

Nonequilibrium Materials Engineering beyond Floquet

Michael A. Sentef lab.sentef.org

Max-Planck Institute for the Structure and Dynamics of Matter, Hamburg Boston University, November 2, 2018

Team

Emmy Noether-Programm

Mona
Kalthoff
(Dortmund
-> MPSD)

Matteo Puviani (Modena)

Theoretical description of pump-probe spectroscopy in solids lab.sentef.org

Funded through Deutsche Forschungsgemeinschaft Emmy Noether Programme (SE 2558/2-1)

Max Planck Institute for the Structure and Dynamics of Matter

Driven is different

Kapitza pendulum

dynamical stabilization of a metastable state

Is driven also useful?

Exposing hidden states

L Stojchevska et al. Science 2014;344:177-180

... and many more.

Light-induced new states?

Possible light-induced superconductivity in K₃C₆₀ at high temperature

M. Mitrano, A. Cantaluppi, D. Nicoletti, S. Kaiser, A. Perucchi, S. Lupi, P. Di Pietro, D. Pontiroli, M. Riccò, S. R. Clark, D. Jaksch & A. Cavalleri

 $\textbf{Affiliations} \perp \textbf{Contributions} \perp \textbf{Corresponding author}$

Nature 530, 461-464 (25 February 2016) | doi:10.1038/nature16522

Pump-probe spectroscopy

• stroboscopic investigations of dynamic phenomena

Muybridge 1887

TbTe3 CDW metal

F. Schmitt et al., Science 321, 1649 (2008) Image courtesy: J. Sobota / F. Schmitt

Challenge

- U.S. Department of Energy "Five Grand Challenges to Science and the Imagination"
- Grand Challenge #3: How do remarkable properties of matter emerge from complex correlations of the atomic or electronic constituents and how can we control these properties?
- Grand Challenge #5: How do we characterize and control matter away – especially very far away – from equilibrium?

http://science.energy.gov/bes/efrc/research/grand-challenges/

Challenge

many-body problem (electrons + ions)

movies by Koichiro Tanaka (Kyoto university)

nonequilibrium many-body problem (electrons + ions + photons)

Mission statement:

To understand and predict electron-ion dynamics and control of emergent nonequilibrium electronic structure

Challenge

Main challenges:

- hierarchy of energy and time scales
- high laser intensities: nonperturbative/nonlinear

Possible approaches:

- first principles (time-dependent density functional theory (TDDFT))
- effective models:
 - Feynman diagrams: self-energy
 - Keldysh nonequilibrium Green's functions
 - connection with DFT: Sham-Schlüter integral equation

Ultrafast Materials Science today

Understanding the nature of quasiparticles

- Relaxation dynamics
- Control of couplings

PRL 111, 077401 (2013) PRB 95, 024304 (2017) PRX 3, 041033 (2013) PRB 95, 205111 (2017) PRB 87, 235139 (2013) PRL 121, 097402 (2018) PRB 90, 075126 (2014) arXiv:1802.09437, Sci. Adv.

Nat. Comm. 7, 13761 (2016) arXiv:1808.02389

Understanding ordered phases

- Collective oscillations
- Competing orders

PRB 92, 224517 (2015) arXiv:1806.08187 PRB 93, 144506 (2016) arXiv:1808.00712 PRL 118, 087002 (2017) arXiv:1808.04655 arXiv:1810.06536

Creating new states of matter

■ nonequilibrium topological states

Nature Comm. 6, 7047 (2015)

Nature Comm. 8, 13940 (2017)

Nature Comm. 9, 4452 (2018)

