the equal-time equations of motion (4.25) and
(4.32), respectively.
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5 Numerical simulation and results

In this section we will present results from the numerical simulations of the topological polariton
models introduced in the previous chapters. We will start with the study of a bulk system including
exciton-exciton interaction and dissipation using a Gross-Pitaevskii-type non-linear Schrödinger
equation. To complement this picture, we will discuss time-resolved spectroscopy results obtained
from a simulation of the driven lattice model using the equations of motion derived in Sect. 4.4.

5.1 Semi-classical dynamics

In bosonic systems, the semi-classical picture corresponds to replacing the creation and annihilation
operators by a complex field, i.e.,

al(r, t) := 〈âl(r, t)〉, l ∈ {C,X1, . . . ,XL}. (5.1)

Note that we have now written the field in continuous real space, i.e.,

F âl(r, t) = âl,q(t) (5.2)

with the Fourier transform operator F and the bosonic operators âl,q defined as in Sect. 3.1. As we
have seen in Sect. 4.4.2, this approximation becomes exact for bilinear Hamiltonians and coherent
initial states. Even in the presence of non-negligible interactions, however, the semi-classical
picture can be used, which is done sucessfully in the study of the superfluid phases in ultracold
quantum gases [15, 73, 74] and polariton systems [7], among others. The inter-particle interaction
corresponds to polynomial terms of fourth degree in the field operators in the Hamiltonian.
Specifically, the exciton-exciton interaction written in real space can be described by a contact
interaction of the form [7]

Ĥint =
gXX

2

∫
d2r â†X(r)â

†
X(r)âX(r)âX(r). (5.3)

In order to incorporate these interactions in the semi-classical picture, a mean-field approximation
is used, which results in an interaction term of the form

Hint =
gXX

2

∫
d2r |aX(r)|4, (5.4)
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5 Numerical simulation and results

which contributes to the equation of motion of the field aX(r) as

idtaX(r)
∣∣
int

=
δHint

δa∗X(r)
= gXX |aX(r)|2aX(r). (5.5)

This term can be interpreted as coming from a density-dependent effective potential Vint(|aX(r)|2)
and including it in the Schrödinger equation yields what is known as the Gross-Pitaevskii equation
(GPE) [74]. The equation of motion further incorporates dissipation via

idtal(r)
∣∣
diss

= −iγlal(r). (5.6)

The driving discussed in Sect. 4.4 gives rise to a term of the form

idtal(r)
∣∣
driv

= Fl(r, t). (5.7)

5.1.1 Driven dissipative Gross-Pitaevskii equation

The full equation of motion we simulate has the form of a driven dissipative Gross-Pitaevskii
equation (DDGPE)

idta(r, t) =
[
F−1H(q)F +V(r)− iΓ

]
a(r, t) +W (a(r, t)) + F (r, t) (5.8)

with the vector-valued field1 a(r, t) = (a0(r, t), a1(r, t), . . . , aL(r, t))
>. This equation (for

L = 1) has been used by, e.g., Ballarini et al. [16] and Karzig et al. [24] for the study of polariton
dynamics. The matrixH(q) is the free non-interacting single-particle Hamiltonian (3.24) described
in Sect. 3.2, which contains the momentum-dependent dispersion and the phase-winding exciton-
photon coupling. In order to apply H(q) in momentum space, the forward and backward Fourier
transforms are computed numerically as written in the equation using the fast Fourier transform
implemented in FFTW3 [75] (Sect. B.2). The matrix V(r) := diag(V0(r), . . . , VL(r)) contains
the local single-particle potential in each layer. In the following, we will only consider exciton
potentials, for which we will use a hexagonal lattice of the form

V X(r) := −vX
(
cos(κ1x) + cos(κ1x/2 +

√
3κ2y/2) + cos(−κ1x/2 +

√
3κ2y/2)

)
(5.9)

with reciprocal vector κ ∈ R2 and potential strength vX, which is the same as used by Karzig et al.
[24]. In order to constrain the fields to the rectangular simulation region S = [0, Lx]× [0, Ly], we
introduce artificial boundary potential V wall for both exciton and photon fields. The boundary
potential takes a constant value significantly larger than the characteristic energies of the system
near the boundary of S . The total potential is thus given by V0 = V wall and Vl = V X + V wall for
l > 0 (Fig. 5.1a). The dissipation is controlled by the matrix Γ := diag(γ0, . . . , γL) with constants
1Recall that we use indices 0 ≡ C and l ≡ Xl for 0 < l ≤ L, interchangeably.
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5.1 Semi-classical dynamics

(a) (b)

Figure 5.1 | a Hexagonal exciton potential (5.9) in units of the potential strength vX and with κ =

(2, 2)d−1
0 where d0 is the spatial unit and with potential wall V wall around the simulation

region.
b Gaussian driving profile f(r) in units of f0 for σd = 3d0. The driving is focused on the
point rd = (40, 4)d0 close to the boundary of the sample.

