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•  stroboscopic	inves>ga>ons	of	dynamic	phenomena	

Muybridge 1887
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•  stroboscopic	inves>ga>ons	of	dynamic	phenomena	

TbTe3	CDW	metal	

J.	Sobota	et	al.,	PRL	108,	117403	(2012)	
F.	SchmiE	et	al.,	Science	321,	1649	(2008)	
Image	courtesy:	J.	Sobota	/	F.	SchmiE	
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Understanding	ordered	phases	
§  Collec>ve	oscilla>ons	
§  Compe>ng	order	parameters	

Understanding	the	nature	of	quasiparScles	
§  Relaxa>on	dynamics	

PRL	111,	077401	(2013)	
PRX	3,	041033	(2013)	
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PRB	90,	075126	(2014)	
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CreaSng	new	states	of	maEer	
§  Photo-induced	phase	transi>ons	
§  Floquet	topological	states	

Nature	Commun.	6,	7047	(2015)	
arXiv:1604.03399,	Nature	Comm.	
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•  Part	I:	Driven	superconductors	
–  Higgs	amplitude	mode	oscilla>ons	for	op>cal	pumping	(1.5	eV	laser)	
	
–  light-enhanced	superconduc>vity	via	hopping	control	

PRB	92,	224517	(2015)	

PRB	93,	144506	(2016)	

•  Part	II:	Laser-controlled	compe>ng	orders	

•  Part	III:	Light-enhanced	electron-phonon	coupling	

arXiv:1611.04307	

arXiv:1607.02314	
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…and	about	its	history	

ε(k)→ε(k,t)

Include the effects of driving 
field through time-
dependent electronic 
dispersion

System	knows	about	its	thermal	ini>al	
state…	

2

been successfully used to describe the melting of a charge
density-wave state24 and the time evolution of electrons
in correlated metals25,26 via tr-ARPES and tr-reflectivity.
We connect the microscopic interaction parameters of
the electron-phonon interaction directly to the observed
timescales, and discuss the extension of the results ob-
tained here to more general models.

II. METHOD

We describe the time-evolution of the system via the
non-equilibrium Keldysh formalism. All Green’s func-
tions have two time arguments, where each time is lo-
cated on the Keldysh contour (see Fig. 1). The sys-
tems starts in equilibrium at a temperature T and time
t = tmin, and evolves until t = tfinal. The time-ordered,

t

min

t

min

� i�

t

max

FIG. 1: Keldysh contour used in the description of the double-
time Green’s functions and self-energies.

anti-time-ordered, lesser and greater Green’s functions
are formed by selecting t and t⇥ on appropriate parts of
the contour (see Refs. 1–3,7,8).

The driving fields are included directly into the propa-
gators via the Peierls substitution in the standard double-
time formalism, which leads to the bare non-equilibrium
Green’s function

G0
k(t, t

⇥) =i [nF (�(k))� ⇥c(t, t
⇥)]

⇥ exp

⌥
�i

� t

t0
dt̄ � (k�A(t̄))

�

where nF is the Fermi function at temperature T :
nF (⌅) = 1/(exp(⌅/T ) + 1), t and t⇥ lie on the Keldysh
contour, ⇥c is the contour-ordered Heaviside function,
�(k) is the single-particle dispersion, which we choose
to be a square lattice tight-binding model with nearest-
neighbor and next-nearest-neighbor hoppings Vnn = 0.25
eV and Vnnn = 0.075 eV, and a chemical potential
µ = �0.255 eV.

�(k) = �2Vnn (cos kx + cos ky) + 4Vnnn cos kx cos ky � µ

A(t) is the vector potential at time t, which is related
to the electric field via A(t) = �

´
E(t)dt. Here, we use

the convention that h̄ = c = e = 1, and we work in the
Hamiltonian gauge, i.e. the scalar potential is set to zero.
Energies and frequencies are measured in units of eV.

