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Driven is different 

youtube.com/watch?v=tP88f-SwO_E 
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Kapitza pendulum 

dynamical stabilization of a metastable state 
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... and many more. 
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•  stroboscopic	investigations	of	dynamic	phenomena	

Muybridge	1887	 F.	Schmitt	et	al.,	Science	321,	1649	(2008)		
Image	courtesy:	J.	Sobota	/	F.	Schmitt	

TbTe3	CDW	metal	

gap	
angle/momentum	
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U.S.	Department	of	Energy	“Five	Grand	Challenges	to	
Science	and	the	Imagination”	
•  Grand	Challenge	#3:	How	do	remarkable	properties	of	
matter	emerge	from	complex	correlations	of	the	
atomic	or	electronic	constituents	and	how	can	we	
control	these	properties?	

•  Grand	Challenge	#5:	How	do	we	characterize	and	
control	matter	away	−	especially	very	far	away	−	from	
equilibrium?	

http://science.energy.gov/bes/efrc/research/grand-challenges/	
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movies by Koichiro Tanaka (Kyoto university)	

many-body	problem	
(electrons	+	ions)	

nonequilibrium	many-body	problem	
(electrons	+	ions	+	photons)	

Mission	statement:	
To	understand	and	predict	electron-ion	dynamics	and	
control	of	emergent	nonequilibrium	electronic	structure	
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Main	challenges:	
•  hierarchy	of	energy	and	time	scales	
•  high	laser	intensities:	nonperturbative/nonlinear		
Possible	approaches:	
•  first	principles	(time-dependent	density	functional	theory	(TDDFT))	

•  effective	models:	
–  Feynman	diagrams:	self-energy	
–  Keldysh	nonequilibrium	Green‘s	functions	
–  connection	with	DFT:	Sham-Schlüter	integral	equation	
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Image	courtesy:	
D.	Basov	

Understanding	ordered	phases	
§  Collective	oscillations	
§  Competing	orders	

Creating	new	states	of	matter	
§  nonequilibrium	topological	states	

Nature	Comm.	6,	7047	(2015)	
Nature	Comm.	8,	13940	(2017)	
Nature	Comm.	9,	4452	(2018)	

Understanding	the	nature	of	quasiparticles	
§  Relaxation	dynamics		
§  Control	of	couplings	

PRL	111,	077401	(2013)	
PRX	3,	041033	(2013)	
PRB	87,	235139	(2013)	
PRB	90,	075126	(2014)	
Nat.	Comm.	7,	13761	(2016)	
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arXiv:1808.02389	
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PRB	87,	235139	
(2013)	
extracting	
unoccupied	
electronic	
structure	

KEMPER, SENTEF, MORITZ, FREERICKS, AND DEVEREAUX PHYSICAL REVIEW B 90, 075126 (2014)

FIG. 2. (Color online) Illustration of the effects on the scattering
rate due to spectral weight redistribution. The thickness of the yellow
lines indicates the electronic occupation of the band. In equilibrium
and at low temperatures, scattering from inside the phonon window
W is suppressed due to a lack of phase space for the final state given
the high occupation below the Fermi level, with the opposite behavior
for scattering outside the window W . After excitation and spectral
weight rearrangement, these phase space considerations are modified
with an increase (decrease) of the scattering rate inside (outside) W .

in the scattering phase space and rates are reflected in Fig. 1(c)
and 1(d), where Im !R(ω,tave) increases inside the phonon
window, and decreases outside. In addition to scattering
via phonon emission, there will be processes that scatter
particles into states at higher energy, i.e., phonon absorption.
However, for low excitation densities these processes will not
qualitatively affect the simple picture discussed here [21].

The changes in the scattering phase space due to the
rearrangement of spectral weight by the pump (as shown in
Fig. 2) imply that the measured decay rates depend on the pump
fluence. Thus, we now explicitly consider the dependence of
the effective electron-phonon interactions on the pump fluence
or excitation density. In particular, the analysis of Ref. [16] is
repeated, and the decay rates are extracted from tr-ARPES
spectra integrated over a cut along the (11) momentum
direction [as in Figs. 1(a) and 1(b)] for various pump fluences.
To be able to extract the decay rates from the spectra, sufficient

FIG. 3. (Color online) Fluence dependence of the decay rates
extracted from Ī (ω,t0) near the end of the pump (tfit = 46 fs). Fields
are expressed in units of meV/a0 (a0 is the lattice constant). Dashed
black lines indicate the phonon window W , and the equilibrium
retarded self-energy is shown as a black solid line. Inset: Semilog
blowup of the region around ω = +# showing the isosbestic point.

signal is needed for an exponential fit. At the strong coupling
considered above, the signal decays too rapidly, which is
remedied by decreasing the coupling strength, and increasing
both the driving frequency and temperature. Figure 3 shows
the decay rates obtained just after the pump pulse, together
with the equilibrium result. The decay rates directly reflect
the changes discussed in Fig. 2; compared to equilibrium, the
scattering rates increase inside W and decrease outside W .
As the fluence increases, the rates deviate further from their
values in equilibrium. Around the phonon frequency, there is
a nearly isosbestic crossover point where the modifications in
the scattering rate change sign, which is shown in the inset of
Fig. 3.

Finally, we return to the weakening of the kink in the tr-
ARPES spectra. The dispersion is determined from Fig. 1 by
fitting the MDCs with a Lorentzian (as discussed above) and

(a)

(b)

FIG. 4. (Color online) (a) MDC peak positions from Fig. 1,
together with the bare dispersion (solid line). The inset shows the
inverse Fermi velocity normalized by the equilibrium value (see text).
(b) Real part of the Wigner self-energy !R(ω,tave) in equilibrium
(tave → −∞) and at 0 time delay showing a decrease in peak height
which leads to a straightening of the band in panel (a). Dashed black
lines indicate the phonon window W .

075126-4

PRB	90,	075126	
(2014)	
fluence	
dependence	
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pumped	states	

PRX	3,	041033	
(2013)	
small	fluences	

examining	electron-boson	coupling	

Nat.	Comm.	7,	
13761	(2016)		
comparison	
with	
experiment	
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FIG. 4. (color online). a) Experimental τshort(Ebin) for Φ = 35
(blue squares), 105 (green triangles), 165 (black diamonds) and 315
(red circles) µJ·cm−2, respectively. Dotted blue and red lines are
guides to the eye for the 35 and 315 µJ·cm−2 data, respectively.
b) Theoretical τshort(Ebin) for field strengths of 0.05 (blue), 0.15
(green), 0.25 (black) and 0.50 (red) and equilibrium τQP = !/2ImΣ
(purple). The mode energy at 75 meV is marked by the dashed black
lines. Inset) (blue, right axis) Theoretical α2F (E) with electron-
boson coupling constant α and dispersion F (E). (red, left axis) The
lifetime dampening mode at 15 meV.

includes a weak mode at low energy to prevent an infinite τQP

within the boson window. ee and impurity scattering are ab-
sent from the present model.
Representative Inorm(Ebin, t) calculated in the time do-

main are shown in Fig. 3d-f for field strengths comparable
to the experiment. They successfully reproduce the rever-
sal of the fastest τshort(Ebin) as a function of fluence for
Ebin above versus below +!Ω. Lacking a true long-time
component, these calculated Inorm(Ebin, t) are fit by single
exponentials to produce theoretical τshort(Ebin) for several
fluences, Fig. 4b. The theoretical τshort(Ebin) exhibit the
same step at E − EF ∼ +!Ω as the experimental data in
Fig. 4a. The theory semiquantitatively captures the increase
in τshort(Ebin) for Ebin > +!Ω and decrease in τshort(Ebin)
for EF < Ebin < +!Ω. Even the position of the isosbestic
point a bit above +!Ω generated by the increasing pump flu-
ence is captured by the model despite the absence of fluence
dependence in the model for the bosonic mode itself. It’s
remarkable that once the time constant due to boson emis-
sion is isolated from other sources of relaxation, its predicted
low-fluence-limit equivalence to the relevant term in the equi-
librium imaginary part of the self energy ImΣ(E) naturally
emerges [23]. This reflects quantitative agreement between
measured and calculated Inorm(Ebin, t)within the boson win-
dow, Fig. 3.
As in the case of the kink’s ever more pronounced weak-