Image courtesy:
D. Basov

Relaxation dynamics

PRL 111, 077401 (2013) nonthermal pumped states

PRB 87, 235139 (2013) extracting unoccupied electronic structure

PRB 90, 075126 (2014) fluence dependence

Nat. Comm. 7, 13761 (2016) comparison with experiment

Max Planck Institute for the Structure and Dynamics of Matter

Electron-boson coupling

Holstein model (minimal version):

$$H = \sum_{\pmb{k}} \pmb{\epsilon}(\pmb{k}) c_{\pmb{k}}^{\dagger} c_{\pmb{k}} + \Omega \sum_{i} b_{i}^{\dagger} b_{i} - g \sum_{i} c_{i}^{\dagger} c_{i} (b_{i} + b_{i}^{\dagger})$$
Electrons
(Fermi gas/liquid)
Bosons
(e.g., Einstein phonon)
Coupling

Pump laser:

$$\varepsilon(k) \rightarrow \varepsilon(k,t)$$

Method: Keldysh Green functions

Electron-boson coupling

mpsd

PRX 3, 041033 (2013)

Ordered phases

PRB 92, 224517 (2015)

Higgs amplitude mode oscillations in pumpprobe photoemission spectroscopy

PRB 93, 144506 (2016)

Light-enhanced superconductivity: electron-phonon scattering versus collective order parameter dynamics

Some recent key results

How to engineer materials away from equilibrium?

Part I: Light-enhanced electron-phonon coupling

Resonant excitation of IR phonon enhances electron-phonon coupling

E: Pomarico et al., PRB 95, 024304 (2017) – experiment (bilayer graphene)

M. A. Sentef, PRB 95, 205111 (2017) – theory

Part II: Optical control of chiral superconductors

Short laser pulses allow for switching of Majorana modes

M. Claassen et al., arXiv:1810.06536

Part III: From classical to quantized photon fields

Materials engineering in an optical cavity using vacuum fluctuations

M. A. Sentef et al., arXiv:1802.09437

I Resonant excitation of crystal lattice

M. Först et al., Nature Physics 7, 854 (2011)

Classical nonlinear phononics

Simplest model: classical dynamics

$$\ddot{Q}_{\rm RS} + \Omega_{\rm RS}^2 Q_{\rm RS} = A Q_{\rm IR}^2$$

$$\ddot{Q}_{\mathrm{IR}} + \Omega_{\mathrm{IR}}^2 Q_{\mathrm{IR}} = \frac{e^* E_0}{\sqrt{M}_{\mathrm{IR}}} \sin(\Omega_{\mathrm{IR}} t) F(t)$$

"nonlinear phononics"

$$H = AQ_{IR}^2Q_{RS}$$

M. Först et al., Nature Physics 7, 854 (2011)

Classical nonlinear phononics

Explains a number of observed effects, e.g.,

- structurally induced metal-insulator transitions Rini et al., Nature 449, 72 (2007)
- phononic rectification in YBCO

Mankowsky et al., Nature 516, 71 (2014)

ferroelectric switching in LiNbO₃

Subedi et al., Phys. Rev. B 89, 220301 (2014)

Mankowsky et al., Phys. Rev. Lett. 118, 197601 (2017)

Classical phonon dynamics **does not** explain all effects in IR-driven materials.

examples: - light-induced superconductivity

- light-enhanced el-ph coupling

... quantum nature of phonons important?

Dynamically enhanced coupling

Enhanced electron-phonon coupling in graphene with periodically distorted lattice

E. Pomarico, M. Mitrano, H. Bromberger, M. A. Sentef, A. Al-Temimy, C. Coletti, A. Stöhr, S. Link, U. Starke, C. Cacho, R. Chapman, E. Springate, A. Cavalleri, and I. Gierz Phys. Rev. B 95, 024304 – Published 13 January 2017

PRB 95, 024304 (2017)
enhanced electron-phonon coupling for pump on resonance
with IR phonon

Dynamically enhanced coupling

PRB 95, 024304 (2017)

Max Planck Institute for the Structure and Dynamics of Matter

Quantum nonlinear phononics

PRB 95, 205111 (2017)