γl ∈ R. The equation further contains the Gross-Pitaevskii interaction term

W (a) := gXX

(
0, |a1|2a1, . . . , |aL|2aL

)>
. (5.10)

The first componentW0 is zero, since there are no photon-photon interactions. The driving only
affects the photon field (Fl = 0 for l > 0), via

F0(r, t) := f(r) exp(−iωdt) (5.11)

with the spatial driving profile f(r), for which we use the Gaussian shape (Fig. 5.1b)

f(r) = f0 exp

(
−‖r − rd‖2

2σ2d

)
. (5.12)

The DDGPE as stated here is an ordinary differential equation since the Fourier transform turns
the spatial derivatives into algebraic operations. It thus can be solved via standard numerical
techniques, such as the Runge-Kutta class of methods. For the simulations described here, we
have used the Runge-Kutta Dormand-Prince (Dopri5) scheme [76]. Specifically, we have used the
implementation of boost::odeint [77] for the DDGPE and a custom implementation based on Press
[78, 17.2] for the lattice model. Dopri5 is a fifth-order method with an embedded fourth-order
scheme which is used to provide an estimate of the (absolute or relative) local truncation error.
The step size is adjusted during the time evolution in order to keep this error below a predefined
bound. This approach is known as adaptive step size.
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5 Numerical simulation and results

Our code for solving Eq. 5.8 is written as a C++ library which contains the core functionality
and a Python wrapper script which is responsible for setup and post-processing. The output
of our simulation is the time-dependent field a(r, t) at a fixed set of time steps together with
information about the simulation parameters. This data is stored in the NetCDF 4 format [79]. For
post-processing we use xarray [80] and dask [81] for conveniently dealing with multi-dimensional
data arrays and matplotlib [82] for plotting. Scans over ranges of parameters and several post-
processing tasks were run in parallel with the help of GNU parallel [83].

5.1.2 Dynamics of the single-layer model

First, we will analyze the behavior of the system for a single semiconductor layer, L = 1, as
discussed in Sect. 3.1. We can reproduce the results presented by Karzig et al. [24, Fig. 7]: Driving the
system with a Gaussian pump pulse centered at the edge of the sample shows the presence of edge
states with a chirality determined by the winding numberm of the coupling gl(q) = g0 exp(iθ(q)),
as expected due to the non-zero Chern number (Fig. 5.2). The chirality of the system is determined
by the winding number m. Setting m = −1 inverts the direction of propagation compared to
m = 1.

Figure 5.3 shows the behavior of the fields in the topologically trivial case m = 0. No chiral
edge transport occurs in this case. Instead, both exciton and photon populations spread out
symmetrically around the focus of the driving. This is caused primarily by the nonlinear interaction
term incorporated in the GPE, because this term acts as an effective potential proportional to |al|2

and therefore energetically punishes high densities.

The chiral propagation is resistant to disturbance by obstacles (e.g., impurities in the material),
which can be seen in Fig. 5.4.

In order to determine the influence of the driving parameters on the population of the edge mode,
we will use the fraction of population located close to the edge. First, we partition the simulation
region into bulk and edge regions (Fig. 5.5a) and compute the total population within the edge
region as

N
(edge)
l (t) :=

∫
edge
d2r |al(r, t)|2, l ∈ {C,X1, . . . ,XL}. (5.13)

LetNl denote the total population. We normalize bulk and edge population to the total population,
N̄

(edge)
l := N

(edge)
l /Nl. Comparing bulk and edge population then shows whether the driving is

resonant with the edge mode, leading to a larger value of N̄ (edge)
l . Figure 5.5b shows these quantities

for varying driving frequency ωd and two different values of the interaction strength gXX.We
see that the driving is only resonant with the edge mode over a small frequency range, which is
consistent with the small size of the topological gap observed for the lattice model in Sect. 4.3.
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5.1 Semi-classical dynamics