ening with increasing pump fluence, the phenomenological
model shows how a large redistribution of carrier population
acts on the ability of a bosonic mode to assert its presence.
By introducing more holes with increasing pump fluence at
−!Ω < E < EF for excited carriers to decay into, carriers
at EF < E < +!Ω relax faster. At the same time, as more
empty states are filled for EF < E < +!Ω by the pump, the

ability of carriers excited to E > +!Ω to decay by emission
of a boson of energy !Ω decreases, leading to an increase in
relaxation times [17]. The overall effect is to smooth out the
step in population relaxation times at E − EF ∼ +!Ω with
increasing fluence.
The vital observation emanating from this comparison of

theory and experiment is that a unique timescale for the in-
teraction of excited carriers with a single bosonic mode in
Bi2212 is unambiguously separable from the remainder of
contributing quasiparticle decay mechanisms above Tc. The
coincidence of discontinuous nonequilibrium effects at ±!Ω
above Tc[15] with the energy scale of the kink at −!Ω be-
low Tc[5] suggests this mode is present and at least partially
coupled to at temperatures much higher than is observed us-
ing static ARPES. It’s been argued the simultaneous disap-
pearance of the kink’s sharpness and emergence of Marginal
Fermi Liquid scaling for the self energy when T > Tc ev-
idences coupling of nodal excitations to a spectrum of spin
fluctuations[3]. This is opposed to the largely “conventional”
appearance of the nodal kink below Tc suggesting an origin
in electron-boson coupling. However the binary terms of this
debate are perhaps too narrow; whatever the fate of spin fluc-
tuations below Tc, trARPES reveals the bosonic mode ∼ 70
meV is itself omnipresent. Taking both points at face value,
a plausible explanation for the sum of data is therefore that
nodal electrons in Bi2212 couple to both a single pronounced
bosonic mode of !Ω ∼ 70 meV and a broader spectrum of
electronic excitations or other modes, the former much more
strongly below Tc, the latter more dominant above[24]. The
importance of the kink to the wider high Tc problem might
then be seen differently. Understanding why going through Tc

has such a profound effect upon which type of nodal coupling
is favored may reveal as much or more about the origin of high
Tc superconductivity than resolving the couplings themselves.
This work was supported in part by National Science Foun-

dation Grant No. PHYS-1066293 and the hospitality of the
Aspen Center for Physics. A.F.K. was supported by the
Laboratory Directed Research and Development Program of
Lawrence Berkeley National Laboratory under U.S. Depart-
ment of Energy Contract No. DE-AC02-05CH11231. J.K.F.
was supported by the Department of Energy, Office of Basic
Energy Sciences, Division of Materials Sciences and Engi-
neering (DMSE) under Contract No. DE-FG02-08ER46542,
and by the McDevitt bequest at Georgetown. Computa-
tional resources were provided by the National Energy Re-
search Scientific Computing Center supported by the De-
partment of Energy, Office of Science, under Contract No.
DE-AC02-05CH11231. Work at Brookhaven National Lab-
oratory was supported by the Center for Emergent Super-
conductivity, an Energy Frontier Research Center, headquar-
tered at Brookhaven National Laboratory and funded by the
U.S. Department of Energy, under Contract No. DE-2009-
BNL-PM015. We acknowledge further funding from the
Deutsche Forschungsgemeinschaft through SFB 616 and SPP
1458, from the Mercator Research Center Ruhr through Grant
No. PR-2011-0003, and from the European Union within the
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Electrons 
(Fermi gas/liquid) 

Bosons 
(e.g., Einstein phonon) 

Electron-boson 
coupling 

Holstein	model	(minimal	version):	

ε(k)→ε(k,t)
Pump laser:
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Method: Keldysh Green functions 

history	

initial	state	

2

been successfully used to describe the melting of a charge
density-wave state24 and the time evolution of electrons
in correlated metals25,26 via tr-ARPES and tr-reflectivity.
We connect the microscopic interaction parameters of
the electron-phonon interaction directly to the observed
timescales, and discuss the extension of the results ob-
tained here to more general models.

II. METHOD

We describe the time-evolution of the system via the
non-equilibrium Keldysh formalism. All Green’s func-
tions have two time arguments, where each time is lo-
cated on the Keldysh contour (see Fig. 1). The sys-
tems starts in equilibrium at a temperature T and time
t = tmin, and evolves until t = tfinal. The time-ordered,

tmin

tmin � i�

tmax

FIG. 1: Keldysh contour used in the description of the double-
time Green’s functions and self-energies.

anti-time-ordered, lesser and greater Green’s functions
are formed by selecting t and t⇥ on appropriate parts of
the contour (see Refs. 1–3,7,8).

The driving fields are included directly into the propa-
gators via the Peierls substitution in the standard double-
time formalism, which leads to the bare non-equilibrium
Green’s function

G0
k(t, t

⇥) =i [nF (�(k))� ⇥c(t, t
⇥)]

⇥ exp

⌥
�i

� t

t0
dt̄ � (k�A(t̄))

�

where nF is the Fermi function at temperature T :
nF (⌅) = 1/(exp(⌅/T ) + 1), t and t⇥ lie on the Keldysh
contour, ⇥c is the contour-ordered Heaviside function,
�(k) is the single-particle dispersion, which we choose
to be a square lattice tight-binding model with nearest-
neighbor and next-nearest-neighbor hoppings Vnn = 0.25
eV and Vnnn = 0.075 eV, and a chemical potential
µ = �0.255 eV.

�(k) = �2Vnn (cos kx + cos ky) + 4Vnnn cos kx cos ky � µ

A(t) is the vector potential at time t, which is related
to the electric field via A(t) = �

´
E(t)dt. Here, we use

the convention that h̄ = c = e = 1, and we work in the
Hamiltonian gauge, i.e. the scalar potential is set to zero.
Energies and frequencies are measured in units of eV.

To illustrate the momentum-dependent quasiparticle
relaxation rates we introduce coupling of electrons to a

non-dispersive optical phonon with energy ⇥. As our
starting point, we use the Holstein model which couples
a band of electrons to a single species of optical phonon:

H =
 

k

�(k)c†kck +
 

q

⇥

⇧
b†qbq +

1

2

⌃

+
 

k,q,i

c†k+qck
⇤
bq + b†�q

⌅

We include the electron-phonon interactions in the
Migdal limit, which is appropriate for weak coupling.
Furthermore, since we are primarily interested in the re-
sponse of the electronic system, we will limit the discus-
sion to just the e⇤ects of the phonons on the electrons,
and will neglect the feedback of the electronic system on
the phonons.
For a non-dispersive optical phonon, the electronic self-

energy is

�(t, t⇥) = ig2
 

k

D0(t, t⇥)G0
k(t, t

⇥)

where g is the electron-phonon coupling strength. The
bare phonon Green’s function D0(t, t⇥) is

D0(t, t⇥) =� i [nB(⇥) + ⇥c(t, t
⇥)] exp (i⇥(t� t⇥))

� i [nB(⇥) + 1� ⇥c(t, t
⇥)] exp (�i⇥(t� t⇥))

where nB(⇥) is the Bose function at temperature T :
nB(⌅) = 1/(exp(⌅/T )� 1). In the following, we will use
various values of the electron-phonon coupling strength
g and the optical phonon frequency ⇥.
With the self-energy above, we solve the Dyson equa-

tion

Gk(t, t
⇥) = G0

k(t, t
⇥) +

�
dt1dt2G

0
k(t, t1)�(t1, t2)Gk(t2, t

⇥)

This can be done by casting the Dyson equation as
a matrix equation. However, for the case of electron-
phonon coupling, better numerical stability can be ob-
tained by expanding the integral through Langreth rules
and solving the equations of motion for the retarded, real-
imaginary, and lesser Green’s functions.4,5 This leads to
a set of Volterra integrodi⇤erential equations that can be
solved via standard numerical integration.6 We find that
the solution of the Dyson equation by integrating the
Volterra equations leads to more stable and inherently
causal algorithms. Some details about number of time
points go here.
The pulse that is of direct interest to pump-probe ex-

periments is, by nature, a propagating light pulse; this
implies an oscillating field without a zero-frequency com-
ponent. We model the pump via an oscillating vector po-
tential along the (11) direction with a Gaussian profile,
where we assume that the field is slowly varying spatially
and thus neglect the spatial dependence:

A(t) = (x̂+ ŷ)
Fmax

⌅p
sin(⌅pt) exp

�
� (t� t0)2

2⇤2

⇥

Gk(!) = G0
k(!) +G0

k(!)⌃(!)Gk(!)

self-energy Σ:
electron-electron scattering
electron-phonon scattering
...