2-site toy model, solve dynamics exactly

also cf. Kennes et al., Nat. Physics 13, 479 (2017)

$$\begin{split} \hat{H}(t) &= -J \sum_{\sigma} (c_{1,\sigma}^{\dagger} c_{2,\sigma} + c_{2,\sigma}^{\dagger} c_{1,\sigma}) \\ &+ g_2 \sum_{\sigma,l=1,2} \hat{n}_{l,\sigma} (b_l + b_l^{\dagger}) \\ &+ \sum_{l=1,2} b_l^{\dagger} b_l + F(t) \sum_{l=1,2} (b_l + b_l^{\dagger}), \end{split}$$
 density-dependent squeezing of phonon

Idea: Drive nonlinearly coupled IR-phonon, analyze electronic response

$$F(t) = F\sin(\omega t),$$

Response:
$$I(\omega, t_0)$$
 time-resolved spectral function

Response:
$$I(\omega, t_0) = \text{Re} \int dt_1 dt_2 e^{i\omega(t_1 - t_2)} s_{t_1, t_2, \tau}(t_0)$$

$$\times \left[\langle \psi(t_2) | c_{1,\uparrow}^{\dagger} \mathcal{T} e^{-i \int_{t_1}^{t_2} H(t) dt} c_{1,\uparrow} | \psi(t_1) \rangle + \right.$$

+
$$\langle \psi(t_1) | c_{1,\uparrow} \mathcal{T} e^{-i \int_{t_2}^{t_1} H(t) dt} c_{1,\uparrow}^{\dagger} | \psi(t_2) \rangle$$
,

IR-driven nonlinear el-ph system

Driving IR phonon with sinusoidal F(t): coherent phonon oscillation

enhancement of local electronic double occupancy

-> induced el-el attraction

Time-resolved electronic spectrum PRB 95, 205111 (2017) mpsd

Reduced coherence peaks with stronger driving

light-enhanced el-ph coupling

light-induced polaron formation

Coherence peak weight loss: proportional to field intensity F^2 consistent with experiments

Summary I

 enhanced electron-phonon coupling in phononically driven bilayer graphene

PRB 95, 024304 (2017)

E. Pomarico

I. Gierz

A. Cavalleri

Exact solution of electron-phonon model system:

 theoretical proposal: nonlinear el-ph coupling as mechanism behind this enhancement

PRB 95, 205111 (2017)

II Optical control of Majoranas

prior work: optical control of competing orders

Theory of Laser-Controlled Competing Superconducting and Charge Orders

M. A. Sentef, A. Tokuno, A. Georges, and C. Kollath Phys. Rev. Lett. **118**, 087002 – Published 21 February 2017

selective laser driving switches between phases

II Optical control of Majoranas

 can one switch the chirality of a 2D topological superconductor?

key idea: use two-pulse sequence with linearly and circularly polarized light

Model and Method

multiband Bogoliubov-de-Gennes Hamiltonians for doped graphene (d+id) and Sr2RuO4 (p+ip) coupling to fermionic reservoir to dissipate energy laser driving via Peierls substitution

Keldysh equations of motion for Nambu Green's functions:

$$i\partial_{t}\mathcal{G}_{\mathbf{k}}(t,t') = \mathcal{H}_{\mathbf{k}}(t,\boldsymbol{\Delta}_{\mathbf{k}}(t)) \,\,\mathcal{G}_{\mathbf{k}}(t,t') + \int d\tau \,\,\hat{\Sigma}_{\mathbf{k}}(t,\tau) \,\,\mathcal{G}_{\mathbf{k}}(\tau,t')$$
$$\boldsymbol{\Delta}_{\mathbf{k}}(t) = \frac{1}{L} \sum_{j} v^{(j)} \hat{\boldsymbol{\eta}}_{\mathbf{k}}^{(j)} \sum_{\substack{\mathbf{k}' \\ \alpha\beta}} \hat{\eta}_{\mathbf{k}'\alpha\beta}^{(j)} \,\left\langle \hat{c}_{-\mathbf{k}',\beta\downarrow} \hat{c}_{\mathbf{k}',\alpha\uparrow} \right\rangle$$

Optical control of Majoranas

two-pulse sequence reverses d+id state in graphene

time-resolved spectroscopy tracks chirality reversal

Summary II

- All-optical control of chiral Majorana modes
- towards arbitrarily programmable quantum computer?