To illustrate the momentum-dependent quasiparticle
relaxation rates we introduce coupling of electrons to a

non-dispersive optical phonon with energy ⇥. As our
starting point, we use the Holstein model which couples
a band of electrons to a single species of optical phonon:

H =
 

k

�(k)c†kck +
 

q

⇥

⇧
b†qbq +

1

2

⌃

+
 

k,q,i

c†k+qck
⇤
bq + b†�q

⌅

We include the electron-phonon interactions in the
Migdal limit, which is appropriate for weak coupling.
Furthermore, since we are primarily interested in the re-
sponse of the electronic system, we will limit the discus-
sion to just the e⇤ects of the phonons on the electrons,
and will neglect the feedback of the electronic system on
the phonons.
For a non-dispersive optical phonon, the electronic self-

energy is

�(t, t⇥) = ig2
 

k

D0(t, t⇥)G0
k(t, t

⇥)

where g is the electron-phonon coupling strength. The
bare phonon Green’s function D0(t, t⇥) is

D0(t, t⇥) =� i [nB(⇥) + ⇥c(t, t
⇥)] exp (i⇥(t� t⇥))

� i [nB(⇥) + 1� ⇥c(t, t
⇥)] exp (�i⇥(t� t⇥))

where nB(⇥) is the Bose function at temperature T :
nB(⌅) = 1/(exp(⌅/T )� 1). In the following, we will use
various values of the electron-phonon coupling strength
g and the optical phonon frequency ⇥.
With the self-energy above, we solve the Dyson equa-

tion

Gk(t, t
⇥) = G0

k(t, t
⇥) +

�
dt1dt2G

0
k(t, t1)�(t1, t2)Gk(t2, t

⇥)

This can be done by casting the Dyson equation as
a matrix equation. However, for the case of electron-
phonon coupling, better numerical stability can be ob-
tained by expanding the integral through Langreth rules
and solving the equations of motion for the retarded, real-
imaginary, and lesser Green’s functions.4,5 This leads to
a set of Volterra integrodi⇤erential equations that can be
solved via standard numerical integration.6 We find that
the solution of the Dyson equation by integrating the
Volterra equations leads to more stable and inherently
causal algorithms. Some details about number of time
points go here.
The pulse that is of direct interest to pump-probe ex-

periments is, by nature, a propagating light pulse; this
implies an oscillating field without a zero-frequency com-
ponent. We model the pump via an oscillating vector po-
tential along the (11) direction with a Gaussian profile,
where we assume that the field is slowly varying spatially
and thus neglect the spatial dependence:

A(t) = (x̂+ ŷ)
Fmax

⌅p
sin(⌅pt) exp

�
� (t� t0)2

2⇤2

⇥

Gk(!) = G0
k(!) +G0

k(!)⌃(!)Gk(!)
self-energy Σ:
electron-electron scattering
electron-phonon scattering
...

Beyond	BCS	
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•  electrons	(2D	square	la`.)	+	spectrum	of	phonons	+	el-ph	coupling	(Holstein)	
•  Migdal-Eliashberg	(1st	Born)	+	phonon	heat	bath	approxima>on	

normal	
	
anomalous	

also see:
Murakami, Werner et al., PRB 93, 094509 (2016)

order	parameter	Δ,
condensate dynamics 

el-ph	single-par>cle	
sca`ering

2

Holstein-Hamiltonian. Our model contains both the re-
tarded pairing interaction mediated by phonons as well
as dissipation of heat into the lattice. The change in
the lattice distortion is modelled by a slow change of
the electronic hopping amplitude J

0

to a smaller value
J

f

. Due to this change the electronic density of states
close to the Fermi-surface is enhance, which results in
an increase equilibrium order parameter �

f

(see Fig. 1).
These equilibrium considerations lead one to expect that
for adiabatic changes of the hopping, the order param-
eter should increase, following the equilibrium phase di-
agram (Fig. 1(b)). In materials [15], typical time scales
for changes of the lattice through nonlinear phonon cou-
pling are fractions of a picosecond, which is a nonadia-
batic change in particular for the slow collective dynam-
ics of the superconducting condensate. Hence, it is an
important open question on which time scales the super-
conducting order parameter �(t) follows the change of
the electronic structure.