12	pump-probe	photoemission	
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Electron-boson coupling 

Weak	pump	 Strong	pump	

time	unit	=	0.66	fs	

nonlinear	response	for	strong	pump	

boson	window	effect	for	fast	versus	slow	relaxation	
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PRX	3,	041033	(2013)	
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PRB	92,	224517	(2015)	
	
Higgs	amplitude	mode	
oscillations	in	pump-
probe	photoemission	
spectroscopy	

PRB	93,	144506	(2016)	
	
Light-enhanced	superconductivity:	
electron-phonon	scattering	versus	
collective	order	parameter	dynamics	
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Theory of light-enhanced phonon-mediated superconductivity

M. A. Sentef,1, 2, ∗ A. F. Kemper,3 A. Georges,4, 5, 6 and C. Kollath1

1HISKP, University of Bonn, Nussallee 14-16, D-53115 Bonn, Germany
2Max Planck Institute for the Structure and Dynamics of Matter,
Center for Free Electron Laser Science, 22761 Hamburg, Germany

3Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
4Centre de Physique Théorique, École Polytechnique, CNRS, 91128 Palaiseau Cedex, France

5Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
6Department of Quantum Matter Physics, University of Geneva,

24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
(Dated: May 29, 2015)

We investigate the dynamics of a phonon-mediated superconductor driven out of equilibrium.
A decrease of the electronic hopping amplitude with time is applied, which mimics the effect of
a resonant THz light pulse transiently modifying the lattice through nonlinear phonon coupling.
The induced increase of the density of states near the Fermi-level leads to an enhancement of
superconductivity. We provide a time- and momentum-resolved view on the interplay of slow order
parameter dynamics and fast single-particle scattering. The importance of electron-phonon coupling
for the rapid enhancement and the efficient thermalization of superconductivity is demonstrated.

PACS numbers: 74.90.+n, 74.40.Gh, 78.47.J-

Light control of structural and electronic properties of
solids is a tantalizing prospect of ultrafast materials sci-
ence [1–3]. In pump-probe experiments, a short pump
laser pulse drives a solid out of equilibrium. The ensu-
ing dynamics is monitored with a second probe pulse at
well-defined delay times. Pump excitations at optical fre-
quencies usually create electron-hole excitations, which
can be used to study transient dynamics in a variety of
correlated materials [1, 2], like Mott or charge-density
wave insulators [4–8], or superconductors [9–15]. In con-
trast, lower frequency mid-IR or THz lasers can excite the
system in resonance with structural [16] or other collec-
tive modes. In particular, intense THz light pulses enable
a mode-selective vibrational excitation [16], opening up
the field of “nonlinear phononics” [3, 17, 18].
A lattice deformation can be induced that lasts for hun-

dreds of femtoseconds [16–19], which has been suggested
as a basis for light-enhanced superconductivity [20–23].
Thus the important question arises how fast the elec-
trons in a solid can follow a nonadiabatic change of the
lattice structure. In particular, the situation is unclear
for slow collective modes in a symmetry-broken ordered
state, such as a superconductor or a charge-density wave.
Theoretically, the order parameter dynamics in purely

electronic models has been investigated in BCS mean-
field theories for superconductors [24–39], and in
nonequilibrium dynamical mean-field theory for antifer-
romagnets [40, 41]. In contrast to such closed systems,
where the electronic energy is conserved after the ex-
ternal perturbation, in electron-lattice systems energy is
transferred between electrons and phonons via electron-
phonon (el-ph) coupling [42]. The electronic relaxation
in electron-phonon models has been theoretically inves-
tigated using a variety of methods [43–56].
In this work we investigate the nonequilibrium dynam-

∆

time

THz
pump

el-ph
coupling∆0

∆(t)

∆f
(a)

J0

Jf

(b)
Jf

J0

Tc,0

∆

temperature Tc,f

FIG. 1. THz pump enhances superconductivity. (a)
Through a lattice distortion, the electronic hopping amplitude
decreases from J0 to Jf (red shaded area). As a consequence,
the superconducting order parameter∆0 is boosted to a larger
value ∆(t) > ∆0. At longer time scales (blue shaded area) the
order parameter approaches its thermal value ∆f correspond-
ing to Jf in the presence of efficient electron-phonon (el-ph)
coupling. (b) Sketch of equilibrium order parameters ∆0 and
∆f corresponding to J0 and Jf < J0, respectively, leading to
a larger critical temperature Tc,f > Tc,0.

ics of a phonon-mediated superconductor induced by a
transiently modified electronic structure through nonlin-
ear phonon coupling. We consider a tight-binding el-ph
Hamiltonian which contains both a retarded pairing in-
teraction mediated by phonons as well as dissipation of
heat into the lattice. The light-induced lattice distortion
is accounted for by a change of the electronic hopping
amplitude J0 to a smaller value Jf on a typical time
scale of fractions of a picosecond. Due to this change the
electronic density of states close to the Fermi surface is
enhanced, which results in an increased equilibrium order
parameter ∆f (see Fig. 1).

Out of equilibrium, the order parameter is therefore ex-
pected to increase if the change is slow enough and not
too much energy is deposited into the electronic degrees

2

of freedom. Since typically the time scale of the lattice
distortion – while much longer than the bare electronic
time scale – is rapid compared to the slow collective dy-
namics of the superconducting condensate, understand-
ing the response of the superconducting order parameter
∆(t) to such a relatively fast change is of great impor-
tance. We show that even for this rapid change of the lat-
tice structure, the superconducting order parameter can
be drastically enhanced. The dynamics can be separated
into two different regimes: (i) the short time dynamics
of the order parameter, which can approximately be de-
scribed by BCS theory, and (ii) the intermediate to long
time dynamics, where el-ph scattering and the relaxation
of energy into the dissipative phonon bath dominate. Im-
portantly, the phonon dissipative channel is essential for
asympotically reaching the final thermal value. Surpris-
ingly, very fast nonadiabatic ramps are predicted to lead
to quick enhancement of superconductivity on very short
time scales in the presence of dissipation.
We investigate the electron-phonon Hamiltonian

H =
∑

kσ

ϵ(k, t)c†kσckσ +
∑

q,γ

Ωγb
†
q,γbq,γ

−
∑

q,γ,σ

gγc
†
k+qσckσ

(

bq,γ + b†−q,γ

)

(1)

with fermionic creation operators c†kσ for dimension-
less momentum k = (kx, ky) and spin σ = ↑, ↓ on a
two-dimensional square lattice with dispersion ϵ(k, t) =
−2J(t)(cos kx+cos ky). The time dependence of the elec-
tronic hopping amplitude J(t) mimics a deformation of
the lattice induced via a nonlinear coupling to an IR ac-
tive optical phonon driven by the THz light pulse [18].
We assume for t < τ a linear ramp J(t) = J0+(Jf−J0) t

τ
and for t > τ the constant J(t) = Jf with J0 = 0.25 eV,
Jf = 0.20 eV, and ramp time τ . The change of the hop-
ping parameter by 20% is rather large, but not out of
reach for an experimental realization [18]. In an experi-
ment, the deformation of the lattice will decay typically
on the order of several picoseconds, and we focus on the
dynamics within this time frame. Energies are measured
in eV, and time scales in fs, using ! = 0.658 eV×fs.
The electrons are coupled to branches (γ) of phonons

with bosonic creation operators b†q,γ, energy Ωγ , and
electron-phonon coupling gγ . We consider a dominant
optical phonon at Ωopt = 0.1 eV, which induces super-
conductivity, and acoustic low-energy phonons. We use
a reference set of electron-phonon couplings, labeled “1.0
g2” [57], and another set with the same spectrum but
reduced coupling strengths (“0.8 g2”). We solve this
model in the Migdal-Eliashberg approximation [58–60]
with a local, self-consistent self-energy for the electrons,
and treat the phonons as an infinite heat bath at equi-
librium. The effective phonon spectra weighted by el-ph
coupling (Eliashberg functions) for “1.0 g2” and a param-
eter set without acoustic branch are shown in the inset
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FIG. 2. Light-enhanced superconductivity. (a) Dynam-
ics during and after τ = 100 fs (dark colors) and τ = 3 fs
(light colors) ramps for different initial equilibrium tempera-
tures (Tc,0 ≈ 135 K). Solid (dashed) lines show the results of
the el-ph (BCS) model and arrows indicate the final thermal
equilibrium values ∆f . Dark (light) grey shaded rectangles
indicate the ramp durations. (b) Order parameter change
during the 100 fs ramp, ∆ramp − ∆0, relative to ∆f − ∆0

