

Nonequilibrium materials science with a twist

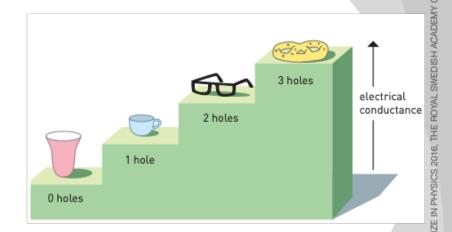
Michael Sentef
Joint Theory Colloquium, DESY & Uni Hamburg

Hamburg, October 16, 2019

Unifying themes in physics

Physics Nobel Prize 2019

Physics Nobel Prize 2016



universe = coffee mug

material = coffee mug

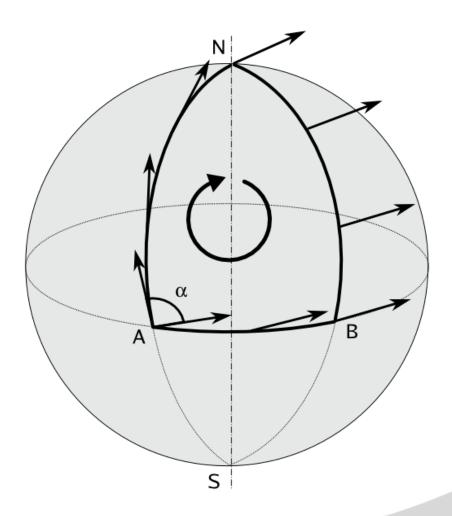
Why material = coffee mug?

Can we use light to change topology of a material?

Outline

- 1 Topology in materials
- 2 Floquet states
- (3) Light-induced Hall effect in graphene (2D Dirac)
- 4 Optical control of Majoranas (2D chiral superconductor)

Global Change without Local Change *illustrates Berry's Phase*



$$H(R(t))|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle$$

M. V. Berry, Proc. R. Soc. A 392, 45 (1984)

$$H(R(t))|n(R(t))\rangle = E_n(R(t))|n(R(t))\rangle$$

$$|\psi(0)\rangle = |n(R(0))\rangle$$

Start system in the n^{th} eigenstate

$$|\psi(t)\rangle = e^{i\phi_n}|n(R(t))\rangle$$

Adiabatic theorem tells us that we stay in the n^{th} eigenstate, but we can pick up a phase that does not affect the physical state.

$$\theta_n(t) = -\frac{1}{\hbar} \int_0^t E_n(t')dt'$$

$$\phi_n(t) = \theta_n(t) + \gamma_n(t)$$

$$|\psi(t)\rangle = e^{i\phi_n} |n(R(t))\rangle$$

$$H(R(t))|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle \longleftarrow$$

$$\phi_n(t) = \theta_n(t) + \gamma_n(t)$$

$$\frac{\partial}{\partial t}|n(R)\rangle + i\frac{d}{dt}\gamma_n(t)|n(R)\rangle = 0$$

Equation for Berry's phase

$$\frac{d}{dt}\gamma_n(t) = i\langle n(R)|\frac{\partial}{\partial t}|n(R)\rangle$$

Operate with bra on l.h.s.

$$\frac{d}{dt}\gamma_n(t) = i\langle n(R)|\nabla_R|n(R)\rangle \frac{dR}{dt}$$

 $\gamma_n(t) = i \int_{R_i}^{R_f} \langle n(R) | \nabla_R | n(R) \rangle dR$

Dynamical phase, but an additional phase is also allowed (this is called the **Berry phase** γ).

$$\gamma_n(t) = i \int_{R_i}^{R_f} \langle n(R) | \nabla_R | n(R) \rangle dR$$

If we now consider cyclic evolutions around a closed circuit C in a time T such that R(0) = R(T) then the Berry phase looks like the following

$$\gamma_n(C) = i \oint_C \langle n(R) | \nabla_R | n(R) \rangle dR$$

Berry phase, related to changes of the eigenstate when moved along path in parameter space.

$$\nabla_R \langle n | n \rangle = 0$$

$$\langle \nabla_R n | n \rangle + \langle n | \nabla_R n \rangle = \langle n | \nabla_R n \rangle^* + \langle n | \nabla_R n \rangle = 0$$

$$2 \cdot \Re e \langle n | \nabla_R n \rangle = 0$$

Berry phase is real.

Berry connection as a gauge potential.

$$\gamma_n(C) = \oint_C A_n dR$$

$$A_n(R) = i\langle n(R) | \nabla_R | n(R) \rangle$$

$$|n(R)
angle
ightarrow |n(R)
angle' = e^{i\xi_n(R)}|n(R)
angle$$
 Under gauge transformation.

$$A_n(R) \to A'_n(R) = A_n(R) - \nabla_R \xi_n(R)$$

$$\gamma_n(R) \to \gamma'_n(R) = \gamma_n(R)$$

Gives no change to the Berry phase.

Berry phase is gauge invariant and can be measured, e.g. Aharonov-Bohm effect.

C. Kane, "Topological band theory and the Z2 invariant", Chapter 1 in "Topological Insulators", Elsevier (2013)

Topological band theory of solids

$$H(\mathbf{k}) = e^{i\mathbf{k}\cdot\mathbf{r}}He^{-i\mathbf{k}\cdot\mathbf{r}}$$

eigenvalues $E_n(\mathbf{k})$ and eigenvectors $|u_n(\mathbf{k})\rangle$

Bloch state under gauge transformation

$$|u(\mathbf{k})\rangle \to e^{i\phi(\mathbf{k})}|u(\mathbf{k})\rangle$$

Berry connection

$$\mathbf{A} = -i \langle u(\mathbf{k}) | \nabla_{\mathbf{k}} | u(\mathbf{k}) \rangle -$$

 $\rightarrow A \rightarrow A + \nabla_{\mathbf{k}} \phi(\mathbf{k})$

Berry phase

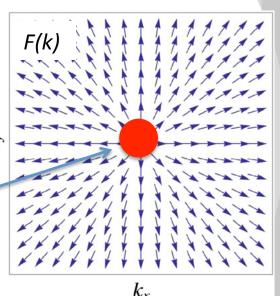
$$\gamma_C = \oint_C \mathbf{A} \cdot d\mathbf{k} = \int_S \mathcal{F} d^2 \mathbf{k}$$