In this work, we show that both the slow condensate
dynamics as well as the fast redistribution of excitations
via el-ph scattering provide relevant time scales to the
nonequilibrium dynamics of light-enhanced superconduc-
tivity. At early times, the slow changes of the spectrum
are governed by the time scale set by the initial order
parameter �

0

in particular when one starts close to T

c,0

.
The fast redistribution of excitations due to el-ph scat-
tering becomes important for the thermalization process
at intermediate and long time scales.
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FIG. 2. Light-enhanced superconductivity. (a) Dynam-
ics during (grey shaded area) and after a ⌧ =100 fs ramp
for di↵erent initial equilibrium temperatures (T

c,0

⇡ 135
K). Solid (dashed) lines show the results of the el-ph (BCS)
model and the arrows indicate the final thermal equilibrium
values �

f

. (b) Order parameter change during the ramp,
�

ramp

� �
0

, relative to �
f

� �
0

(symbols). This change
scales almost linearly with the initial value �

0

(dashed line).
(c) Dependence of final steady state value on ramp duration
⌧ within BCS theory for di↵erent temperatures. Arrows show
the data points for 100 fs ramps corresponding to panel (a).
Dashed line indicates ⌧�

0

= ~.

We describe the electron-phonon dynamics using the

Holstein Hamiltonian (el-ph model)

H =
X

k�

✏(k, t)c†k�ck� +
X

q,�

⌦
�

b

†
q,�bq,�

�
X

q,�,�

g

�

c

†
k+q�ck�

⇣
bq,� + b

†
�q,�

⌘
(1)

with fermionic creation operators c

†
k� for dimension-

less momentum k = (k
x

, k

y

) and spin � = ", # on a
two-dimensional square lattice with dispersion ✏(k, t) =
�2J(t)(cos k

x

+ cos k
y

). The explicit time dependence
of the electronic hopping amplitude J(t) mimics a de-
formation of the ionic lattice induced via a nonlinear
coupling to an IR active optical phonon driven by the
THz light pulse [15]. We assume for t < ⌧ a linear
ramp J(t) = J

0

+ (J
f

� J

0

) t

⌧

and for t > ⌧ the con-
stant J(t) = J

f

with initial hopping amplitude J
0

= 0.25
eV, final hopping amplitude J

f

= 0.20 eV, and ramp
time ⌧ ⇡ 100 fs unless denoted otherwise. Throughout
this work, energies are measured in eV, with a conver-
sion to time scales measured in fs via ~ = 0.658 eV⇥fs.
The change of the hopping parameter by 20% is rather
large, but not out of reach for an experimental realization
[15]. In an experiment, the deformation of the lattice will
decay typically on the order of several picoseconds such
that we focus on the dynamics within this time-frame.
The electrons are coupled to di↵erent branches (�) of

phonons with bosonic creation operators b†q,� , energy ⌦
�

,
and electron-phonon coupling strength g

�

. We consider a
dominant optical phonon mode at ⌦

opt

= 0.1 eV, which
induces superconductivity, and a branch of acoustic low-
energy phonons. We use a reference set of electron-
phonon couplings, which we label “1.0 g

2” (see Supple-
ment), and for comparison a set with the same spectrum
but reduced coupling strengths, which we label “0.8 g

2”.
We solve this model in the Migdal-Eliashberg approxi-
mation [49, 50] with a local, self-consistent self-energy for
the electrons, and treat the phonons as an infinite heat
bath at thermal equilibrium. The e↵ective phonon spec-
tra weighted by el-ph coupling (Eliashberg functions) for
“1.0 g

2” and a parameter set without acoustic branch are
shown in the inset to Fig. 4(a). As discussed in the fol-
lowing, the acoustic branch is crucial for thermalization,
since it constitutes an e↵ective energy transfer channel
from the electrons to the ionic lattice.
The time evolution is obtained from the nonequilib-

rium Keldysh Green function formalism. The Green
functions are solutions of the Kadano↵-Baym-Gor’kov
equations, that are solved in integro-di↵erential form
on the Keldysh contour with the algorithm described
in Ref. [51]. Since we use an e↵ective mean-field ap-
proach, we can choose initial conditions that put the
system either in the normal or symmetry-broken state.
Here, we choose the superconducting solution as the
initial state and ignore the possible competing insta-
bility towards charge-density wave order. The super-

2

Holstein-Hamiltonian. Our model contains both the re-
tarded pairing interaction mediated by phonons as well
as dissipation of heat into the lattice. The change in
the lattice distortion is modelled by a slow change of
the electronic hopping amplitude J

0

to a smaller value
J

f

. Due to this change the electronic density of states
close to the Fermi-surface is enhance, which results in
an increase equilibrium order parameter �

f

(see Fig. 1).
These equilibrium considerations lead one to expect that
for adiabatic changes of the hopping, the order param-
eter should increase, following the equilibrium phase di-
agram (Fig. 1(b)). In materials [15], typical time scales
for changes of the lattice through nonlinear phonon cou-
pling are fractions of a picosecond, which is a nonadia-
batic change in particular for the slow collective dynam-
ics of the superconducting condensate. Hence, it is an
important open question on which time scales the super-
conducting order parameter �(t) follows the change of
the electronic structure.