(symbols). This change scales almost linearly with the initial
value ∆0 (dashed line). (c) Dependence of final steady state
value on ramp duration τ within BCS theory for different
temperatures. Arrows show the data points for 100 fs ramps
corresponding to panel (a). Dashed line indicates τ∆0 = !.

to Fig. 4(a).
The time evolution is obtained from solutions of the

Kadanoff-Baym-Gor’kov equations [57, 60, 61]. We
choose initial conditions that put the system in the super-
conducting initial state below Tc and ignore the compet-
ing instability towards charge-density wave order. The
time-dependent order parameter ∆(t) is defined by

∆(t)

∆0
≡

∑

k fk(t)
∑

k fk(0)
(2)

using the dimensionless momentum-resolved anomalous
expectation value fk(t) ≡ F<

k (t, t) ≡ ⟨c−k↓(t)ck↑(t)⟩.
The initial value ∆0 = ∆(t = 0) and final value ∆f are
obtained from the anomalous component of the equilib-
rium self-energy, including energy band renormalization
with quasiparticle weight Z due to el-ph coupling [57].
Our choice of a large el-ph coupling λ, which results

in a large value of the order parameter compared to real
materials [62], is motivated by the times we can reach
in the numerical simulations. Even though the Migdal-
Eliashberg approximation is not expected to be quantita-
tively accurate in this regime, the generic effects observed
should remain valid.
The fundamental question we address is whether and

on which time scales superconducting order can be en-
hanced by the change of the hopping amplitude. Fig. 2(a)
shows the dynamics of ∆(t) at different initial temper-
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H = AQIR
2QRS

Rectified	phonon	field	èdirectional	force	

QRS	

„nonlinear	phononics“	Simplest	model:	classical	dynamics	
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Nonlinear phononics as an ultrafast route to
lattice control
M. Först1*, C. Manzoni1†, S. Kaiser1, Y. Tomioka2, Y. Tokura3, R. Merlin4 and A. Cavalleri1*
Two types of coupling between electromagnetic radiation and

a crystal lattice have so far been identified experimentally. The

first is the direct coupling of light to infrared-active vibrations

carrying an electric dipole. The second is indirect, involving

electron–phonon coupling and occurring through excitation of

the electronic system; stimulated Raman scattering
1–3

is one

example. A third path, ionic Raman scattering (IRS; refs 4,5),

was proposed 40 years ago. It was posited that excitation

of an infrared-active phonon could serve as the intermediate

state for Raman scattering, a process that relies on lattice

anharmonicities rather than electron–phonon interactions
6
.

Here, we report an experimental demonstration of IRS using

femtosecond excitation and coherent detection of the lattice

response.We show how this mechanism is relevant to ultrafast

optical control in solids: a rectified phonon field can exert

a directional force onto the crystal, inducing an abrupt

displacement of the atoms from their equilibriumpositions. IRS

opens up a new direction for the optical control of solids in their

electronic ground state
7–9

, different fromcarrier excitation
10–14

.

Crystal lattices respond to mid-infrared radiation with oscilla-
tory ionic motions along the eigenvector of the resonantly excited
vibration. Let QIR be the normal coordinate, PIR the conjugate
momentum and �IR the frequency of the relevant infrared-active
mode, which we assume to be non-degenerate, and HIR =N (P2

IR +
�2

IRQ2
IR)/2 its associated lattice energy (N is the number of cells).

For pulses that are short compared with the many-picoseconds
decay time of zone-centre optical phonons15, one can ignore dis-
sipation, and the equation of motion is

Q̈IR +�2
IRQIR = e⇤E0p

M IR
sin(�IRt )F(t )

where e⇤ is the effective charge,MIR is the reducedmass of themode,
E0 is the amplitude of the electric field of the pulse and F is the pulse
envelope. At timesmuch longer than the pulse width

QIR(t )=
Z +1

�1
F(⌧ )d⌧

�
e⇤E0

�IR
p
M IR

cos(�IRt ) (1)

For ionic Raman scattering (IRS), the coupling of the infrared-
active mode to Raman-active modes is described by the Hamilto-
nianHA =�NAQ2

IRQRS, whereA is an anharmonic constant andQRS
is the coordinate of a Raman-active mode, of frequency �RS, which
is also taken to be non-degenerate. Thus, the equation of motion
for the Raman mode is

Q̈RS +�2
RSQRS =AQ2

IR (2)

1Max-Planck Research Group for Structural Dynamics, University of Hamburg, Center for Free Electron Laser Science, 22607 Hamburg, Germany,
2Correlated Electron Engineering Group, AIST, Tsukuba, Ibaraki, 305-8562, Japan, 3Department of Applied Physics, University of Tokyo, Tokyo, 113-8656,
Japan, 4Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA. †Present address: CNR-IFN Dipartimento di Fisica,
Politecnico di Milano, 20133 Milan, Italy. *e-mail: michael.foerst@mpsd.cfel.de; andrea.cavalleri@mpsd.cfel.de.

Ignoring phonon field depletion, it follows from equation (1) that
excitation of the infrared mode leads to a constant force on the
Raman mode which, for �IR � �RS, undergoes oscillations of
the form

QRS(t )=
A

2�2
RS

Z +1

�1
F(⌧ )d⌧

�2 (e⇤E0)2

MIR�
2
IR
(1�cos�RSt ) (3)

around a new equilibrium position. Hence, the coherent nonlinear
response of the lattice results in rectification of the infrared
vibrational field with the concomitant excitation of a lower-
frequency Raman-active mode.

We stress that equation (2) describes a fundamentally different
process from conventional stimulated Raman scattering16–18, for
which the driving term 4̂ in the equation of motion Q̈RS +
�2

RSQRS =
⌦
4̂

↵
depends only on electron variables (see also

Supplementary Information).
To date, phonon nonlinearities have been evidenced only

by resonantly enhanced second harmonic generation19,20 or by
transient changes in the frequency of coherently excited Raman
modes in certain semimetals at high photoexcitation21. However,
the experimental demonstration of IRS,which offers significant new
opportunities for materials control, is still lacking.

Ultrafast optical experiments were performed on single crystal
La0.7Sr0.3MnO3, synthesized by the floating zone technique and
polished for optical experiments. La0.7Sr0.3MnO3 is a double-
exchange ferromagnet with rhombohedrally distorted perovskite
structure. Enhanced itinerancy of conducting electrons and
relaxation of a Jahn–Teller distortion are observed below the
ferromagnetic Curie temperature TC = 350K (refs 22–24). As
a result of the relatively low conductivity, phonon resonances
are clearly visible in the infrared spectra at all temperatures25.
The sample was held at a base temperature of 14 K, in
its ferromagnetic phase, and was excited using femtosecond
mid-infrared pulses tuned between 9 and 19 µm, at fluences
up to 2mJ cm�2. The pulse duration was determined to be
120 fs across the whole spectral range used here. The time-
dependent reflectivity was measured using 30-fs pulses at a
wavelength of 800 nm.