 $\mathcal{F} = \nabla \times \mathbf{A}$ defines the Berry curvature

closed surface
$$S$$
 $n = \frac{1}{2\pi} \int_{S} \mathcal{F} d^{2}\mathbf{k}$

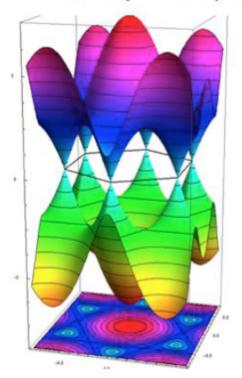
Chern number = topological invariant

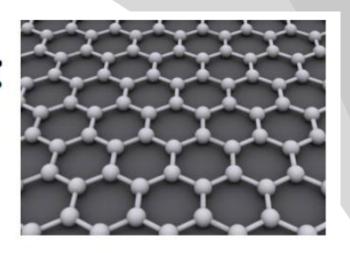
= number of Dirac monopoles inside the surface

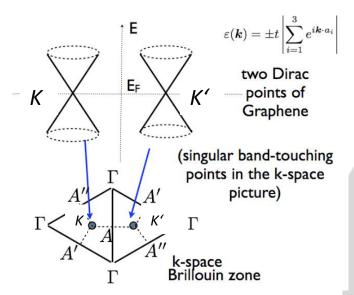


2D Graphene:

Dirac points (2 valleys)

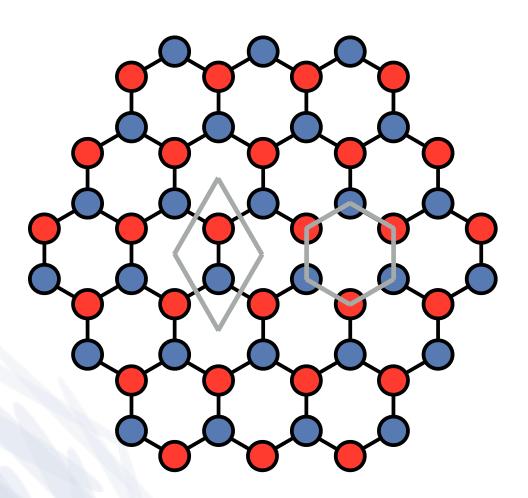






Honeycomb lattice

Two triangular sublattices bonded together



Two atoms in unit cell:

Α

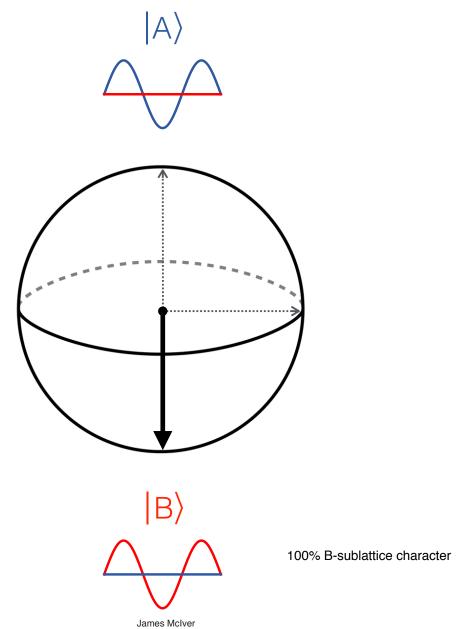
В

Electrons always in a superposition of A- and B-sublattice states

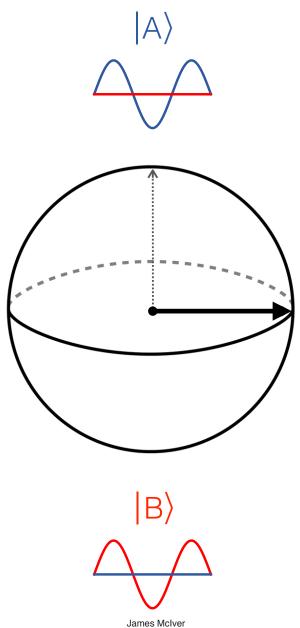
Visualizes states in a two-level system



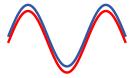
Visualizes states in a two-level system



Visualizes states in a two-level system

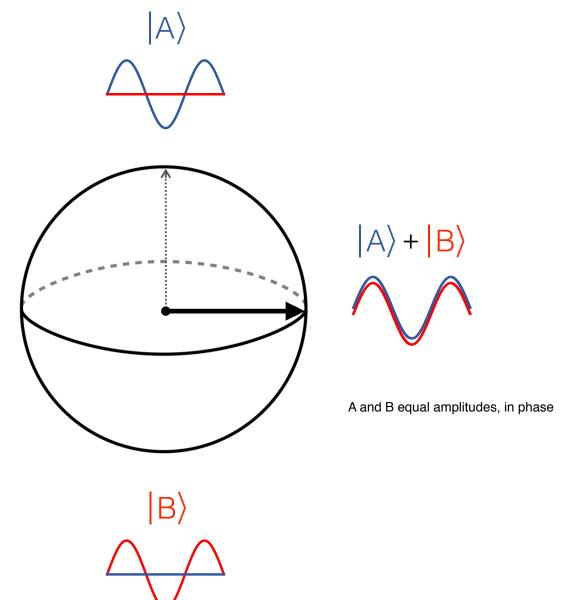


$$|A\rangle + e^{i\varphi}|B\rangle$$



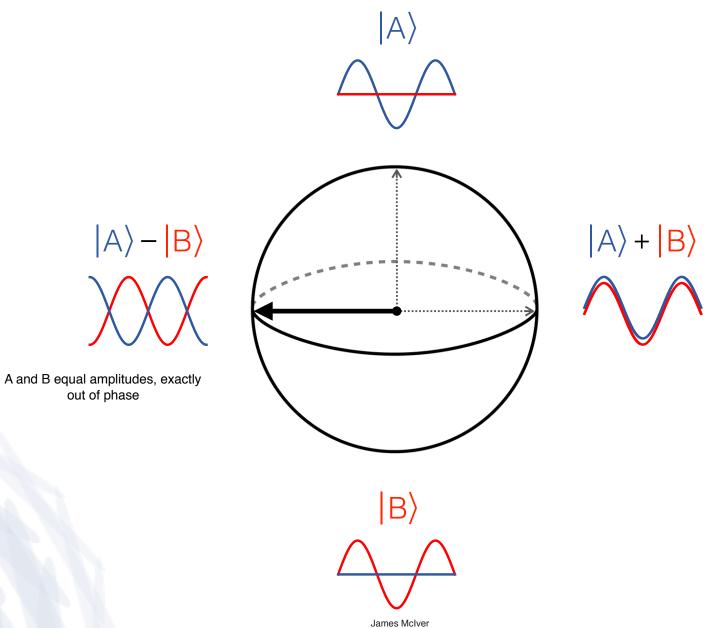
On the equator we have equal amplitudes on the A and B sublattices, but there can be a phase difference between them

Visualizes states in a two-level system

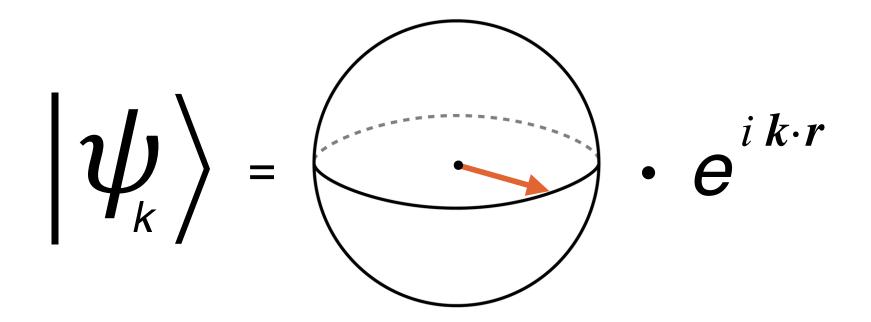


James McIver

Visualizes states in a two-level system



Honeycomb lattice wavefunctions



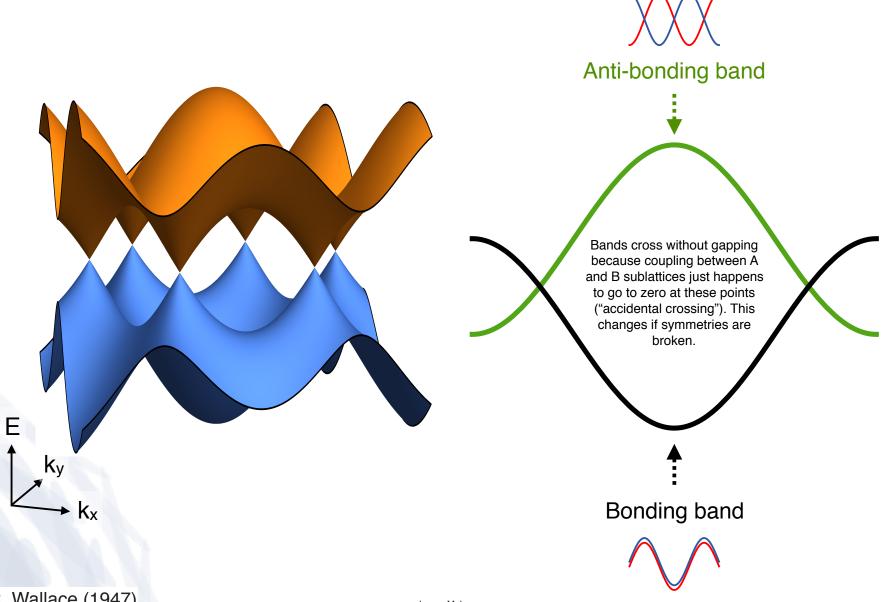
Pseudospin

Shows how the states on the A- and B-sublattices superpose

In Graphene, electrons are always equally distributed between the identical A and B sublattices. This means that the pseudospin always lies on the equator of the Bloch sphere, indicating that the A and B sublattice states have equal amplitude, but there can be a phase difference between them.

Graphene: electronic structure

Identical A- and B-sublattices made of carbon

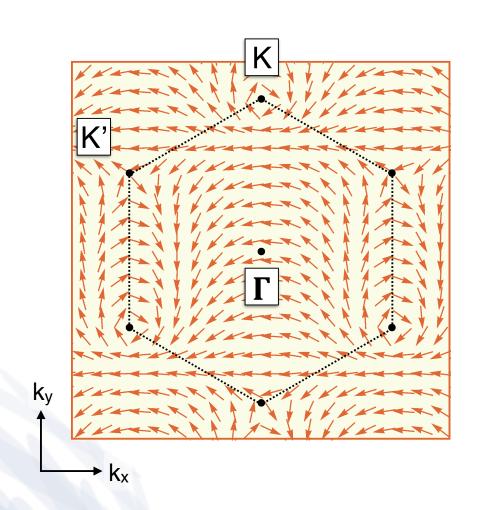


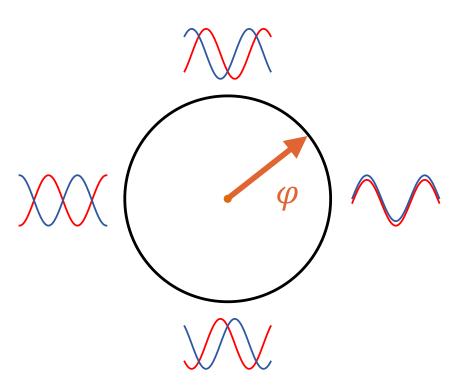
P.R. Wallace (1947)

