Nonequilibrium materials science with a twist

Michael Sentef
Joint Theory Colloquium, DESY \& Uni Hamburg

Hamburg, October 16, 2019
Funded
through DFG
Emmy
Noether
Programme
(SE 2558/2-1) Max Planck Institute for the Structure and Dynamics of Matter

Unifying themes in physics

Physics Nobel Prize 2019

universe = coffee mug

Physics Nobel Prize 2016

Why material = coffee mug?
Can we use light to change topology of a material?

Outline

(1) Topology in materials
(2) Floquet states
(3) Light-induced Hall effect in graphene (2D Dirac)
(4) Optical control of Majoranas (2D chiral superconductor)

(1) Topological states of matter

Global Change without Local Change illustrates Berry's Phase

Topological states of matter

$$
\begin{array}{r}
H(R(t))|\psi(t)\rangle=i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle \quad \text { M. V. Berry, Proc. R. Soc. A 392, } 45 \text { (1984) } \\
H(R(t))|n(R(t))\rangle=E_{n}(R(t))|n(R(t))\rangle
\end{array}
$$

$$
\begin{gathered}
|\psi(0)\rangle=|n(R(0))\rangle \\
|\psi(t)\rangle=e^{i \phi_{n}}|n(R(t))\rangle
\end{gathered}
$$

Start system in the $n^{\text {th }}$ eigenstate

Adiabatic theorem tells us that we stay in the $n^{\text {th }}$ eigenstate, but we can pick up a phase that does not affect the physical state.

$$
\begin{aligned}
& \theta_{n}(t)=-\frac{1}{\hbar} \int_{0}^{t} E_{n}\left(t^{\prime}\right) d t^{\prime} \\
& \phi_{n}(t)=\theta_{n}(t)+\gamma_{n}(t)
\end{aligned}
$$

Dynamical phase, but an additional phase is also allowed (this is called the Berry phase γ).

Topological states of matter

$$
\begin{array}{cc}
|\psi(t)\rangle=e^{i \phi_{n}}|n(R(t))\rangle & \phi_{n}(t)=\theta_{n}(t)+\gamma_{n}(t) \\
H(R(t))|\psi(t)\rangle=i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle & \\
\frac{\partial}{\partial t}|n(R)\rangle+i \frac{d}{d t} \gamma_{n}(t)|n(R)\rangle=0 & \text { Equation for Berry's phase } \\
\downarrow \\
\frac{d}{d t} \gamma_{n}(t)=i\langle n(R)| \frac{\partial}{\partial t}|n(R)\rangle & \text { Operate with bra on I.h.s. } \\
\frac{d}{d t} \gamma_{n}(t)=i\langle n(R)| \nabla_{R}|n(R)\rangle \frac{d R}{d t} &
\end{array}
$$

$$
\gamma_{n}(t)=i \int_{R_{i}}^{R_{f}}\langle n(R)| \nabla_{R}|n(R)\rangle d R
$$

Dynamical phase, but an additional phase is also allowed (this is called the Berry phase γ).

Topological states of matter

$$
\gamma_{n}(t)=i \int_{R_{i}}^{R_{f}}\langle n(R)| \nabla_{R}|n(R)\rangle d R
$$

If we now consider cyclic evolutions around a closed circuit C in a time T such that $R(0)=R(T)$ then the Berry phase looks like the following

$$
\gamma_{n}(C)=i \oint_{C}\langle n(R)| \nabla_{R}|n(R)\rangle d R
$$

Berry phase, related to changes of the eigenstate when moved along path in parameter space.

$$
\nabla_{R}\langle n \mid n\rangle=0
$$

$$
\begin{aligned}
\left\langle\nabla_{R} n \mid n\right\rangle+\left\langle n \mid \nabla_{R} n\right\rangle & =\left\langle n \mid \nabla_{R} n\right\rangle^{*}+\left\langle n \mid \nabla_{R} n\right\rangle=0 \\
2 \cdot \Re e\left\langle n \mid \nabla_{R} n\right\rangle & =0
\end{aligned}
$$

Topological states of matter

Berry connection as a gauge potential.

$$
\begin{aligned}
& \gamma_{n}(C)=\oint_{C} A_{n} d R \quad A_{n}(R)=i\langle n(R)| \nabla_{R}|n(R)\rangle \\
& |n(R)\rangle \rightarrow|n(R)\rangle^{\prime}=e^{i \xi_{n}(R)}|n(R)\rangle \quad \text { Under gauge transformation. } \\
& A_{n}(R) \rightarrow A_{n}^{\prime}(R)=A_{n}(R)-\nabla_{R} \xi_{n}(R)
\end{aligned}
$$

$$
\gamma_{n}(R) \rightarrow \gamma_{n}^{\prime}(R)=\gamma_{n}(R)
$$

Gives no change to the Berry phase.
Berry phase is gauge invariant and can be measured, e.g. Aharonov-Bohm effect.