Figure 1a shows time-resolved reflectivity changes for excitation
at 14.3-µm wavelength at 2-mJ cm�2 fluence, resonant with
the 75-meV (605 cm�1) Eu stretching mode25,26. The sample
reflectivity decreased during the pump pulse, rapidly relaxing into
a long-lived state and exhibiting coherent oscillations at 1.2 THz
(40 cm�1). This frequency corresponds to one of the Eg Raman
modes of La0.7Sr0.3MnO3 associated with rotations of the oxygen
octahedra26,27, as sketched in the figure. Consistent with the Eg
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Classical nonlinear phononics 

Explains	a	number	of	observed	effects,	e.g.,	
•  structurally	induced	metal-insulator	transitions	

	Rini	et	al.,	Nature	449,	72	(2007)	

•  phononic	rectification	in	YBCO	
	Mankowsky	et	al.,	Nature	516,	71	(2014)	

•  ferroelectric	switching	in	LiNbO3	
	Subedi	et	al.,	Phys.	Rev.	B	89,	220301	(2014)	
	Mankowsky	et	al.,	Phys.	Rev.	Lett.	118,	197601	(2017)	

Classical	phonon	dynamics	does	not	explain	all	
effects	in	IR-driven	materials.	
examples:		-	light-induced	superconductivity	

	 	-	light-enhanced	el-ph	coupling	
...	quantum	nature	of	phonons	important?	
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PRB	95,	024304	(2017)	
enhanced	electron-phonon	coupling	for	pump	on	resonance	
with	IR	phonon	
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transient	reduction	of	THz	Drude	weight	 accelerated	tr-ARPES	relaxation	

PRB	95,	024304	(2017)	

driving	on	phonon	resonance:	3-fold	enhancement	of	effective	λel-ph		
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Idea:	Drive	nonlinearly	coupled	IR-phonon,	analyze	electronic	response	

2

coherent state in Ref. 36,

Ĥ(t) = �J

X

�

(c†1,�c2,� + c
†
2,�c1,�)

+ g2

X

�,l=1,2

n̂l,�(bl + b
†
l
)2

+ ⌦
X

l=1,2

b
†
l
b
l
+ F (t)

X

l=1,2

(b
l
+ b

†
l
), (1)

where J is the electronic hopping matrix element be-

tween sites l = 1, 2, c(†)
l,�

annihilates (creates) an electron
of spin � =", # on site l with electron number operator
n̂l,� ⌘ c

†
l,�

c
l,�

, g2 is the nonlinear electron-phonon cou-
pling with bosonic phonon annihilation (creation) opera-

tors b(†)
l

on site l, ⌦ is the phonon frequency, and F (t) is
a driving field coupling to the phononic position (dipole)
operator x̂l ⌘ b

l
+ b

†
l
. In a generic lattice with inversion

symmetry, the phonon modes to which F (t) couples are
ungerade and thus infrared active, which does not allow
for a linear term and makes the g2 term the lowest order
allowed interaction term for infrared phonons. By multi-
plying out the (b

l
+b

†
l
)2 term, one finds that the nonlinear

interaction renormalizes the phonon frequency locally on
site l to ⌦e↵ ⌘ ⌦+2g2hn̂li, where hn̂li ⌘ hn̂l,"+ n̂l,#i = 1
is the average local electronic occupation with electron
number operator n̂l,� ⌘ c

†
l,�

c
l,�

. The system is driven
out of equilibrium by a time-dependent periodic field

F (t) = F sin(!t), (2)

with laser frequency !.
The time-evolved wave function of the system is com-

puted by starting in the ground state | 0i at time t = 0
and propagating forward in time,

| (t)i = T e
�i
´ t
0 H(t0)dt0 | 0i. (3)

In practice we use the commutator-free fourth order
scheme introduced in Ref. 37 to compute the time-
ordered (T ) exponentials, which allows us to use a rel-
atively coarse time step of �t = 0.5 without time dis-
cretization issues. Convergence in the time step size was
checked. The phononic Hilbert space is truncated us-
ing up to 20 phonons per site, and convergence checked.
Signatures of electron-phonon coupling in the electronic
single-particle spectrum are extracted by computing the
time-resolved electronic spectrum38 for site 1 and spin "
with spectral intensity

I(!, t0) = Re

ˆ
dt1 dt2 e

i!(t1�t2)st1,t2,⌧ (t0)

⇥
h
h (t2)|c†1,"T e

�i
´ t2
t1

H(t)dt
c1,"| (t1)i+

+ h (t1)|c1,"T e
�i
´ t1
t2

H(t)dt
c
†
1,"| (t2)i

i
, (4)

using the retarded Green’s function. The second and
third lines in Eq. (4) are the lesser and greater Green’s

functions, which contain information about the occupied
and unoccupied spectral intensities, respectively. We em-
ploy a Gaussian probe pulse shape function

st1,t2,�(t0) ⌘
1

2⇡�
e
� (t1�t0)2

2�2 e
� (t2�t0)2

2�2 (5)

centered around probe time t0 with probe duration �.
The duration of the probe pulse plays the role of the
time scale of an e↵ective degree of freedom that “sees”
signatures of e↵ective couplings out of equilibrium.
We set J = 0.15, ⌦ = 0.5, and g2 = �0.05 and prop-

agate the wavefunction from t = 0 to t = 50. For the
given parameters the renormalized phonon frequency is
⌦e↵ = 0.40. We note that this choice of negative g2 is not
mandatory, and the light-induced spectral weight trans-
fer discussed in the following can be observed for positive
g2 as well. However, the present case is particularly in-
teresting, as the phonon is softened by the coupling to
the electrons, and in principle strong driving could also
lead to a dynamical lattice instability in this case. The
probe duration is taken to be � = 8 with center time
t0 = 25.

III. RESULTS

A. Spectral weight transfer
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FIG. 1. Light-induced spectral weight transfer. Single-
particle spectrum for g2 = �0.05 and di↵erent field strengths
F , as indicated. Spectra are shifted vertically for clarity. The
dashed vertical line indicates the peak position of the bonding
state in the undriven case. For the lowest curve, the coherent
part of the spectrum that emerges from the main peaks at
weak driving field is indicated by the grey-shaded area.

Fig. 1 shows the spectral intensity during laser irradi-
ation with slightly o↵-resonant field frequency ! = 0.55
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and propagating forward in time,

| (t)i = T e
�i
´ t
0 H(t0)dt0 | 0i. (3)

In practice we use the commutator-free fourth order
scheme introduced in Ref. 37 to compute the time-
ordered (T ) exponentials, which allows us to use a rel-
atively coarse time step of �t = 0.5 without time dis-
cretization issues. Convergence in the time step size was
checked. The phononic Hilbert space is truncated us-
ing up to 20 phonons per site, and convergence checked.
Signatures of electron-phonon coupling in the electronic
single-particle spectrum are extracted by computing the
time-resolved electronic spectrum38 for site 1 and spin "
with spectral intensity

I(!, t0) = Re

ˆ
dt1 dt2 e

i!(t1�t2)st1,t2,⌧ (t0)

⇥
h
h (t2)|c†1,"T e

�i
´ t2
t1

H(t)dt
c1,"| (t1)i+

+ h (t1)|c1,"T e
�i
´ t1
t2

H(t)dt
c
†
1,"| (t2)i

i
, (4)

using the retarded Green’s function. The second and
third lines in Eq. (4) are the lesser and greater Green’s

functions, which contain information about the occupied
and unoccupied spectral intensities, respectively. We em-
ploy a Gaussian probe pulse shape function

st1,t2,�(t0) ⌘
1

2⇡�
e
� (t1�t0)2

2�2 e
� (t2�t0)2

2�2 (5)

centered around probe time t0 with probe duration �.
The duration of the probe pulse plays the role of the
time scale of an e↵ective degree of freedom that “sees”
signatures of e↵ective couplings out of equilibrium.
We set J = 0.15, ⌦ = 0.5, and g2 = �0.05 and prop-

agate the wavefunction from t = 0 to t = 50. For the
given parameters the renormalized phonon frequency is
⌦e↵ = 0.40. We note that this choice of negative g2 is not
mandatory, and the light-induced spectral weight trans-
fer discussed in the following can be observed for positive
g2 as well. However, the present case is particularly in-
teresting, as the phonon is softened by the coupling to
the electrons, and in principle strong driving could also
lead to a dynamical lattice instability in this case. The
probe duration is taken to be � = 8 with center time
t0 = 25.

III. RESULTS

A. Spectral weight transfer
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FIG. 1. Light-induced spectral weight transfer. Single-
particle spectrum for g2 = �0.05 and di↵erent field strengths
F , as indicated. Spectra are shifted vertically for clarity. The
dashed vertical line indicates the peak position of the bonding
state in the undriven case. For the lowest curve, the coherent
part of the spectrum that emerges from the main peaks at
weak driving field is indicated by the grey-shaded area.