In this work, we show that both the slow condensate
dynamics as well as the fast redistribution of excitations
via el-ph scattering provide relevant time scales to the
nonequilibrium dynamics of light-enhanced superconduc-
tivity. At early times, the slow changes of the spectrum
are governed by the time scale set by the initial order
parameter �

0

in particular when one starts close to T

c,0

.
The fast redistribution of excitations due to el-ph scat-
tering becomes important for the thermalization process
at intermediate and long time scales.

0

0.01

0.02

0 100 200 300

∆
 [
e
V

]

time [fs]

(a) 96 K

122 K

128 K

130 K

133 K

136 K
0

1

0 0.01 0.02

(∆
ra

m
p
 −

 ∆
0
)/

(∆
f −

 ∆
0
)

∆0 [eV]

1.0 g2

0.8 g2

(b)
0.96

1 (c)

0 K

0.72

0.76

96 K

0.44

0.48

(∆
st

e
a
d
y 

−
 ∆

0
)/

(∆
f −

 ∆
0
)

122 K

0.32
0.36
0.4

0 1 2 3

τ ∆0 [−h]

128 K

FIG. 2. Light-enhanced superconductivity. (a) Dynam-
ics during (grey shaded area) and after a ⌧ =100 fs ramp
for di↵erent initial equilibrium temperatures (T

c,0

⇡ 135
K). Solid (dashed) lines show the results of the el-ph (BCS)
model and the arrows indicate the final thermal equilibrium
values �

f

. (b) Order parameter change during the ramp,
�

ramp

� �
0

, relative to �
f

� �
0

(symbols). This change
scales almost linearly with the initial value �

0

(dashed line).
(c) Dependence of final steady state value on ramp duration
⌧ within BCS theory for di↵erent temperatures. Arrows show
the data points for 100 fs ramps corresponding to panel (a).
Dashed line indicates ⌧�

0

= ~.
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✏(k, t)c†k�ck� +
X

q,�

⌦
�

b

†
q,�bq,�

�
X

q,�,�

g

�

c

†
k+q�ck�

⇣
bq,� + b

†
�q,�

⌘
(1)

with fermionic creation operators c

†
k� for dimension-

less momentum k = (k
x

, k

y

) and spin � = ", # on a
two-dimensional square lattice with dispersion ✏(k, t) =
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). The explicit time dependence
of the electronic hopping amplitude J(t) mimics a de-
formation of the ionic lattice induced via a nonlinear
coupling to an IR active optical phonon driven by the
THz light pulse [15]. We assume for t < ⌧ a linear
ramp J(t) = J
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+ (J
f

� J
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⌧

and for t > ⌧ the con-
stant J(t) = J

f

with initial hopping amplitude J
0

= 0.25
eV, final hopping amplitude J

f

= 0.20 eV, and ramp
time ⌧ ⇡ 100 fs unless denoted otherwise. Throughout
this work, energies are measured in eV, with a conver-
sion to time scales measured in fs via ~ = 0.658 eV⇥fs.
The change of the hopping parameter by 20% is rather
large, but not out of reach for an experimental realization
[15]. In an experiment, the deformation of the lattice will
decay typically on the order of several picoseconds such
that we focus on the dynamics within this time-frame.
The electrons are coupled to di↵erent branches (�) of

phonons with bosonic creation operators b†q,� , energy ⌦
�

,
and electron-phonon coupling strength g

�

. We consider a
dominant optical phonon mode at ⌦

opt

= 0.1 eV, which
induces superconductivity, and a branch of acoustic low-
energy phonons. We use a reference set of electron-
phonon couplings, which we label “1.0 g

2” (see Supple-
ment), and for comparison a set with the same spectrum
but reduced coupling strengths, which we label “0.8 g