Figure 5.2 | a–cChiral propagation of population in the driven single-layer system for different simulation
times. For each time, measured from the start of the driving at t = 0, the upper (lower) panel
shows the corresponding photon (exciton) population |aC/X|2. The driving is focused on the
point rd = (40, 4)d0 with a Gaussian profile (5.12), driving frequency ωd = 0.856ωX,0, and
amplitude f0 = 10−2ωX,0. Position is given in the computational unit d0, which is related to
the lattice constant of V X by a = 3.86d0. The parameters of the potential are vX = 0.05ωX,0

and κ = (1.88, 1.88)d0. The winding number of the exciton-photon coupling is m = 1.

Time is measured in units of texc := ω−1
X,0. The hatched region is the support of the boundary

potential V wall.
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5 Numerical simulation and results

Figure 5.3 | a–c Propagation of polariton population for the topologically trivial casem = 0. Otherwise,
the parameters are the same as for Fig. 5.2. The polariton population spreads symmetrically
around the driving focus rd, driven primarily by the exciton-exciton interaction which im-
poses an energy cost on high local densities.
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5.1 Semi-classical dynamics

Figure 5.4 | a–c Propagation of the polariton wavefunction around an impurity which is modeled by par-
tially extending the exciton potential wall (hatched region) into the bulk. The parameters are
otherwise the same as for Fig. 5.2.

These results illustrate the sensitivity of the system to the choice of driving parameters, which
we have also observed to a lesser extent with regard to the driving amplitude and exciton-photon
coupling strength. This has made it difficult for us to go beyond the continuous pumping scheme
described here and to explore possible technical applications of the chiral transport in the spirit of
polaritonic devices.

5.1.3 Dynamics of the multilayer model

In Sect. 3.2 we have discussed how multiple exciton layers, uncoupled among each other, give
rise to a subspace of dark states and a single bight state that couples to the photon mode with
enhanced strength. This is corroborated by numerical results for the non-interacting case.

We define the population at the edge as in Eq. 5.13 above and the bulk population as the difference
N (bulk)

l := Nl −N
(edge)
l . Further, we define the bright (dark) excitonic field a± := 1√

2
(aX1 ± aX1)

with the corresponding populationN (bulk)
± andN (edge)

± . In the two-layer case, we choose a rescaled
exciton-photon coupling according to Eq. 3.33, i.e., g′0 :=

1√
2
g0 in order to obtain the same effective

bright-state coupling strength as for the single layer.
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Figure 5.5 | a Partition of the simulation region into bulk and edge regions, surrounded by the boundary
potential V wall.

b Fraction of the photon population near the boundary N̄
(edge)
C after continuously driv-

ing the system for a simulation time of tend = 4 × 103 texc. In the frequency interval
ωd/ωX,0 ∈ [0.852, 0.864] (highlighted region) we see a resonance with a significant fraction
of the population located near the boundary of the system. This corresponds to the chiral
propagation shown in Fig. 5.2. The horizontal line marks the ratio of the edge region to the
total area of inside the boundary, which is approximately 0.34.
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5.2 Time-resolved spectroscopy for the lattice model

Figure 5.6 | a–c Comparison of the time evolution of edge (red) and bulk (blue) population for L = 1

(solid lines) and L = 2 (dashed lines) at different exciton-exciton interaction strengths gXX.
For the two-layer system, a coupling strength of g′0 := 1√

2
g0 is used in order to obtain an

effective coupling equivalent to the single layer. The population of the bright state a+ :=
1√
2
(aX1 + aX1) is denoted by N+. Except for g0 and gXX, the simulation parameters are the

same as in Fig. 5.2.

Figure 5.6 shows the time evolution of bulk and edge population for L = 1 and L = 2 under these
conditions. In the absence of exciton-exciton interaction, the time evolution of the population in
the single exciton layer is indeed identical to the bright-state population in the two-layer system.
For non-zero gXX, the populations no longer evolve identically but diverge after some time, which
happens earlier at higher interaction strength. In both cases, there is no population transferred to
the dark state a−.