Graphene: pseudospin texture

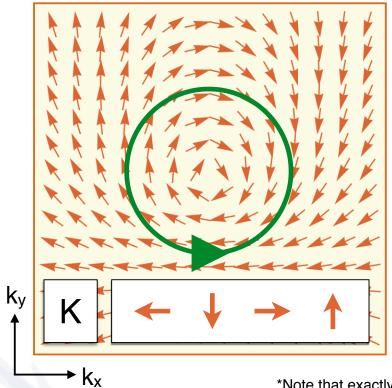
mpsd

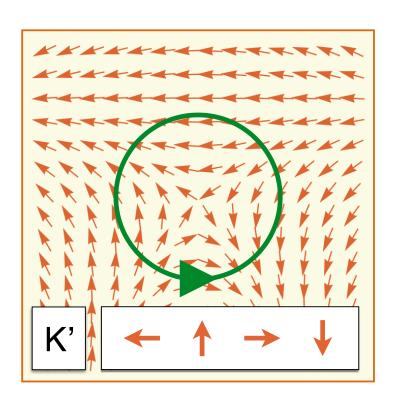
Graphene conduction band





Bloch sphere equator





*Note that <u>exactly</u> at K or K' (exactly at the Dirac point), the pseudospin vector is undefined

Eigenstates' phase winds in opposite directions at K and K'

Dirac fermions in pseudospin representation: Decompose into Pauli matrices

$$H(K+q) = \begin{pmatrix} m_K & q_x + iq_y \\ q_x - iq_y & -m_K \end{pmatrix}$$

$$= p_x \sigma_x + p_y \sigma_y + p_z \sigma_z \qquad \begin{bmatrix} p_x = q_x \\ p_y = q_y \\ p_z = m_K \end{bmatrix}$$

Pseudospin winding <-> Berry phase Berry phase on a closed loop around Dirac point is quantized = +/- π +/- sign depends on sign of mass term m_{κ}

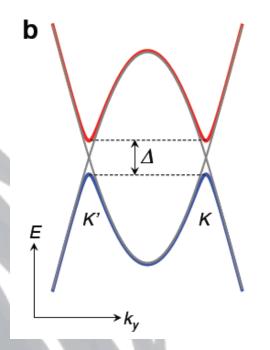
+/- ½ Dirac monopole

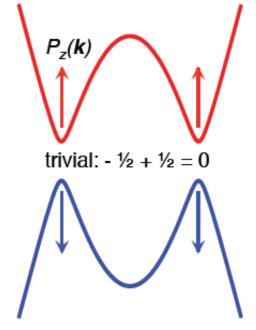
Chern number C = sum of Dirac monopoles in the Brillouin zoneDistinguishes trivial from nontrivial (topological) insulators

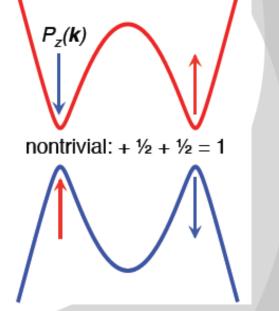
$$H(K'+q) = \begin{pmatrix} m_{K'} & q_x - iq_y \\ q_x + iq_y & -m_{K'} \end{pmatrix} \qquad H(K+q) = \begin{pmatrix} m_K & q_x + iq_y \\ q_x - iq_y & -m_K \end{pmatrix}$$

K vs. K': opposite winding of in-plane pseudospin

 $m_K = m_{K'}$ trivial insulator m_K = − m_{K'} nontrivial insulator







M. Sentef et al., Nat. Comm. 6, 7047 (2015)

Chern number and quantum Hall effect

$$J_{Hall} = \sigma_{Hall} E_{DC}$$

Hall conductance $\sigma_{Hall} = C e^2/h$

C = Chern number

Berry curvature integrated over occupied states

(a) Hall (1879)
(b) AHE (1881)
(c) SHE (2004)
(d) QHE (1980) high H
(e) QAHE (2013)
(f) QSHE (2007)

(bulk-boundary correspondence: C=#edge channels)

"Kubo = Chern"

Japanese physicist = Chinese mathematician*

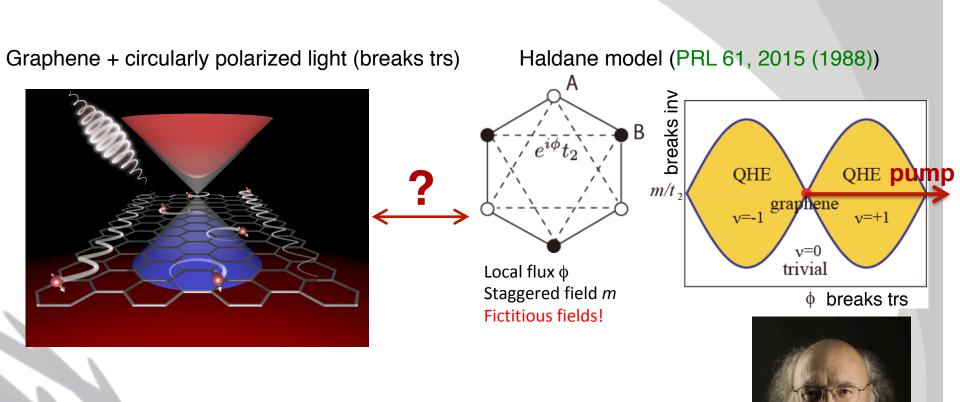
*quote by Shou-Cheng Zhang

Quantized Hall Conductance in a Two-Dimensional Periodic Potential

D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs Phys. Rev. Lett. **49**, 405 – Published 9 August 1982

Physics See Focus story: Nobel Prize—Topological Phases of Matter

2 Floquet topological states



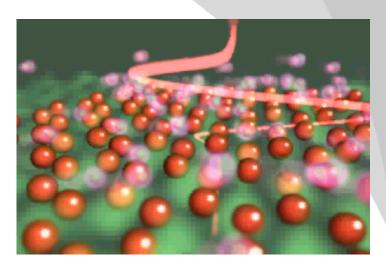
F. Duncan M. Haldane

Artistic view of Floquet states

electrons in solids

H

by Koichiro Tanaka (Kyoto university)



Floquet state (photo-dressed state)

$$H_{ ext{eff}}$$
 $H_{ ext{eff}} = H_0 + rac{[H_{-1},H_1]}{\Omega} + \mathcal{O}(\Omega^{-2})$