Fig. 1 shows the spectral intensity during laser irradi-
ation with slightly o↵-resonant field frequency ! = 0.55

Response:	
time-resolved	
spectral	function	

PRB	95,	205111	(2017)	
2-site	toy	model,	solve	dynamics	exactly	

2

coherent state in Ref. 36,

Ĥ(t) = �J

X

�

(c†1,�c2,� + c
†
2,�c1,�)

+ g2

X

�,l=1,2

n̂l,�(bl + b
†
l
)2

+ ⌦
X

l=1,2

b
†
l
b
l
+ F (t)

X

l=1,2

(b
l
+ b

†
l
), (1)

where J is the electronic hopping matrix element be-

tween sites l = 1, 2, c(†)
l,�

annihilates (creates) an electron
of spin � =", # on site l with electron number operator
n̂l,� ⌘ c

†
l,�

c
l,�

, g2 is the nonlinear electron-phonon cou-
pling with bosonic phonon annihilation (creation) opera-

tors b(†)
l

on site l, ⌦ is the phonon frequency, and F (t) is
a driving field coupling to the phononic position (dipole)
operator x̂l ⌘ b

l
+ b

†
l
. In a generic lattice with inversion

symmetry, the phonon modes to which F (t) couples are
ungerade and thus infrared active, which does not allow
for a linear term and makes the g2 term the lowest order
allowed interaction term for infrared phonons. By multi-
plying out the (b

l
+b

†
l
)2 term, one finds that the nonlinear

interaction renormalizes the phonon frequency locally on
site l to ⌦e↵ ⌘ ⌦+2g2hn̂li, where hn̂li ⌘ hn̂l,"+ n̂l,#i = 1
is the average local electronic occupation with electron
number operator n̂l,� ⌘ c

†
l,�

c
l,�

. The system is driven
out of equilibrium by a time-dependent periodic field

F (t) = F sin(!t), (2)

with laser frequency !.
The time-evolved wave function of the system is com-

puted by starting in the ground state | 0i at time t = 0
and propagating forward in time,

| (t)i = T e
�i
´ t
0 H(t0)dt0 | 0i. (3)

In practice we use the commutator-free fourth order
scheme introduced in Ref. 37 to compute the time-
ordered (T ) exponentials, which allows us to use a rel-
atively coarse time step of �t = 0.5 without time dis-
cretization issues. Convergence in the time step size was
checked. The phononic Hilbert space is truncated us-
ing up to 20 phonons per site, and convergence checked.
Signatures of electron-phonon coupling in the electronic
single-particle spectrum are extracted by computing the
time-resolved electronic spectrum38 for site 1 and spin "
with spectral intensity

I(!, t0) = Re

ˆ
dt1 dt2 e

i!(t1�t2)st1,t2,⌧ (t0)

⇥
h
h (t2)|c†1,"T e

�i
´ t2
t1

H(t)dt
c1,"| (t1)i+

+ h (t1)|c1,"T e
�i
´ t1
t2

H(t)dt
c
†
1,"| (t2)i

i
, (4)

using the retarded Green’s function. The second and
third lines in Eq. (4) are the lesser and greater Green’s

functions, which contain information about the occupied
and unoccupied spectral intensities, respectively. We em-
ploy a Gaussian probe pulse shape function

st1,t2,�(t0) ⌘
1

2⇡�
e
� (t1�t0)2

2�2 e
� (t2�t0)2

2�2 (5)

centered around probe time t0 with probe duration �.
The duration of the probe pulse plays the role of the
time scale of an e↵ective degree of freedom that “sees”
signatures of e↵ective couplings out of equilibrium.
We set J = 0.15, ⌦ = 0.5, and g2 = �0.05 and prop-

agate the wavefunction from t = 0 to t = 50. For the
given parameters the renormalized phonon frequency is
⌦e↵ = 0.40. We note that this choice of negative g2 is not
mandatory, and the light-induced spectral weight trans-
fer discussed in the following can be observed for positive
g2 as well. However, the present case is particularly in-
teresting, as the phonon is softened by the coupling to
the electrons, and in principle strong driving could also
lead to a dynamical lattice instability in this case. The
probe duration is taken to be � = 8 with center time
t0 = 25.

III. RESULTS

A. Spectral weight transfer
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FIG. 1. Light-induced spectral weight transfer. Single-
particle spectrum for g2 = �0.05 and di↵erent field strengths
F , as indicated. Spectra are shifted vertically for clarity. The
dashed vertical line indicates the peak position of the bonding
state in the undriven case. For the lowest curve, the coherent
part of the spectrum that emerges from the main peaks at
weak driving field is indicated by the grey-shaded area.

Fig. 1 shows the spectral intensity during laser irradi-
ation with slightly o↵-resonant field frequency ! = 0.55

also	cf.	Kennes	et	al.,	Nat.	Physics	13,	479	(2017)	

density-dependent	
squeezing	of	phonon	xl 
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2

coherent state in Ref. 36,

Ĥ(t) = �J

X

�

(c†1,�c2,� + c
†
2,�c1,�)

+ g2

X

�,l=1,2

n̂l,�(bl + b
†
l
)2

+ ⌦
X

l=1,2

b
†
l
b
l
+ F (t)

X

l=1,2

(b
l
+ b

†
l
), (1)

where J is the electronic hopping matrix element be-

tween sites l = 1, 2, c(†)
l,�

annihilates (creates) an electron
of spin � =", # on site l with electron number operator
n̂l,� ⌘ c

†
l,�

c
l,�

, g2 is the nonlinear electron-phonon cou-
pling with bosonic phonon annihilation (creation) opera-

tors b(†)
l

on site l, ⌦ is the phonon frequency, and F (t) is
a driving field coupling to the phononic position (dipole)
operator x̂l ⌘ b

l
+ b

†
l
. In a generic lattice with inversion

symmetry, the phonon modes to which F (t) couples are
ungerade and thus infrared active, which does not allow
for a linear term and makes the g2 term the lowest order
allowed interaction term for infrared phonons. By multi-
plying out the (b

l
+b

†
l
)2 term, one finds that the nonlinear

interaction renormalizes the phonon frequency locally on
site l to ⌦e↵ ⌘ ⌦+2g2hn̂li, where hn̂li ⌘ hn̂l,"+ n̂l,#i = 1
is the average local electronic occupation with electron
number operator n̂l,� ⌘ c

†
l,�

c
l,�

. The system is driven
out of equilibrium by a time-dependent periodic field

F (t) = F sin(!t), (2)

with laser frequency !.
The time-evolved wave function of the system is com-

puted by starting in the ground state | 0i at time t = 0
and propagating forward in time,

| (t)i = T e
�i
´ t
0 H(t0)dt0 | 0i. (3)

In practice we use the commutator-free fourth order
scheme introduced in Ref. 37 to compute the time-
ordered (T ) exponentials, which allows us to use a rel-
atively coarse time step of �t = 0.5 without time dis-
cretization issues. Convergence in the time step size was
checked. The phononic Hilbert space is truncated us-
ing up to 20 phonons per site, and convergence checked.
Signatures of electron-phonon coupling in the electronic
single-particle spectrum are extracted by computing the
time-resolved electronic spectrum38 for site 1 and spin "
with spectral intensity

I(!, t0) = Re

ˆ
dt1 dt2 e

i!(t1�t2)st1,t2,⌧ (t0)

⇥
h
h (t2)|c†1,"T e

�i
´ t2
t1

H(t)dt
c1,"| (t1)i+

+ h (t1)|c1,"T e
�i
´ t1
t2

H(t)dt
c
†
1,"| (t2)i

i
, (4)

using the retarded Green’s function. The second and
third lines in Eq. (4) are the lesser and greater Green’s

functions, which contain information about the occupied
and unoccupied spectral intensities, respectively. We em-
ploy a Gaussian probe pulse shape function

st1,t2,�(t0) ⌘
1

2⇡�
e
� (t1�t0)2

2�2 e
� (t2�t0)2

2�2 (5)

centered around probe time t0 with probe duration �.
The duration of the probe pulse plays the role of the
time scale of an e↵ective degree of freedom that “sees”
signatures of e↵ective couplings out of equilibrium.
We set J = 0.15, ⌦ = 0.5, and g2 = �0.05 and prop-

agate the wavefunction from t = 0 to t = 50. For the
given parameters the renormalized phonon frequency is
⌦e↵ = 0.40. We note that this choice of negative g2 is not
mandatory, and the light-induced spectral weight trans-
fer discussed in the following can be observed for positive
g2 as well. However, the present case is particularly in-
teresting, as the phonon is softened by the coupling to
the electrons, and in principle strong driving could also
lead to a dynamical lattice instability in this case. The
probe duration is taken to be � = 8 with center time
t0 = 25.