5.2 Time-resolved spectroscopy for the lattice model

In the previous section we have discussed the results of the DDGPE simulation, in particular the
sensitivity of the chiral edge excitation to the driving frequency. In order to study the effect of
the driving on the excitation of the chiral edge states, we will turn our focus to the tight-binding
lattice model introduced in Sect. 4.2 with an additional time-dependent driving F (t) of the form
discussed in Sect. 4.4. Specifically, we simulate the model given by [compare Eqs. (4.1) and (4.21)]

Ĥ =

N∑
i,j=1

L∑
l,l′=0

tll′(i, j)â
†
ilâjl′ +

N∑
i=1

L∑
l=0

(Fil(t)â
†
il + H.c.) (5.14)

on a square lattice with N sites and with a local Hilbert space of dimension L + 1 at each site,
representing the photon and exciton degrees of freedom. For the results discussed here, the driving
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5 Numerical simulation and results

is restricted to the photon field l = 0 and to a single site i0, i.e., Fil(t) = f(t)δl0δii0 and with
f(t) = f0 e

−iωdt.The hopping matrices are those of the lattice model given in Sect. 4.2. We impose
cylindrical boundary conditions as discussed in Sect. 4.3. We will measure the time in units given
by the photon hopping parameter, i.e., in units of thop := |tC|−1.

In order to explicitly see how the population of the bands is affected by the driving, we look at the
time-resolved spectral density (trSD) defined by

I(full)(ω) := Im

∫
d2tStp,σp(t1)Stp,σp(t2)e

iω(t1−t2)G<(t1, t2). (5.15)

This is the same formula as for the photocurrent in time-resolved pump-probe photoemission
spectroscopy measurements which has been dervied by Freericks, Krishnamurthy, and Pruschke
[84] for fermionic systems. For the bosonic system we simulate here, the trSD is used as a tool to
observe the effects of the driving with time and energy resolution. The function S(t) describes the
shape of the pump pulse, which we assume to be Gaussian,

Stp,σp(t) :=
1

σp
√
2π

exp

(
−(t− tp)

2

2σ2p

)
. (5.16)

The time resolution is provided by varying the probe time tp.The duration depends on the width
σp of the Gaussian and determines the spectral resolution of the trSD. A larger probe duration
leads to an increase in spectral resolution.

In order to obtain the input for Eq. (5.18), we perform the following steps. First, starting from
an vacuum initial state a(0) = 0, the field expectation values a are propagated by solving the
equations of motion (4.23) with the time-dependent driving given above. In order to provide
momentum-resolved information, we Fourier transform a with respect to the periodic lattice
coordinate x, giving the field bm,iy ,l(t) [compare Eq. (4.17)]. From this we obtain the two-time
lesser Green’s function as [compare Eq. (4.36)]

G<(km, t1, t2) = i

Ny∑
iy=1

L∑
l=0

bm,iy ,l(t1)b
∗
m,iy ,l(t2) (5.17)

with km = 2πm
Nx`x

. In order to reduce the amount of information, we have performed a partial trace
over G< with regard to the y-layer and exciton-photon degrees of freedom and only included the
part diagonal in km. This gives us the trSD

I(ω, km; tp) = Im

∫
d2tStp,σp(t1)Stp,σp(t2)e

iω(t1−t2)G<(km, t1, t2). (5.18)

The integrand is only computed in a region where the probe shape has non-negligible weight. For
the results included here, we have chosen a cutoff beyond a distance of 3σp from tp.

The momentum-resolved spectral density (Fig. 5.7) shows that the driving excites states at the
energy corresponding to ωd over the whole range of available momenta kx.This is, however, only
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5.2 Time-resolved spectroscopy for the lattice model

Figure 5.7 | a–h Spectral density of the driven system at a fixed probe time tp = 350thop with σp =

100thop for different values of the driving frequency ωd (blue line) on a Nx ×Ny = 256 × 8

lattice with periodic boundary conditions in y direction. The grey lines show the equilibrium
band structure of the model. The other parameters are mX = −500mC, ωX,0 = 1.8|tC|,
g0 = 0.2|tC| and the driving amplitude is f0 = 0.2|tC|.

true for the bulk system. In order to take a closer look at the topological gap, we choose an exciton
mass ofmX = −10mC, which significantly increases the size of the gap (compare Fig. 4.5d) and
thus reduces the computing time neccesary to resolve the bands within the gap. The resulting trSD
is shown in Fig. 5.8. Inside the gap, the driving is only resonant with one of the two crossing bands,
which fits our observation of unidirectional chiral propagation in the contiuous model (Fig. 5.2).
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5 Numerical simulation and results

