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electrons	in	solids	

by Koichiro Tanaka (Kyoto university)	

Floquet	state	(photo-dressed	state)	

Artistic view of Floquet states 

•  Topological	band	theory	
•  Floquet	states	
•  Graphene	
•  Na3Bi	
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Global	Change	without	Local	Change	illustrates	Berry’s	Phase	
M.	V.	Berry,	Proc.	R.	Soc.	A	392,	45	(1984)	
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Topological	band	theory	of	solids	

C. Kane, “Topological 
band theory and the Z2 
invariant”, Chapter 1 in 
“Topological Insulators”, 

Elsevier (2013)	

Berry	connecYon	

Berry	phase	J. Phys.: Condens. Matter 24 (2012) 213202 Topical Review

Figure 3. Left: conical intersection of energy surfaces. Right: direction of the monopole field ⌦+(k).

For the Kramers doublet the Berry curvature must always be
an su(2) matrix even in the case of a u(2) connection because
a gauge transformation induces a unitary transformation
of the curvature which does not alter the trace. Indeed,
TI ⌦n""(k) = �⌦n""(k) = ⌦n##(k), which proves that the
trace is equal to zero. Therefore, in contrast to the spinless
case, discussed in the next section, the Berry curvature may
be nontrivial even in nonmagnetic materials with inversion
symmetry.

Despite the Berry curvature being gauge covariant, we
may derive several observables from it. As we have seen,
the trace of the Berry curvature is gauge invariant. In
the multiband formulation of the semiclassical theory, the
expectation value of the curvature matrix with respect to the
spinor amplitudes enters the equations of motion [4, 5]. In the

context of the spin Hall effect one is interested in Tr( ¯̄S↵ ¯̄��
),

where ¯̄S↵
is the ↵th component of the vector-valued su(2) spin

matrix (cf section 2.4.2).

1.4. Symmetry, topology, codimension and the Dirac
monopole

It is expedient to exploit symmetries of the Hamiltonian for
the evaluation of the Berry curvature. From equations (20)
and (21) we may easily determine the behavior of ⌦n(k)

under symmetry operations. In crystals with a center of
inversion, the corresponding symmetry operation leaves Enk
invariant while r, ṙ, k, and k̇ change sign, and hence ⌦n(k) =
⌦n(�k). On the other hand, when time-reversal symmetry is
present, Enk, r, and k̇ remain unchanged while ṙ and k are
inverted, which leads to an antisymmetric Berry curvature
⌦n(k) = �⌦n(�k). Thus, if time-reversal and inversion
symmetry are present simultaneously the Berry curvature
vanishes identically [7]. This is true for spinless particles
only. Taking into account spin, we have to acknowledge the
presence of a twofold degeneracy of all bands throughout the
Brillouin zone [8, 9], the Kramers doublet, discussed in the
previous section.

As was mentioned already in section 1.2.2, the Berry
curvature of a band arises due to the attempt of a single-band
description; e.g., in the semiclassical theory it keeps the

information about the influence of other adjacent bands.
If a band is well separated from all other bands by an
energy scale large compared to one set by the time scale of
the adiabatic evolution, the influence of the other bands is
negligible. In contrast, degeneracies of energy bands deserve
special attention, since the conventional adiabatic theorem
fails in this case. Special attention has been paid to point-like
degeneracies, where the intersection of two energy bands is
shaped like a double cone or a diabolo. These degeneracies
are called diabolical points [10]. A typical one, studied within
a tight-binding model in [11], is shown in figure 3.

In general, a Hermitian Hamiltonian Ĥ(k) with three
parameters kx, ky, kz has degeneracies (band crossings) at
points k⇤. Taking k⇤ as the origin and assuming that
Ĥ(k) depends linearly on the k measured from k⇤, a generic
example for two bands crossing can be constructed as follows.

At k = k⇤ there are two orthogonal states |ai and |bi
whose energies are the same, Ea = Eb = 0, which we take
to be the energy zero. In the vicinity of the point k⇤ we can
express the eigenstates in terms of the two states

|un(k)i = can(k) |ai + cbn(k) |bi (29)

where n = {+, �} and the coefficients can(k) and cbn(k) are
determined by the eigenvalue problem

Ĥ(k) |un(k)i = Enk |un(k)i . (30)

Using the expansion of equation (29), little is lost in generality
by taking Ĥ(k) in the representation of the two states |ai and
|bi to be of the form [3]

H(k) =
 

kz kx � iky

kx + iky �kz

!

, (31)

and hence the eigenvalue equation can be written as
 

kz kx � iky

kx + iky �kz

! 
can(k)

cbn(k)

!

= Enk

 
can(k)

cbn(k)

!