III. RESULTS

A. Spectral weight transfer
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FIG. 1. Light-induced spectral weight transfer. Single-
particle spectrum for g2 = �0.05 and di↵erent field strengths
F , as indicated. Spectra are shifted vertically for clarity. The
dashed vertical line indicates the peak position of the bonding
state in the undriven case. For the lowest curve, the coherent
part of the spectrum that emerges from the main peaks at
weak driving field is indicated by the grey-shaded area.

Fig. 1 shows the spectral intensity during laser irradi-
ation with slightly o↵-resonant field frequency ! = 0.55

Reduced	coherence	peaks	
with	stronger	driving	
	
light-enhanced	el-ph	
coupling	

light-induced	polaron	formation	

PRB	95,	205111	(2017)	

2-phonon	shakeoff	



Max Planck Institute for the Structure and Dynamics of Matter 

Field dependence 
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Coherence	peak	weight	loss:	proportional	to	field	
intensity	F^2	consistent	with	experiments	

3

and field strengths F = 0.00 . . . 0.30 as indicated. In the
undriven case (top), there are dominant spectral lines
corresponding to the bonding and antibonding states,
with energy position of the bonding state indicated by
the vertical dashed line. One can also see faint two-
phonon sidepeaks roughly 2⌦e↵ = 0.80 below and above
the main peaks, respectively. As the field is turned on,
the main peaks broaden and lose spectral weight. At the
same time they also shift down in energy. This line shift
stems mainly from the local electronic energy contribu-
tion g2n̂lh2b†l bl + 1i < 0 (for g2 < 0), which increases in
magnitude approximately linearly with F , as more en-
ergy is pumped into the phonons when F increases. For
the strongest drivings, one clearly sees the emergence of
incoherent spectral weight and strongly reduced coherent
peaks, indicating dynamical polaron formation via spec-
tral weight transfer. By varying the driving frequency,
we have checked that the additional peaks in the inco-
herent part of the spectrum are not Floquet sidepeaks30

but really incoherent spectral weight related to electron-
phonon coupling. We also note that spectral redistri-
bution in pump-probe experiments was investigated in
Refs. 39 and 40 for electronically driven systems. In
stark contrast to the present work, it was found that elec-
tronically driven systems usually look “less correlated”
rather than “more correlated” compared to thermal equi-
librium.

B. Field scaling
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FIG. 2. Field intensity scaling. Spectral weight loss in
the coherent peaks, extracted by fitting a sum of Gaussians
to the corresponding peaks, as a function of field intensity
F 2 at fixed g2 = �0.05 and two di↵erent driving frequencies
! = 0.55 and ! = 0.50, respectively. The straight lines are
guides to the eye.

Having demonstrated that a driven nonlinearly cou-
pled phonon leads to coherence-incoherence phenomena

in the time-resolved electronic spectra, we now investi-
gate quantitative aspects of the laser-induced spectral
redistribution. To this end, we fit a pair of Gaussians
to the coherent part of the spectrum, as shown in one
example in Fig. 1 for the lowest curve. We subtract the
fitted spectral weight from the one at F = 0 and obtain
the spectral weight loss shown in Fig. 2 as a function of
the pump field intensity F

2 for two di↵erent driving fre-
quencies. This spectral weight loss is proportional to the
coherent quasiparticle weight (Z) that is renormalized
from its value Z0 at F = 0. Using that the loss Z0 � Z

is proportional to � � �0, the enhancement of e↵ective
dimensionless electron-phonon coupling �, a proportion-
ality that holds at weak coupling. Apparently Fig. 2
suggests

�� �0 / F
2
, (6)

where �0 is the dimensionless electron-phonon coupling
at zero field. Only at the strongest fields considered, we
observe a saturation e↵ect deviating from linear behavior,
which is expected since the maximal spectral weight loss
is bounded (for two electrons, 2Z 2 [0, 2]) and the linear
behavior of the spectral weight loss with e↵ective � only
holds at small �. Keeping in mind the uncertainty that
comes with the fitting of quasiparticle spectral weight,
the linear scaling at not too strong fields leads us to pre-
dict a linear scaling of light-enhanced electron-phonon
coupling with the driving field intensity or, equivalently,
the pump fluence in a pump-probe experiment. One can
also see in Fig. 2 that the e↵ect is stronger as the driv-
ing frequency ! moves closer to the resonance frequency
⌦e↵ = 0.40.

We now seek a minimal explanation for the observed
scaling behavior. To this end, we first notice that a
driven mode is expected to approach coherent state with
well-defined phonon coordinate exhibiting quasi-classical
forced oscillations hx̂l(t)i / F sin(!t), described by bo-
son coherent states. A mean-field decoupling yields
⌦e↵ = ⌦+2g2hn̂li and an interaction term g2n̂l(blhbl(t)i+
b
†
l
hb†

l
(t)i, with oscillating mean fields hb

l
(t)i and hb†

l
(t)i

such that hb
l
(t) + b

†
l
(t)i / F sin(!t). In the mean-field

picture, the interaction looks like a linear interaction with
a time-dependent interaction vertex that scales linearly in
g2, and via the coherent-phonon mean fields also linearly
in F .

In many-body perturbation theory, the lowest-order
time-nonlocal self-energy contribution is the first Born
approximation, or Migdal diagram,

⌃(t, t0) = ig(t)g⇤(t0)G(t, t0)D(t, t0), (7)

where we have dropped site and spin indices and in-
troduced the local electronic Green’s function G(t, t0) ⌘
�ihTCc(t)c†(t0)i and phonon Green’s function D(t, t0) ⌘
�ihTCx̂(t)x̂(t0)i on the three-branch Kadano↵-Baym-
Keldysh contour C with contour-time ordering TC . From
this Migdal diagram one can see that the above F

2

scaling is indeed explained via the F
2 scaling of the

Theory	 Data	by	E.	Pomarico,	
unpublished	

PRB	95,	205111	(2017)	
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Summary I 

•  enhanced	electron-phonon	coupling	in	
phononically	driven	bilayer	graphene		
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PRB	95,	024304	(2017)	

E.	Pomarico 						I.	Gierz	 	A.	Cavalleri	
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•  theoretical	proposal:	nonlinear	el-ph	coupling	
as	mechanism	behind	this	enhancement	

Exact solution of electron-phonon model system: 
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II Optical control of Majoranas 

•  prior	work:	optical	control	of	competing	orders	

– selective	laser	driving	switches	between	phases	

26	

SC	

CDW	



Max Planck Institute for the Structure and Dynamics of Matter 

II Optical control of Majoranas 

•  can	one	switch	the	chirality	of	a	2D	topological	
superconductor?	

	

27	

(c)

key	idea:	use	two-pulse	sequence	with	linearly	and	circularly	polarized	light	
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Model and Method 

28	

multiband	Bogoliubov-de-Gennes	Hamiltonians	for	doped	graphene	(d+id)	and	Sr2RuO4	(p+ip)	
coupling	to	fermionic	reservoir	to	dissipate	energy	
laser	driving	via	Peierls	substitution	
	
	
Keldysh	equations	of	motion	for	Nambu	Green‘s	functions:	
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Optical control of Majoranas 

29	

A B C D E A B C
D
E

(a)

(b)

(c) (f)(d)

(e)

two-pulse	sequence		
reverses	d+id	state	

in	graphene	

time-resolved	
spectroscopy	tracks	
chirality	reversal	
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Summary II 

30	

•  All-optical	control	of	chiral	Majorana	modes	
•  towards	arbitrarily	programmable	quantum	computer?	

M.	Claassen 	D.	Kennes	

M.	Claassen	et	al.,	arXiv:1810.06536,	
submitted	to	Nat.	Phys.	
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III Cavity materials 

•  can	one	use	enhanced	vacuum	fluctuations	to	
change	materials	properties?	