Figure 5.8 | a–p Spectral density of the driven system at a fixed probe time tp = 350thop with σp =

100thop for different values of the driving frequency ωd (blue line) in the region of the topo-
logical gap. The grey lines show the equilibrium band structure of the model. In order to
improve the visibility of the edge states at a spectral resolution which does not require a sub-
stantially larger pump time, we have changed the exciton effective mass to mX = −10mC.
The gap between the edge states around ω = 1.8|tC| is a finite size effect due to the small
number of y layers (compare Fig. 4.6). The other parameters are the same as in Fig. 5.7.
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6 Conclusion and outlook

In this thesis, we have implemented a numerical simulation of a topological polariton model and
studied its behavior under optical driving. The results presented in Sect. 5.1.2 show that it is indeed
possible to optically excite the edge modes present in this system and use them for chiral transport
of polariton population. We have demonstrated the robustness of this chiral transport for a simple
example of an impurity in the exciton potential (Fig. 5.4) and briefly discussed the influence of
exciton-exciton interaction.

In the course of our numerical studies, we have found the selective excitation of the edge mode to
be difficult due to its sensitivity to changes of the driving parameters. In particular, the driving
frequency needs to be tuned carefully in order to stay resonant with the edge mode without
exciting the bulk. This is in part caused by the relatively small size of the topological gap. Changes
to the driving protocol have also resulted in failure to selectively populate the edge mode in our
simulations.

Beside the DDGPE evolution of the continuous system, we have implemented a simulation of the
driven lattice model, which we have used to obtain time-resolved spectral information. The results
presented in Sect. 5.2 show that the periodic driving indeed populates the bulk states at an energy
corresponding to the driving frequency over the available range of lattice momenta, while within
the topological gap an edge mode with definite chirality can be selectively excited.

In Sect. 3.2 we have discussed the generalization of the exciton-photon model proposed in Ref. [24]
to multiple uncoupled semiconductor layers. For the special case of uniform coupling and exciton
dispersion, we have seen that only a one-dimensional bright subspace is coupled to the light
mode, while the rest of the excitonic eigenstates are dark. The coupling strength is enhanced
by a factor proportional to

√
L.This enhancement is regularly used in experiments in order to

reach high coupling strengths [1, 7]. We have found that in the uniform case the bright state
retains the topological properties induced by the phase-winding coupling while the dark states
are topologically trivial. In the non-interacting limit, this result is consistent with the numerical
time-propagation of the multi-layer bulk model via the DDGPE (Sect. 5.1.3), where the bright
state evolves in the same way as the single layer excitonic state for a rescaled coupling. This is no
longer true for non-zero exciton-exciton interaction, which warrants further study on the effects
of non-linearity in the multi-layer model.
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6 Conclusion and outlook

The extension of this result beyond uniform coupling is still left open. Since the coupling strength
varies depending on the position of the layer within the cavity in QW systems, this question
might have implications for possible experimental realizations of the topological polariton model.
Though probably harder to achieve in experiment, it could also be interesting to consider the
effects of winding numbers differing between QW layers on the topological properties of the
system. Another possible extension of this work is the incorporation of the composite nature of
excitons as pairs of fermionic particles into the model, which might affect the derivation of the
phase-winding exciton-photon coupling (Appendix A) and the many-body physics of the polariton
system.

Qualitatively, our results are consistent with the recent experiments performed by Klembt et al. [28],
where chiral transport around a corner (compare Fig. 5.2) and the avoidance of a defect (compare
Fig. 5.4) have been observed as well. With a few adaptions, our code for the trSD computation
(Sect. 5.2) should be suited to obtain spectral information which can be compared to the results
of the photoluminescence measurements performed by Klembt et al. The implementation and
results presented in this thesis pave the way for further studies on the selective excitation of the
edge states as well as chiral transport and optical control of the polariton population, which may
provide important building blocks for future polaritonic devices.
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A Origin of the phase-winding exciton-photon
coupling

Here we derive the form of the XC coupling term included in the model Hamiltonian (3.1), following
the presentation by Karzig et al. [24].