M. Claassen et al., arXiv:1810.06536, submitted to Nat. Phys.

M. Claassen

D. Kennes

III Cavity materials

 can one use enhanced vacuum fluctuations to change materials properties?

Cavity materials

BCS superconductors: phonon-mediated superconductivity Ginzburg, Phys. Lett. 13, 101 (1964): exciton-mediated superconductivity? Ruvalds, Phys. Rev. B 35, 8869(R) (1987): plasmon-mediated superconductivity?

PRL 104, 106402 (2010)

PHYSICAL REVIEW LETTERS

week ending 12 MARCH 2010 PHYSICAL REVIEW B 93, 054510 (2016)

Exciton-Polariton Mediated Superconductivity

Fabrice P. Laussy, Alexey V. Kavokin, 1,2 and Ivan A. Shelykh 3,4

Cavity-assisted mesoscopic transport of fermions: Coherent and dissipative dynamics.

Hagenmüller et al., 1801.09876

Cavity-mediated electron-photon superconductivity

Frank Schlawin¹, Andrea Cavalleri^{1,2} and Dieter Jaksch¹

1804.07142

Superconductivity and other collective phenomena in a hybrid Bose-Fermi mixture formed by a polariton condensate and an electron system in two dimensions

Ovidiu Cotlet, 1,* Sina Zeytinoğlu, 1,2 Manfred Sigrist, 2 Eugene Demler, 3 and Ataç Imamoğlu 1

Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity

M. A. Sentef,^{1,*} M. Ruggenthaler,¹ and A. Rubio^{1,2,3}

1802.09437

Superradiant Quantum Materials

Giacomo Mazza
1,2,* and Antoine Georges
2,3,1,4

1804.08534

Cavity Quantum Eliashberg Enhancement of Superconductivity

Jonathan B. Curtis, ^{1, 2, *} Zachary M. Raines, ^{1, 2} Andrew A. Allocca, ^{1, 2} Mohammad Hafezi, ¹ and Victor M. Galitski ^{1, 2} 1805.01482

Manipulating quantum materials with quantum light

Martin Kiffner^{1,2}, Jonathan Coulthard², Frank Schlawin², Arzhang Ardavan², and Dieter Jaksch^{2,1}

Cavity superconductor-polaritons 1807.06601

Andrew A. Allocca,* Zachary M. Raines, Jonathan B. Curtis, and Victor M. Galitski

1806.06752

Ab-initio Exciton-polaritons: Cavity control of Dark Excitons in two dimensional Materials

Simone Latini, $^{1,\,*}$ Enrico Ronca, $^{1,\,\dagger}$ Umberto De Giovannini, $^{1,\,2,\,\ddagger}$ Hannes Hübener, $^{1,\,\S}$ and Angel Rubio $^{1,\,3,\,\P}$

1810.02672

monolayer FeSe/STO

Wang QY, Li Z, Zhang WH, Zhang ZC, Zhang JS, et al. 2012. Chin. Phys. Lett. 29:037402 Liu D, Zhang W, Mou D, He J, Ou YB, et al. 2012. Nat. Commun. 3:931 Huang and Hoffman, Annu. Rev. CMP 8, 311 (2017)

monolayer FeSe/STO: ARPES

monolayer FeSe/STO: interfacial phonon

bare el-phonon vertex $g(\vec{q})=g_0\exp(-|\vec{q}|/q_0)$ Lee et al., Nature 515, 245 (2014) $q_0^{-1}=h_0\sqrt{\epsilon_\parallel/\epsilon_\perp}$ $\epsilon_\parallel/\epsilon_\perp\approx 100$

Huang and Hoffman, Annu. Rev. CMP 8, 311 (2017)