. (32)

The solution of this eigenvalue problem is

E±k = ±
q

k2
z + k2

x + k2
y = ± |k| = ±k (33)

5

F(k)	

n	=	Chern	number	=	#	Dirac	monopoles	

Berry	phase	is	gauge-invariant	and	can	be	measured!	
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The Insulating State

The Integer Quantum Hall State

IQHE with zero net magnetic field
Graphene with a  periodic magnetic field B(r) (Haldane PRL 1988)

Band structure

B(r) = 0
Zero gap, 
Dirac point

B(r) ≠ 0
Energy gap
sxy =  e2/h

Eg

k

Eg ~ 1 eV

e.g.  Silicon

g cE Z E
2D Cyclotron Motion, 
Landau Levels

sxy =  e2/h

+ - + - + - +

+ - + - +

+ - + - + - +

Integer	Quantum	Hall	Effect	in	zero	net	magneYc	field	
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QuanYzed	Berry	phase	=	sign(mK)	π
	
+/-	½	Dirac	monopole		
	
Chern	number	C	=	sum	of	Dirac	monopoles	



Max Planck Institute for the Structure and Dynamics of Matter 

Topological states of matter 

7	

H(K 0 + q) =

✓
m

K

0 q
x

� iq
y

q
x

+ iq
y

�m
K

0

◆
(1)

H(K + q) =

✓
m

K

q
x

+ iq
y

q
x

� iq
y

�m
K

◆
(2)

H(K 0 + q) =

✓
m

K

0 q
x

� iq
y

q
x

+ iq
y

�m
K

0

◆
(1)

H(K + q) =

✓
m

K

q
x

+ iq
y

q
x

� iq
y

�m
K

◆
(2)

K vs. K’: opposite winding of in-plane pseudospin
mK = mK’
trivial insulator

mK = - mK’
nontrivial insulator
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Haldane model (PRL 61, 2015 (1988))

Local	flux	φ
Staggered	field	m	

FicYYous	fields!	
breaks
time-reversal

br
ea

ks
 in

v

Graphene + circularly polarized light
(breaks time-reversal)

?
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time periodic system	

 ~ absorption of m “photons”	

ε:  Floquet quasi-energy	

Floquet Hamiltonian  (static eigenvalue problem)	

“Floquet mapping”	
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Dirac fermion + circularly polarized laser 
  

1-photon absorbed state 

0-photon absorbed state 

-1-photon absorbed state 

10	

coupling to AC field	
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1-photon absorbed state 

0-photon absorbed state 

-1-photon absorbed state 
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Oka and Aoki,
PRB 79, 081406 (2009)	

Mass	term	=	energy	gap	=	
syntheYc	field	stemming	from	a	
real	Yme-dependent	field	A(t)	
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Floquet + topology in ac driven systems:
Oka&Aoki PRB 79, 081406 (09), Kitagawa et al PRB 82, 235114 (10), Kitagawa et al PRB 84, 235108 (11), 
Lindner et al Nature Phys 7, 490 (11), Gu et al PRL 107, 216601 (11), Calvo et al APL 98, 232103 (11), Dora et al 
PRL 108, 056602 (12), Suarez Morell et al PRB 86, 125449 (12), Rudner et al PRX 3, 031005 (13), Iadecola et al, 
PRL 110, 176603 (13), Gomez-Leon&Platero PRL 110, 200403 (13), Fregoso et al PRB 88, 155129 (13), Perez-
Piskunow et al, arXiv:1308.4362, Grushin et al, arXiv:1309.3571 … INCOMPLETE

ω
E, polarization

gaps? Wang et al.,
Science 342, 453 (2013)	

Bi2Se3	

Our work: •  continuous field       pulsed field (100 fs)
•  Floquet states in pump-probe ARPESNature	Comm.	6,	

7047	(2015)	

Gedik	lab	@	MIT	
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(a) Amax = 0.10 (lin.)
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(d) Amax = 0.315

•  Circularly polarized laser induces energy gap
•  Good agreement with Floquet band structure

Time-resolved ARPES during 1.5 eV laser pulse 
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•  Pseudospin changes sign between K and K’
•  Light-controlled Berry phase
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•  3D	Dirac	semimetal		
•  Dirac	point	with	spin-orbit	=	2	degenerate	Weyl	points	of	

opposite	chirality	

Z.	K.	Liu	et	al.,	Science	
343,	864	(2014)	
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•  Proposed	engineering	of	topological	states	via	ficYYous	fields	
h1,	h2	(analogue	of	Haldane	model)	

Z.	Wang	et	al.,	PRB	
85,	195320	(2012)	

+	2x	

FicYYous	fields:	
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•  QuesYon:	Can	these	ficYYous	fields	be	generated	with	lasers?		
•  Preliminary	result	(ab	iniYo	TDDFT):	yes	

Project	with	H.	Hübener,	A.	F.	
Kemper,	U.	de	Giovannini,	A.	Rubio	

Splitting of two 3D Dirac 
points into two pairs of
Weyl points
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•  Floquet	states:	engineering	of	ficYYous	gauge	
fields	with	real	laser	fields	

•  laser	control	of	topological	states	of	maner	
•  examples:	2D	graphene,	3D	Dirac	semimetal	

THANK	YOU!	