Topological states of matter

Topological band theory of solids

$$
\begin{aligned}
& H(\mathbf{k})=e^{i \mathbf{k} \cdot \mathbf{r}} H e^{-i \mathbf{k} \cdot \mathbf{r}} \\
& \text { eigenvalues } E_{n}(\mathbf{k}) \text { and eigenvectors }\left|u_{n}(\mathbf{k})\right\rangle
\end{aligned}
$$

Bloch state under gauge transformation $|u(\mathbf{k})\rangle \rightarrow e^{i \phi(\mathbf{k})}|u(\mathbf{k})\rangle$
Berry connection

$$
\mathbf{A}=-i\langle u(\mathbf{k})| \nabla_{\mathbf{k}}|u(\mathbf{k})\rangle \longrightarrow \mathbf{A} \rightarrow \mathbf{A}+\nabla_{\mathbf{k}} \phi(\mathbf{k})
$$

Berry phase

$$
\gamma_{C}=\oint_{C} \mathbf{A} \cdot d \mathbf{k}=\int_{S} \mathcal{F} d^{2} \mathbf{k}
$$

$\mathcal{F}=\nabla \times \mathbf{A}$ defines the Berry curvature
closed surface $S \quad n=\frac{1}{2 \pi} \int_{S} \mathcal{F} d^{2} \mathbf{k}$
Chern number = topological invariant $=$ number of Dirac monopoles inside the surface

Topological states of matter

2D Graphene:

- Dirac points (2 valleys)

Honeycomb lattice

Two atoms in unit cell:

Electrons always in a superposition of A- and B-sublattice states

Bloch sphere

Visualizes states in a two-level system

Bloch sphere

- Visualizes states in a two-level system

100\% B-sublattice character

James Mclver

Bloch sphere

- Visualizes states in a two-level system

Bloch sphere

- Visualizes states in a two-level system

A and B equal amplitudes, in phase

James Mclver

Bloch sphere

- Visualizes states in a two-level system

A and B equal amplitudes, exactly out of phase

Honeycomb lattice wavefunctions

Pseudospin

In Graphene, electrons are always equally distributed between the identical A and B sublattices. This means that the pseudospin always lies on the equator of the Bloch
Shows how the states on the A- and B-sublattices superpose

Graphene: electronic structure

- Identical A- and B-sublattices made of carbon

Anti-bonding band

Graphene: pseudospin texture

Graphene conduction band

Bloch sphere equator

Chirality

The difference between K and K'

Eigenstates' phase winds in opposite directions at K and K '

Topological states of matter

Dirac fermions in pseudospin representation: Decompose into Pauli matrices

$$
\begin{aligned}
H(K+q) & =\left(\begin{array}{cc}
m_{K} & q_{x}+i q_{y} \\
q_{x}-i q_{y} & -m_{K}
\end{array}\right) \\
& =p_{x} \sigma_{x}+p_{y} \sigma_{y}+p_{z} \sigma_{z} \begin{array}{l}
p_{x}=q_{x} \\
p_{y}=q_{y} \\
p_{z}=m_{K}
\end{array}
\end{aligned}
$$

Pseudospin winding <-> Berry phase Berry phase on a closed loop around Dirac point is quantized $=+/-\pi$ $+/-$ sign depends on sign of mass term m_{K}
+/- ½ Dirac monopole
Chern number $C=$ sum of Dirac monopoles in the Brillouin zone Distinguishes trivial from nontrivial (topological) insulators

$$
C=0 \quad C \neq 0
$$

Topological states of matter

$H\left(K^{\prime}+q\right)=\left(\begin{array}{cc}\boxed{m_{K^{\prime}}} & q_{x} \boxed{\square} i q_{y} \\ q_{x}+i q_{y} & -m_{K^{\prime}}\end{array}\right) \quad H(K+q)=\left(\begin{array}{cc}\boxed{m_{K}} & q_{x}+i q_{y} \\ q_{x}-i q_{y} & -m_{K}\end{array}\right)$
K vs. K^{\prime} : opposite winding of in-plane pseudospin

$$
m_{K}=m_{K}
$$

trivial insulator
nontrivial insulator

trivial: $-1 / 2+1 / 2=0$

nontrivial: $+1 / 2+1 / 2=1$

Chern number and quantum Hall effect

$J_{\text {Hall }}=\sigma_{\text {Hall }} E_{D C}$
Hall conductance $\sigma_{\text {Hall }}=C e^{2} / \mathrm{h}$
(a) Hall (1879)