	

31	

2D material (FeSe)

dielectric substrate (SrTiO3)

cavity mirror

cavity mirror
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Cavity materials 

32	

BCS	superconductors:	phonon-mediated	superconductivity	
Ginzburg,	Phys.	Lett.	13,	101	(1964):	exciton-mediated	superconductivity?	
Ruvalds,	Phys.	Rev.	B	35,	8869(R)	(1987):	plasmon-mediated	superconductivity?	

Hagenmüller	et	al.,	1801.09876	

1804.07142	
1802.09437	

1804.08534	

1805.01482	

1806.06752	

1807.06601	
1810.02672	
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monolayer FeSe/STO 

33	

monolayer	FeSe/STO:	Tc	>	65	K	
bulk	FeSe:	Tc	=	9	K	

Huang	and	Hoffman,	Annu.	Rev.	CMP	8,	311	(2017)	
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monolayer FeSe/STO: ARPES 

34	

Lee	et	al.,	Nature	515,	245	(2014)			 Rademaker	et	al.,	New	J.	Phys.	18,	022001	(2016)				

replica	bands:	forward	(small-q)	
electron-phonon	scattering	

experiment	 theory	
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monolayer FeSe/STO: interfacial phonon 

35	
Huang	and	Hoffman,	Annu.	Rev.	CMP	8,	311	(2017)	

Lee	et	al.,	Nature	515,	245	(2014)			bare	el-phonon	vertex	
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Cavity engineering 
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•  idea:	use	phonon	polaritons	to	enhance	electron-
phonon	coupling	

	

Huang	and	Hoffman,	Annu.	Rev.	CMP	8,	311	(2017)	

cavity	photon	
E	field	
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Model and Method 
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Mass	enhancement:	

electrons	 polaritons	el-polariton	coupling	

G-self-consistent	Migdal-Eliashberg	diagram	

bare	el-phonon	vertex	
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Cavity materials: Phonon polaritons 
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Superconductivity 
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T	(K)	

suppressed	superconductivity	despite	enhanced	el-ph	coupling	

vs.	
forward	scattering	

q-independent	scattering	
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Summary III 

40	

•  cavity	leads	to	enhanced	electron-phonon	coupling	
•  can	one	also	enhance	superconductivity?	

M.	A.	Sentef,	M.	Ruggenthaler,	A.	Rubio,	arXiv:1802.09437	
(to	appear	in	Science	Adv.)		

2D material (FeSe)

dielectric substrate (SrTiO3)

cavity mirror

cavity mirror
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Summary 

Ultrafast	laser	engineering	of	
•  band	structure,	topology	(Floquet)	
	
•  electron-phonon	coupling	
	

•  Hubbard	U	(strong	subresonant	
excitations	in	correlated	insulators)	

	
•  ordered	phases	

41	

Nature	Commun.	6,	7047	(2015)	
Nature	Commun.	8,	13940	(2017)	
arXiv:1803.07447	
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coherent state in Ref. 36,

Ĥ(t) = �J
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X

l=1,2
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l
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†
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), (1)

where J is the electronic hopping matrix element be-

tween sites l = 1, 2, c(†)
l,�

annihilates (creates) an electron
of spin � =", # on site l with electron number operator
n̂l,� ⌘ c

†
l,�

c
l,�

, g2 is the nonlinear electron-phonon cou-
pling with bosonic phonon annihilation (creation) opera-

tors b(†)
l

on site l, ⌦ is the phonon frequency, and F (t) is
a driving field coupling to the phononic position (dipole)
operator x̂l ⌘ b

l
+ b

†
l
. In a generic lattice with inversion

symmetry, the phonon modes to which F (t) couples are
ungerade and thus infrared active, which does not allow
for a linear term and makes the g2 term the lowest order
allowed interaction term for infrared phonons. By multi-
plying out the (b

l
+b

†
l
)2 term, one finds that the nonlinear

interaction renormalizes the phonon frequency locally on
site l to ⌦e↵ ⌘ ⌦+2g2hn̂li, where hn̂li ⌘ hn̂l,"+ n̂l,#i = 1
is the average local electronic occupation with electron
number operator n̂l,� ⌘ c

†
l,�

c
l,�

. The system is driven
out of equilibrium by a time-dependent periodic field

F (t) = F sin(!t), (2)

with laser frequency !.
The time-evolved wave function of the system is com-

puted by starting in the ground state | 0i at time t = 0
and propagating forward in time,

| (t)i = T e
�i
´ t
0 H(t0)dt0 | 0i. (3)

In practice we use the commutator-free fourth order
scheme introduced in Ref. 37 to compute the time-
ordered (T ) exponentials, which allows us to use a rel-
atively coarse time step of �t = 0.5 without time dis-
cretization issues. Convergence in the time step size was
checked. The phononic Hilbert space is truncated us-
ing up to 20 phonons per site, and convergence checked.
Signatures of electron-phonon coupling in the electronic
single-particle spectrum are extracted by computing the
time-resolved electronic spectrum38 for site 1 and spin "
with spectral intensity

I(!, t0) = Re

ˆ
dt1 dt2 e

i!(t1�t2)st1,t2,⌧ (t0)

⇥
h
h (t2)|c†1,"T e

�i
´ t2
t1

H(t)dt
c1,"| (t1)i+

+ h (t1)|c1,"T e
�i
´ t1
t2

H(t)dt
c
†
1,"| (t2)i

i
, (4)

using the retarded Green’s function. The second and
third lines in Eq. (4) are the lesser and greater Green’s

functions, which contain information about the occupied
and unoccupied spectral intensities, respectively. We em-
ploy a Gaussian probe pulse shape function

st1,t2,�(t0) ⌘
1

2⇡�
e
� (t1�t0)2

2�2 e
� (t2�t0)2

2�2 (5)

centered around probe time t0 with probe duration �.
The duration of the probe pulse plays the role of the
time scale of an e↵ective degree of freedom that “sees”
signatures of e↵ective couplings out of equilibrium.
We set J = 0.15, ⌦ = 0.5, and g2 = �0.05 and prop-

agate the wavefunction from t = 0 to t = 50. For the
given parameters the renormalized phonon frequency is
⌦e↵ = 0.40. We note that this choice of negative g2 is not
mandatory, and the light-induced spectral weight trans-
fer discussed in the following can be observed for positive
g2 as well. However, the present case is particularly in-
teresting, as the phonon is softened by the coupling to
the electrons, and in principle strong driving could also
lead to a dynamical lattice instability in this case. The
probe duration is taken to be � = 8 with center time
t0 = 25.

III. RESULTS

A. Spectral weight transfer
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FIG. 1. Light-induced spectral weight transfer. Single-
particle spectrum for g2 = �0.05 and di↵erent field strengths
F , as indicated. Spectra are shifted vertically for clarity. The
dashed vertical line indicates the peak position of the bonding
state in the undriven case. For the lowest curve, the coherent
part of the spectrum that emerges from the main peaks at
weak driving field is indicated by the grey-shaded area.

Fig. 1 shows the spectral intensity during laser irradi-
ation with slightly o↵-resonant field frequency ! = 0.55
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Outlook: Group projects 
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R.	Tuovinen	(postdoc): 	nonequilibrium	Green‘s	functions	(GKBA)	for	time-resolved	
	 	 	transport	and	excitonic	condensates	
	 	 	(JCTC	14,	2495	(2018);	arXiv:1808.00712)	

	
G.	Topp	(PhD	student): 	modeling	time-resolved	spectroscopy,	electron-lattice	dynamics	

	 	 	(arXiv:1803.07447,	Nature	Comm.)	
	
S.	Ramirez	(PhD	student) 	light-induced	Majoranas	
	
M.	Kalthoff	(PhD	student) 	time-dependent	matrix	product	states	(t-DMRG)	for 	

	 	 	Floquet	engineering	of	correlated	systems	(w/	D.	Kennes,	FU	Berlin)	
	
D.	Hofmann	(master	student)	topological	exciton	polaritons	(master),	machine	learning	for	

	 	 	time-dependent	variational	wave	functions	(w/	G.	Carleo,	CCQ	NYC)	
	
X.	Wang	(student,	Tsinghua) 	Green‘s	functions	for	cavity	2D	materials	with	focus	on	topology	
	
M.	Puviani	(PhD	st.,	Modena)	quantum	nonlinear	phononics,	ultrafast	melting	of	 	

	 	 	ferrielectric	charge-density	wave	(arXiv:1806.08187,	PRB) 		
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