Cavity engineering

 idea: use phonon polaritons to enhance electronphonon coupling

Model and Method

el-polariton coupling

polaritons

$$H = \sum_{\vec{k},\sigma} \epsilon_{\vec{k}} c_{\vec{k},\sigma}^{\dagger} c_{\vec{k},\sigma} + \frac{1}{\sqrt{N}} \sum_{\vec{k},\vec{q},\sigma,\lambda=\pm} c_{\vec{k}+\vec{q},\sigma}^{\dagger} c_{\vec{k},\sigma} (g_{\lambda}^{*}(\vec{q})\alpha_{-\vec{q},\lambda}^{\dagger} + g_{\lambda}(\vec{q})\alpha_{\vec{q},\lambda}) + \sum_{\vec{q},\lambda=\pm} \omega_{\lambda}(\vec{q})\alpha_{\vec{q},\lambda}^{\dagger} \alpha_{\vec{q},\lambda}$$

bare el-phonon vertex
$$g(\vec{q}) = g_0 \exp(-|\vec{q}|/q_0)$$
 $q_0^{-1} = h_0 \sqrt{\epsilon_{\parallel}/\epsilon_{\perp}}$

G-self-consistent Migdal-Eliashberg diagram

$$\hat{\Sigma}(\vec{k}, i\omega_n) = \frac{-1}{N\beta} \sum_{\vec{q}, m, \lambda = \pm} |g_{\lambda}(\vec{q})|^2 D_{\lambda}^{(0)}(\vec{q}, i\omega_n - i\omega_m) \hat{\tau}_3 \hat{G}(\vec{k} + \vec{q}, i\omega_m) \hat{\tau}_3$$

$$\hat{\Sigma}(\vec{k}, i\omega_n) = i\omega_n [1 - Z(\vec{k}, i\omega_n)]\hat{\tau}_0 + \chi(\vec{k}, i\omega_n)\hat{\tau}_3 + \phi(\vec{k}, i\omega_n)\hat{\tau}_1$$

$$\lambda \equiv Z(\vec{k}_F, i\pi/\beta) - 1$$

Mass enhancement: $m^*/m = 1 + \lambda$

Cavity materials: Phonon polaritons

enhanced electron-phonon coupling, controlled by cavity volume

Superconductivity

suppressed superconductivity despite enhanced el-ph coupling

forward scattering

$$T_C \approx \frac{\lambda \Omega}{2 + 3\lambda}$$

vs.
$$T_{C, \mathrm{BCS}} pprox 1.13\Omega \exp(-\frac{1}{\lambda})$$
 q-independent scattering

Summary III

- cavity leads to enhanced electron-phonon coupling
- can one also enhance superconductivity?

M. A. Sentef, M. Ruggenthaler, A. Rubio, arXiv:1802.09437 (to appear in Science Adv.)

Summary

Ultrafast laser engineering of

band structure, topology (Floquet)
Nature Commun. 6, 7047 (2015)

Nature Commun. 8, 13940 (2017)

arXiv:1803.07447

electron-phonon coupling

Towards nonequilibrium materials engineering
Towards nonequilibrium materials engineering

PRL 121, 097400

ordered phases

PRB 92, 224517 (2015) arXiv:1806.08187 PRB 93, 144506 (2016) arXiv:1808.00712 PRL 118, 087002 (2017) arXiv:1808.04655 arXiv:1810.06536

Outlook: Group projects

R. Tuovinen (postdoc): nonequilibrium Green's functions (GKBA) for time-resolved

transport and excitonic condensates

(JCTC 14, 2495 (2018); arXiv:1808.00712)

- M. Kalthoff (PhD student) time-dependent matrix product states (t-DMRG) for Floquet engineering of correlated systems (w/ D. Kennes, FU Berlin)
- D. Hofmann (master student) topological exciton polaritons (master), machine learning for time-dependent variational wave functions (w/ G. Carleo, CCQ NYC)
- X. Wang (student, Tsinghua) Green's functions for cavity 2D materials with focus on topology
- M. Puviani (PhD st., Modena) quantum nonlinear phononics, ultrafast melting of ferrielectric charge-density wave (arXiv:1806.08187, PRB)