(d) QHE (1980) \uparrow high H

(b) AHE (1881)

(e) QAHE (2013)

(c) SHE (2004)

(f) QSHE (2007)

= Berry curvature integrated over occupied states
(bulk-boundary correspondence: C=\#edge channels)

„Kubo = Chern"

Japanese physicist $=$ Chinese mathematician*
*quote by Shou-Cheng Zhang

```
Quantized Hall Conductance in a Two-Dimensional Periodic
Potential
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs
Phys. Rev. Lett. 49, 405 - Published 9 August 1982
Physiccs See Focus story: Nobel Prize-Topological Phases of Matter
```


(2) Floquet topological states

Graphene + circularly polarized light (breaks trs)

Haldane model (PRL 61, 2015 (1988))

Local flux ϕ Staggered field m Fictitious fields!

Artistic view of Floquet states

by Koichiro Tanaka (Kyoto university)

electrons in solids

Floquet state (photo-dressed state)

$$
\begin{gathered}
H_{\mathrm{eff}} \\
H_{\text {eff }}=H_{0}+\frac{\left[H_{-1}, H_{1}\right]}{\Omega}+\mathcal{O}\left(\Omega^{-2}\right)
\end{gathered}
$$

Floquet states of matter

time periodic system

$$
i \partial_{t} \psi=H(t) \psi \quad H(t)=H(t+T) \quad \Omega=2 \pi / T
$$

"Floquet mapping"
=discrete Fourier trans.

$$
\Psi(t)=e^{-i \varepsilon t} \sum_{m} \phi^{m} e^{-i m \Omega t}
$$

Floquet Hamiltonian (static eigenvalue problem)

$$
\begin{aligned}
& \sum_{m=-\infty}^{\infty} \mathcal{H}^{m n} \phi_{\alpha}^{m}=\varepsilon_{\alpha} \phi_{\alpha}^{n} \quad \varepsilon: \text { Floquet quasi-energy } \\
& (\mathcal{H})^{m n}=\frac{1}{T} \int_{0}^{T} d t H(t) e^{i(m-n) \Omega t}+m \delta_{m n} \Omega I \\
& \text { comes from the } i \partial_{t} \text { term } \\
& H_{m}=\mathcal{H}^{m 0} \\
& \text { ~ absorption of } m \text { "photons" }
\end{aligned}
$$

Floquet states of matter

mpsd

Time-periodic quantum system $=$ Floquet theory (exact) \sim effective theory

$$
\begin{aligned}
i \partial_{t} \psi & =H(t) \psi \quad \mathcal{H} \phi=\varepsilon \phi \\
H(t) & =H(t+T)
\end{aligned}
$$

two states + periodic driving

Floquet theory

$H_{\text {eff }}=H_{0}+\frac{\left[H_{-1}, H_{1}\right]}{\Omega}+\mathcal{O}\left(\Omega^{-2}\right)$

Fictitious fields!

projection to the original Hilbert space

Dirac fermion + circularly polarized laser

coupling to AC field

$$
\boldsymbol{k} \rightarrow \boldsymbol{k}+\boldsymbol{A}(t)
$$

$$
\begin{aligned}
k & =k_{x}+i k_{y} \\
\boldsymbol{A}(t) & =(F / \Omega \cos \Omega t, F / \Omega \sin \Omega t) \\
A & =F / \Omega
\end{aligned}
$$

time dependent Schrödinger equation

$$
i \partial_{t} \psi_{k}=\left(\begin{array}{cc}
0 & k+A e^{i \Omega t} \\
\bar{k}+A e^{-i \Omega t} & 0
\end{array}\right) \psi_{k}
$$

Floquet theory

$$
(\mathcal{H})^{m n}=\frac{1}{T} \int_{0}^{T} d t H(t) e^{i(m-n) \Omega t}+m \delta_{m n} \Omega I
$$

$$
H^{\text {Floquet }}=\left(\begin{array}{rrrrrr}
\Omega & k & 0 & A & 0 & 0 \\
\bar{k} & \Omega & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & k & 0 & A \\
A & 0 & \bar{k} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\Omega & k \\
0 & 0 & A & 0 & \bar{k} & -\Omega
\end{array}\right)
$$

truncated at $\mathrm{m}=0,+1,-1$ for display

Dirac fermion + circularly polarized laser

1-photon absorbed state

0-photon absorbed stat
-1-photon absorbed state

Dirac fermion + circularly polarized laser

Mass term =
synthetic field stemming from a real time-dependent field $A(t)$
$\kappa=\frac{\sqrt{4 A^{2}+\Omega^{2}}-\Omega}{2} \sim A^{2} / \Omega$