Consider the k · p quantum well (QW) Hamiltonian

ĤQW =
∑
k

ĉ†kHQW(k)ĉk (A.1)

with spinors ĉk := (ĉc,k, ĉv,k)
>, where ĉc,k (ĉv,k) is a fermionic annihilation operator for a

conduction (valence) band electron1 with momentum k, and with the matrix

HQW(k) =

(
M +

k2

2m

)
σz + α(kxσx + kyσy)

=

(
M + k2/(2m) α(kx − iky)

α(kx + iky) −M − k2/(2m)

)
.

(A.2)

We consider the limit of small k. This allows us to neglect the k2 terms on the diagonal ofHQW(k).
The Fourier transform of the current density operator has the components

̂µ(q) =
∑
k

ĉ†k+qvµ(k)ĉk, vµ = ∂µHQW, µ ∈ {x, y}. (A.3)

Without the diagonal terms we get k-independent Pauli matrices vµ(k) = ασµ and thus obtain

̂x(q) = α
∑
k

(ĉ†c,k+q ĉv,k + ĉ†v,k+q ĉc,k) and ̂y = −iα
∑
k

(ĉ†c,k+q ĉv,k − ĉ†v,k+q ĉc,k). (A.4)

We can then write
̂(q) =

∑
µ

̂µ(q) ěµ

= α
∑
k

(ĉ†c,k+q ĉv,k + ĉ†v,k+q ĉc,k) ěx + (ĉ†v,k+q ĉc,k − ĉ†c,k+q ĉv,k) iěy

= α
∑
k

(ěx − iěy)ĉ
†
c,k+q ĉv,k + (ěx + iěy)ĉ

†
v,k+q ĉc,k.

(A.5)

1To be precise,HQW is given in the basis of Jz = − 1
2
and Jz = − 3

2
electron states. However, the basis transformation

to the conduction and valence band operators used in the text is approximately unity for small values of k which
we consider here [24].
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A Origin of the phase-winding exciton-photon coupling

For equal electron and hole masses, the exciton creation operator of the lowest band (we neglect
higher excitations) can be written as â†X,q =

∑
k φ1(k)ĉ

†
c,k+q ĉv,k [recall (2.6)] with φ1(k) =

2
√
2πa0(1 + (ka0)

2)−3/2 ≈ 2
√
2πa0 with the exciton Bohr radius a0 for small k. Inserting this

into (A.5) yields

̂(q) = α′
[
(ěx − iěy)â

†
X,q + (ěx + iěy)âX,−q

]
= α′

[
(ěx − iěy)â

†
X,q + (ěx + iěy)âX,−q

]
(A.6)

with constant α′ = α/2
√
2πa0.

The interaction Hamiltonian is given by the coupling term [85]

ĤXC =

∫
d2r ̂(r) · Â(r) =

∑
q

̂(q) · Â(−q) (A.7)

with the vector potential given by [24]

Â(q) = Fq

(
ě⊥(q)â

†
C,q + ě⊥(−q)âC,−q

)
, ě⊥(q) =

1

q

(
qy

−qx

)
(A.8)

Inserting (A.8) into (A.7) and using the rotating wave approximation (i.e., neglecting the terms
proportional to âXâC and â†Xâ

†
C) finally yields the term ĤXC =

∑
q g(q)â

†
X,qâC,q + H.c. used in

the model Hamiltonian (3.1). The interaction function is

g(q) = −iα′Fqe
−iθ(q). (A.9)

with the polar angle θ(q) = Arg(qx + iqy) ⇔ eiθ(q) = 1
q (qx + iqy).
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B Computational notes

In this chapter we include two notes on computational aspects.

B.1 Simultaneous diagonalization of Hermitian matrices

Finite-dimensional Hermitian operators, such as the Hamiltonian in a numerical setting, are well
known to posses an orthonormal basis of eigenstates in which they can be diagonalized. If the
spectrum is simple, i.e., there are no degenerate eigenvalues, this basis is uniquely defined and all
eigenstates can be labeled by their corresponding eigenvalue or, if we assume an ordering of the
eigenvalues {εn}Nn=1, by the principal quantum number n. However, in the case of degenerate
eigenvalues, it is no longer possible to uniquely identify an eigenstate just by knowing n. In
general, one needs a complete set of commuting observables (CSCO), i.e., O := {O1, . . . ,OM} so
that [Oi,Oj ] = 0 for allOi,Oj ∈ O and specifying the eigenvalues of all observables uniquely
determines an eigenstate of the system. In a basis of these simultaneous eigenstates all observables
in O are diagonal [86].