Floquet states of matter

time periodic system

$$i\partial_t \psi = H(t)\psi$$
 $H(t) = H(t+T)$ $\Omega = 2\pi/T$

"Floquet mapping"

=discrete Fourier trans.

$$\Psi(t) = e^{-i\varepsilon t} \sum_{m} \phi^{m} e^{-im\Omega t}$$

Floquet Hamiltonian (static eigenvalue problem)

$$\sum_{m=-\infty}^{\infty}\mathcal{H}^{mn}\phi^m_{lpha}=arepsilon_{lpha}\phi^n_{lpha}$$
 $arepsilon$: Floquet quasi-energy

$$(\mathcal{H})^{mn} = \frac{1}{T} \int_0^T dt H(t) e^{i(m-n)\Omega t} + m\delta_{mn}\Omega I$$

comes from the $i\partial_t$ term

$$H_m=\mathcal{H}^{m0}$$

~ absorption of *m* "photons"

Floquet states of matter

Time-periodic quantum system = Floquet theory (exact)

$$i\partial_t \psi = H(t)\psi$$

$$H(t) = H(t+T)$$

$$\mathcal{H}\phi = \varepsilon\phi$$

Floquet theory

$$H_{\text{eff}} = H_0 + \frac{[H_{-1}, H_1]}{\Omega} + \mathcal{O}(\Omega^{-2})$$

Fictitious fields!

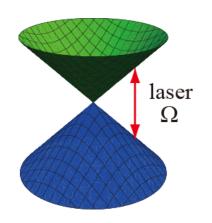
projection to the original Hilbert space

two states + periodic driving

$$^{\Omega}$$
 $^{\Omega}$ $^{\Delta}$

Hilbert space size = original system

n-photon dressed state Floquet side bands



coupling to AC field

$$\boldsymbol{k} \rightarrow \boldsymbol{k} + \boldsymbol{A}(t)$$

$$m{k} o m{k} + m{A}(t)$$
 $k = k_x + ik_y$ $A(t) = (F/\Omega\cos\Omega t, F/\Omega\sin\Omega t)$ $A = F/\Omega$

time dependent Schrödinger equation

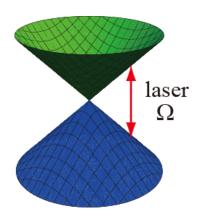
$$i\partial_t \psi_k = \begin{pmatrix} 0 & k + Ae^{i\Omega t} \\ \bar{k} + Ae^{-i\Omega t} & 0 \end{pmatrix} \psi_k$$

Floquet theory

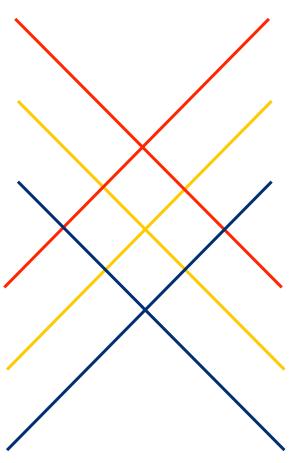
$$(\mathcal{H})^{mn} = \frac{1}{T} \int_0^T dt H(t) e^{i(m-n)\Omega t} + m \delta_{mn} \Omega I$$

$$H^{\text{Floquet}} = \begin{pmatrix} \Omega & k & 0 & A & 0 & 0 \\ \bar{k} & \Omega & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & k & 0 & A \\ A & 0 & \bar{k} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 - \Omega & k \\ 0 & 0 & A & 0 & \bar{k} - \Omega \end{pmatrix}$$

truncated at m=0,+1, -1 for display



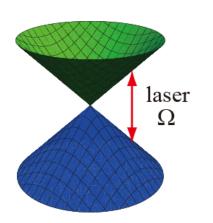
$$H^{\text{Floquet}} = \begin{pmatrix} \Omega & k & 0 & A & 0 & 0 \\ \bar{k} & \Omega & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & k & 0 & A \\ A & 0 & \bar{k} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\Omega & k \\ 0 & 0 & A & 0 & \bar{k} - \Omega \end{pmatrix}$$

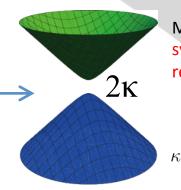


1-photon absorbed state

0-photon absorbed state

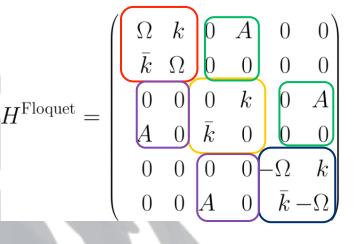
-1-photon absorbed state

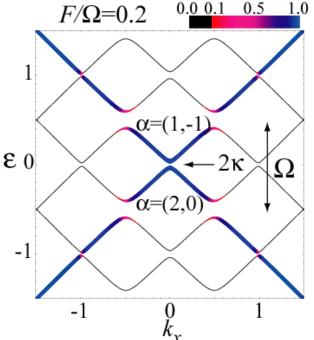




Mass term = synthetic field stemming from a real time-dependent field A(t)

$$\kappa = \frac{\sqrt{4A^2 + \Omega^2} - \Omega}{2} \sim A^2/\Omega$$





1-photon absorbed state

0-photon absorbed state

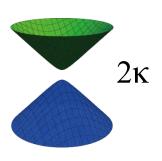
-1-photon absorbed state

Oka and Aoki, PRB 79, 081406 (2009)

Projection to the original Hilbert space

$$H^{\text{Floquet}} = \begin{pmatrix} \Omega & & 0 & A & 0 & 0 \\ \bar{k} & \Omega & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & k & 0 & A \\ A & 0 & k & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & k & 0 & k \\ 0 & 0 & A & 0 & k & -\Omega \end{pmatrix}$$

near Dirac point



2nd order perturbation

$$H_{\text{eff}} = H_0 + \frac{[H_{-1}, H_1]}{\Omega} + \mathcal{O}(A^4)$$

Dynamical gap

$$\kappa = \frac{\sqrt{4A^2 + \Omega^2} - \Omega}{2} \sim A^2/\Omega$$

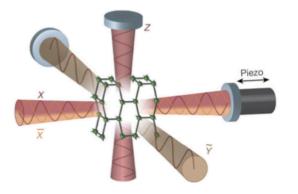
Mass term = synthetic field stemming from a real time-dependent field A(t)

$$\sim v(k_x\sigma_y - \tau_z k_y\sigma_x) \left[\pm \tau_z \frac{v^2 A^2}{\Omega} \sigma_z\right] \qquad A = F/\Omega$$