1-photon absorbed state

0 -photon absorbed s
-1-photon absorbed state

Dirac fermion + circularly polarized laser

Projection to the original Hilbert space

near Dirac point
2nd order perturbation

$$
H^{\text {Floquet }}=\left(\begin{array}{cc|ccccc}
\Omega & k & 0 & A & 0 & 0 \\
\vec{k} & \Omega & 0 & \uparrow & 0 & 0 & 0 \\
0 & 0 & 0 & k & 0 & A \\
\hdashline & & \vec{k} & 0 & 0 & 0 \\
\hline & 0 & k & 0 & & 0 \\
\hline 0 & 0 & 0 & \vee & \Omega & k \\
0 & 0 & A & 0 & \vec{k} & -\Omega
\end{array}\right)
$$

Related experiments

Observed in quantum simulation experiments

Photonic waveguides
Rechtsman et. al, Nature (2013)

Optical lattices Jotzu et. al, Nature (2014)
„Floquet engineering of artificial gauge fields"

ARPES $\mathrm{Bi}_{2} \mathrm{Se}_{3}$
Wang et. al, Science (2013)

(3) Light-induced Hall effect in graphene

*bulk-edge correspondence: topological gap in bulk implies topologically protected edge states along interface to trivial material/vacuum

Floquet-engineered
Haldane Model
Kitagawa et al. PRB (2011)
T. Oka \& H. Aoki, PRB (2009)
J. Mclver et al., Light-induced anomalous Hall effect in graphene, arXiv:1811.03522, Nat. Phys. 2019

Femtosecond science on-chip

Probing ultrafast electrical transport in solids

Coherent electromagnetic control of quantum materials

Benedikt
Schulte

Eryin
Wang

Probe ultrafast electrical transport on-chip

Guido
Meier

Andrea Cavalleri

Light-induced anomalous Hall effect

Key signature of emergent topological properties in graphene

Measured signal

Reconstructed signal

Non-equilibrium topological state

- Transport from photon-dressed topological bands

Theory of light-induced Hall effect

Floquet topology and light-induced population effects both important

[^0]
(3) Acknowledgments graphene work

Andrea Cavalleri

Benedikt Schulte

Falk Stein

Gregor Jotzu

Toru Matsuyama

Guido Meier

Light-induced edge states

Topological transport on demand

Big picture: light-induced edge states

Unifying themes in physics?

Physics Nobel Prize 2019

Physics Nobel Prize 2016

(4) Optical control of Majoranas

Chiral topological superconductor from the quantum Hall state

Xiao-Liang Qi, ${ }^{1,2}$ Taylor L. Hughes, ${ }^{1,3}$ and Shou-Cheng Zhang ${ }^{1}$

Chiral topological superconductor =
$2 \times$ quantum anomalous Hall insulator + superconductivity

(a)

(c)

(4) Optical control of Majoranas

Can one switch the chirality of a 2D topological superconductor with light pulses?

key idea: use two-pulse sequence with linearly and circularly polarized light

Nonequilibrium pathway to switching

$\Delta_{\text {equilibrium }} \sim\left\{\begin{array}{l}p_{x}+i p_{y} \\ p_{x}-i p_{y}\end{array}\right.$

$$
\Delta_{\mathrm{non-eq}}(t) \sim \cos (\theta) " p_{x}+i p_{y} "+\sin (\theta) e^{i \phi} " p_{x}-i p_{y} "
$$

Optical control of Majoranas

two-pulse sequence reverses d+id state in graphene

Bloch vector rotation

A „programmable" topological quantum computer?

non-Abelian statistics of Majorana fermions:

- half-quantum vortices of chiral superconductors host single Majorana fermions
- Two Majoranas represent one electron: $1 / 2+1 / 2=1$
\rightarrow Braiding between Majoranas is a non-Abelian operation in electron (charge) basis!

$$
\frac{1}{\sqrt{2}}\left(|0\rangle_{12}|1\rangle_{34}+|1\rangle_{12}|0\rangle_{34}\right)
$$

Ivanov, PRL 86, 268 (2001)
B. Lian et al., PNAS 115, 10938 (2018)
simplest operation: a switchable Hadamard gate

(4) Acknowledgments Majorana work

- All-optical control of chiral Majorana modes
- towards arbitrarily programmable quantum computer?
„program the gate optically, read it out electrically"
M. Claassen et al.,

Nat. Phys. 15, 766 (2019)

M. Claassen

D. Kennes

M. Zingl

$\left|d_{x^{2}-y^{2}}\right\rangle-i\left|d_{x y}\right\rangle$

Unifying themes in physics?

Physics Nobel Prize 2019

Physics Nobel Prize 2016

[^0]: S. A. Sato et al., Microscopic theory for the light-induced anomalous Hall effect in graphene, Phys. Rev. B 99, 214302 (2019)