In order to determine the band structure of a lattice HamiltonianH, as we have done in Chapter 3,
it is necessary to know both energy and lattice momentum of all its eigenstates. For sufficiently
small systems, the energies can be obtained by simultaneously diagonalizing both the Hamiltonian
and the lattice momentum operator.

Explicitly, consider a one-dimensional periodic chain with N equally-spaced sites (we assume the
distance between neighbors to be 1) and real-space basis |j〉 for j ∈ [1, N ]Z. We can define the
lattice momentum operator P, which in the real-space basis has the matrix elements

Pjj′ =
1

N

N∑
m=1

kme−i(j−j′)km (B.1)

with km = 2πm
N . Indeed, if H is lattice-periodic, it commutes with P and thus there exists a basis

of simultaneous eigenstates |n,m〉 withH|n,m〉 = εn|n,m〉 and P|n,m〉 = km|n,m〉 where n
labels the distinct energy levels of the system. If this basis is known, it contains all information on
the band structure of the system. However, the eigenbasis obtained by numerically diagonalizing
H (or P) alone is not necessarily a simultaneous eigenbasis.
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One way to obtain both quantum numbers is to analytically determine the P-invariant blocks
h(km) of H, so that H ∼

⊕N
m=1 h(km), and then diagonalize each h(km) separately. In cases

where this can be done, this approach is preferable both for its reduced computational cost and
the fact that the diagonalization of each block can be performed in parallel. We have used this
approach, e.g., in Sects. 4.2 and 4.3.

It is also possible to perform the simultaneous diagonalization numerically, which can be useful,
e.g., to cross-check the results of an analytic calculation. One solution is to first diagonalize H
numerically and transformP to the obtained eigenbasis. Generally, this will yield a block-diagonal
matrix and it is then possible to diagonalize each block. This method of successive diagonalization
is, however, unstable in the presence of numerical noise [87] and can be tedious to implement. A
surprisingly simple alternative is to instead randomly choose a parameter λ ∈ (0, 1) and compute
the eigenbasis of the linear combination

L = H+ λP. (B.2)

In practice, both H and P tend to be diagonal in this basis. More generally, in order to compute
the simultaneous eigenbasis of the set of operators O, one can diagonalize the so-called matrix
pencil

L =

M∑
i=1

λi−1Oi. (B.3)

While we are not aware of a rigorous proof of the properties of this approach, its feasability seems
to be related to the fact that randomly generated Hermitian matrices have a simple spectrum with
high probability (see, e.g., Tao and Vu [88, Theorem 5]), so that the random linear combination of
Eqs. (B.2) and (B.3) tends to lift all degeneracies.

B.2 Discretizing the Fourier transform

Consider the field ψ : Rd → C which is discretized over the cuboid V :=
∏d

µ=1[0, Lµ] at points
x[j] := (j1`1, . . . , jd`d) ∈ Rd where `µ is the discretization length in µ direction and with the
indices j = (j1, . . . , jd) ∈ J := J1 × · · · × Jd with Jµ := [0, Nµ − 1]Z and Nµ :=

Lµ

`µ
∈ N+.

The Fourier transform of ψ(x) can be approximated by a Riemann sum as

ψ̃(q) =

∫
V
ddxψ(x)e−iq·x ≈ δV

∑
j∈J

ψ[j]e−iq·x[j] (B.4)

where ψ[j] := ψ(x[j]) and δV := `1 · · · `d. Discretizing the Fourier space as

q[k] := 2π

(
k1
Ll
, . . . ,

kd
Ld

)
where k ∈ J , (B.5)
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we get, using ζN := ei2π/N ,

ψ̃(q[k]) ≈ δV
∑
j∈J

ψ[j]e−iq[k]·x[j]

= δV
∑
j∈J

ψ[j]e
−i

∑d
µ=1

2πkµ
Lµ

jµ`µ

= δV
∑
j∈J

ψ[j]e
−i

∑d
µ=1

jµkµ
Nµ

= δV

N1−1∑
j1=0

· · ·
Nd−1∑
jd=0

ψ[j]ζ−k1j1
N1

· · · ζ−kdjd
Nd

= δV DFTd(ψ)[k].

(B.6)

which is, up to the prefactor, the d-dimensional discrete Fourier transform (DFT) of the array
ψ := {ψ[j]}j∈J , which can be directly evaluated using the FFT [75, 78].
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