Related experiments

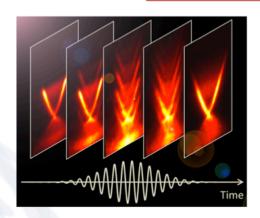
Observed in quantum simulation experiments

Photonic waveguides Rechtsman et. al, Nature (2013)

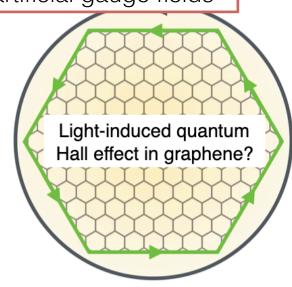


Optical lattices Jotzu *et. al*, Nature (2014)

"Floquet engineering of artificial gauge fields"



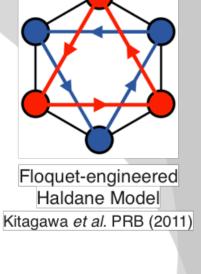
ARPES Bi₂Se₃ Wang *et. al*, Science (2013)



3 Light-induced Hall effect in graphene

*bulk-edge correspondence:

topological gap in bulk implies topologically protected edge states along interface to trivial material/vacuum



Hall Kitagawa

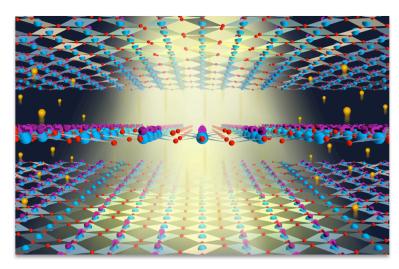
Graphene

T. Oka & H. Aoki, PRB (2009)

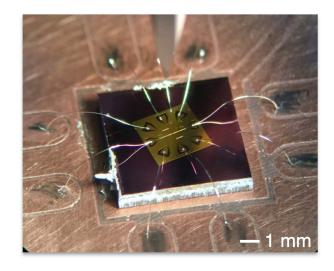
J. McIver et al., Light-induced anomalous Hall effect in graphene, arXiv:1811.03522, Nat. Phys. 2019

Femtosecond science on-chip

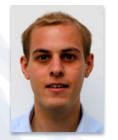
Probing ultrafast electrical transport in solids



Coherent electromagnetic control of quantum materials



Probe ultrafast electrical transport on-chip



Benedikt Schulte

Eryin Wang

James McIver

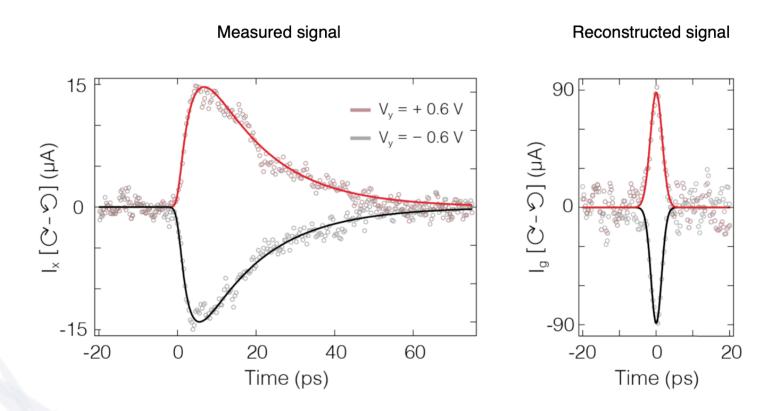
Toru Matsuyama

Guido Meier

Andrea Cavalleri

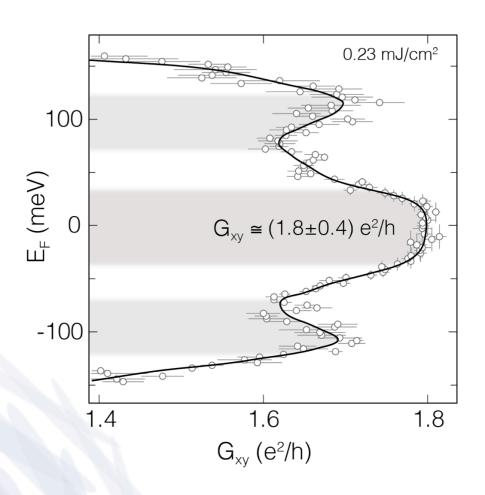
Light-induced anomalous Hall effect

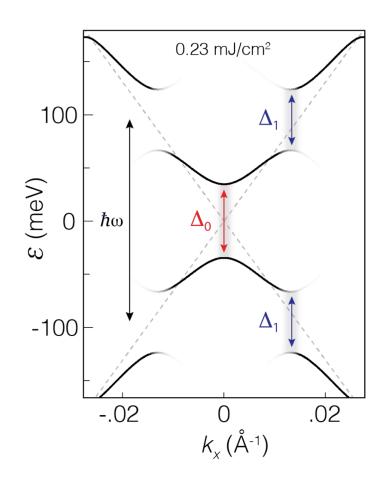
Key signature of emergent topological properties in graphene



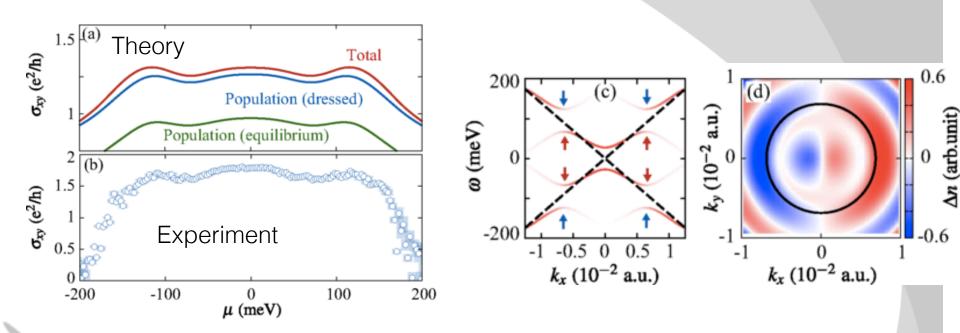
Non-equilibrium topological state

Transport from photon-dressed topological bands





Theory of light-induced Hall effect



Floquet topology and light-induced population effects both important

S. A. Sato et al., Microscopic theory for the light-induced anomalous Hall effect in graphene, Phys. Rev. B 99, 214302 (2019)

3 Acknowledgments graphene work

Andrea Cavalleri

Benedikt Schulte

Falk Stein

Gregor Jotzu

Toru Matsuyama

Guido Meier

Angel Rubio

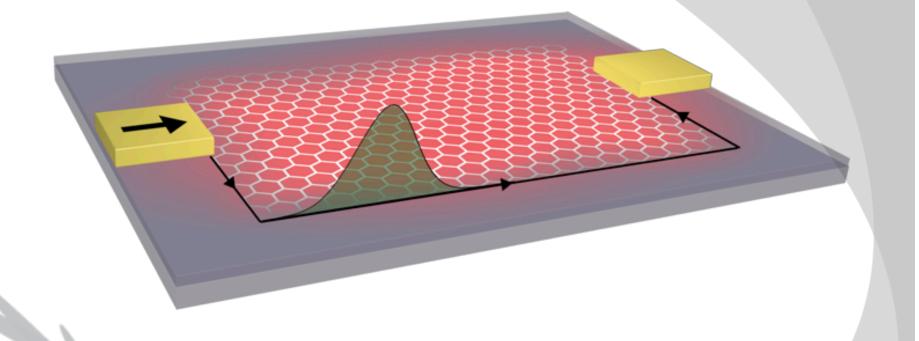
Shunsuke Sato

Ludwig Mathey

Marlon Nuske

Light-induced edge states

Topological transport on demand

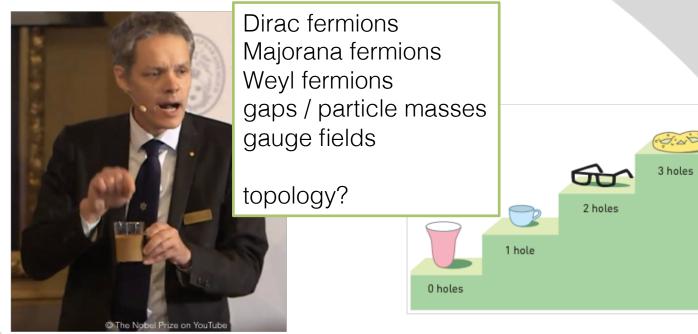


Big picture: light-induced edge states

Unifying themes in physics?

Physics Nobel Prize 2019

Physics Nobel Prize 2016



universe = coffee mug

material = coffee mug

Thank you for your attention!

electrical

conductance

4 Optical control of Majoranas

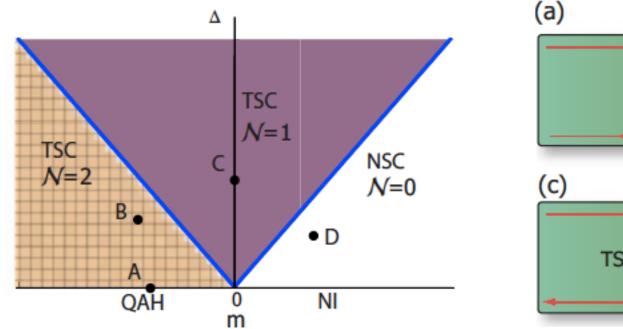
PHYSICAL REVIEW B 82, 184516 (2010)

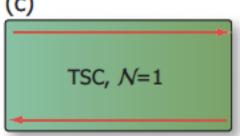
Chiral topological superconductor from the quantum Hall state

Xiao-Liang Qi, 1,2 Taylor L. Hughes, 1,3 and Shou-Cheng Zhang 1

Chiral topological superconductor

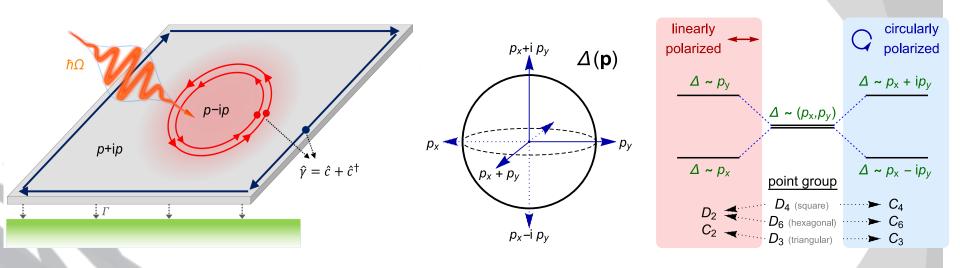
2 x quantum anomalous Hall insulator + superconductivity





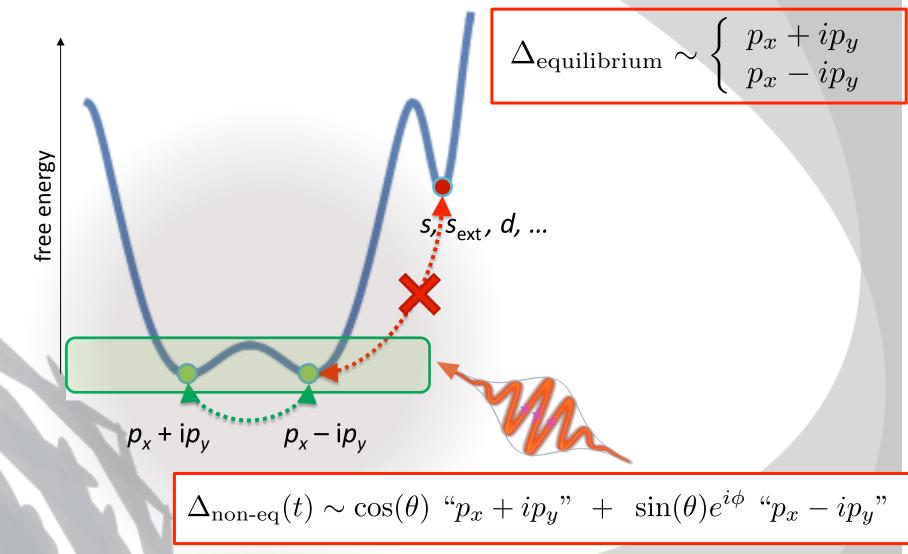
4 Optical control of Majoranas

Can one switch the chirality of a 2D topological superconductor with light pulses?

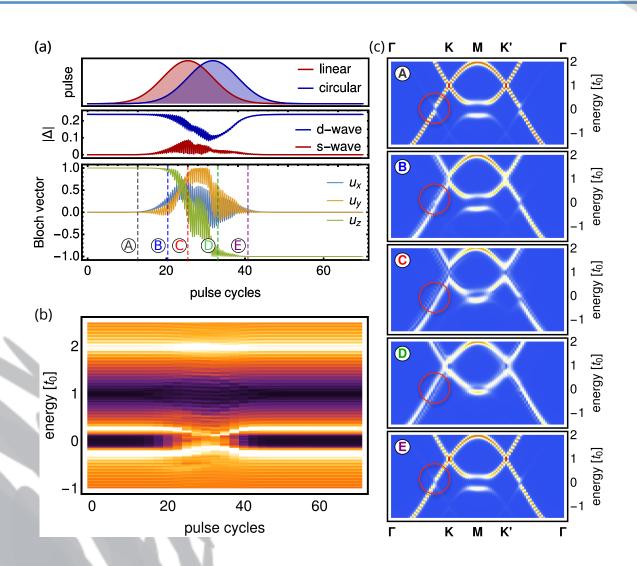


key idea: use two-pulse sequence with linearly and circularly polarized light

Nonequilibrium pathway to switching

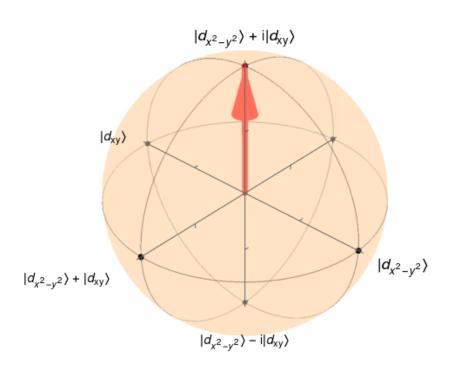


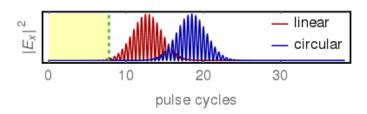
Optical control of Majoranas



two-pulse sequence reverses d+id state in graphene

Bloch vector rotation

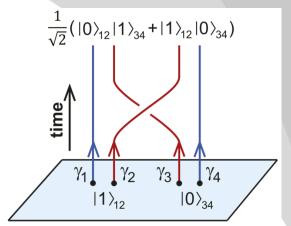




A "programmable" topological quantum computer?

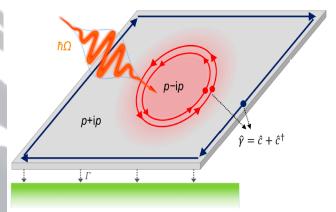
non-Abelian statistics of Majorana fermions:

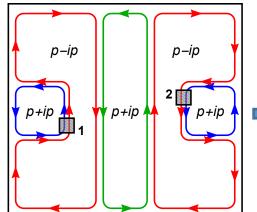
- half-quantum vortices of chiral superconductors host single Majorana fermions
- Two Majoranas represent one electron: ½ + ½ = 1
 - → Braiding between Majoranas is a non-Abelian operation in electron (charge) basis!

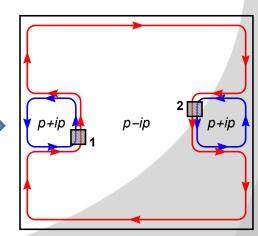


Ivanov, PRL 86, 268 (2001) B. Lian et al., PNAS 115, 10938 (2018)

simplest operation: a switchable Hadamard gate







4 Acknowledgments Majorana work

- All-optical control of chiral Majorana modes
- towards arbitrarily programmable quantum computer?

"program the gate optically, read it out electrically"

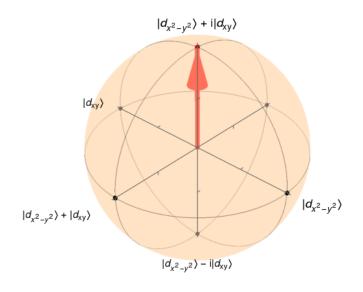
M. Claassen et al.,

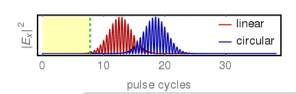
Nat. Phys. 15, 766 (2019)

M. Claassen

D. Kennes

M. Zingl

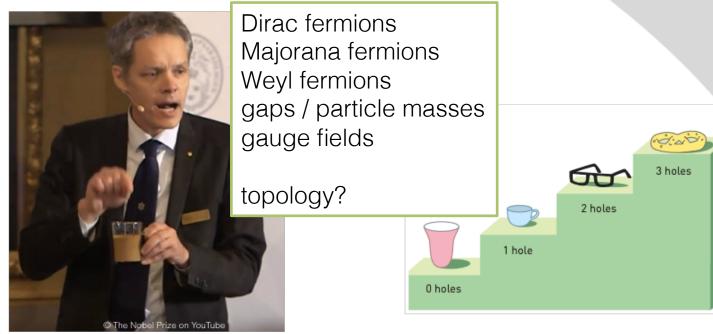




Unifying themes in physics?

Physics Nobel Prize 2019

Physics Nobel Prize 2016



universe = coffee mug

material = coffee mug

Thank you for your attention!

electrical

conductance