2”.
We solve this model in the Migdal-Eliashberg approxi-
mation [49, 50] with a local, self-consistent self-energy for
the electrons, and treat the phonons as an infinite heat
bath at thermal equilibrium. The e↵ective phonon spec-
tra weighted by el-ph coupling (Eliashberg functions) for
“1.0 g

2” and a parameter set without acoustic branch are
shown in the inset to Fig. 4(a). As discussed in the fol-
lowing, the acoustic branch is crucial for thermalization,
since it constitutes an e↵ective energy transfer channel
from the electrons to the ionic lattice.
The time evolution is obtained from the nonequilib-

rium Keldysh Green function formalism. The Green
functions are solutions of the Kadano↵-Baym-Gor’kov
equations, that are solved in integro-di↵erential form
on the Keldysh contour with the algorithm described
in Ref. [51]. Since we use an e↵ective mean-field ap-
proach, we can choose initial conditions that put the
system either in the normal or symmetry-broken state.
Here, we choose the superconducting solution as the
initial state and ignore the possible competing insta-
bility towards charge-density wave order. The super-

superconductor:	
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Amplitude	(“Higgs”)	mode	oscilla>ons	predicted	in	>me-resolved	ARPES	
Reduced	order	parameter	sets	oscilla>on	frequency	
Dissipa>on:	Exci>ng	Higgs	even	far	away	from	gap	resonance	

OpScs:	Matsunaga	et	al.,	Phys.	Rev.	LeE.	111,	057002	(2013),	Science	2014	[10.1126/science.1254697]		
Theory:	Volkov	&	Kogan	1974,	Barankov	PRL	2004,	Yuzbashyan	PRL	2006,	Tsuji	PRL	2013,	Murakami	PRB	2016,	Schnyder	et	
al,	PRB	2011,	Krull	et	al.,	PRB	2014	

PRB	92,	224517	
(2015)	
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How to enhance boson-mediated SC? 

•  BCS	theory	–	plain	vanilla	SC	
(weak	coupling)	

11	

� ⇡ 2~⌦c exp(�1/V0N(EF ))

•  effec>ve	a`rac>on	V0	~	g2/(ħ	Ω)		
•  e-boson	coupling	g	
•  boson	frequency	Ω
•  electronic	DOS	N(EF)	
	

Σ =

Ω

g	 g	
Migdal-Eliashberg	theory	
boson-mediated	pairing	

N(EF)	
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How to enhance boson-mediated SC? 

•  nonlinear	phononics	Q2Q:	resonant	excita>on	
of	vibra>onal	modes	–	effects?	

1.  tune	model	parameters		
•  e-boson	coupling	g	
•  boson	frequency	Ω
•  electronic	DOS	N(EF)	

2.  dynamical	effect	
•  effec>ve	Hamiltonian	(e.g.,	Floquet)	

12	

α2F	–	Eliashberg	func>on	}	
Gedankenexperiment	(what	if?)	

also	see:	Knap	et	al.,	arXiv:1511.07874,	
Patel	&	Eberlein	PRB	93,	195139	(2016),	Komnik	&	Thorwart	arXiv:1607.03858	
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Mode-Selective Control of the Crystal Lattice
M. Först,*,†,‡ R. Mankowsky,†,‡ and A. Cavalleri*,†,‡,§

†Max-Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany
‡Center for Free Electron Laser Science, Hamburg 22761, Germany
§Department of Physics, Oxford University, Clarendon Laboratory, Oxford OX1 3PU, U.K.

CONSPECTUS: Driving phase changes by selective optical excitation of specific
vibrational modes in molecular and condensed phase systems has long been a
grand goal for laser science. However, phase control has to date primarily been
achieved by using coherent light fields generated by femtosecond pulsed lasers at
near-infrared or visible wavelengths.
This field is now being advanced by progress in generating intense femtosecond
pulses in the mid-infrared, which can be tuned into resonance with infrared-active
crystal lattice modes of a solid. Selective vibrational excitation is particularly
interesting in complex oxides with strong electronic correlations, where even
subtle modulations of the crystallographic structure can lead to colossal changes
of the electronic and magnetic properties.
In this Account, we summarize recent efforts to control the collective phase state
in solids through mode-selective lattice excitation. The key aspect of the
underlying physics is the nonlinear coupling of the resonantly driven phonon to other (Raman-active) modes due to lattice
anharmonicities, theoretically discussed as ionic Raman scattering in the 1970s. Such nonlinear phononic excitation leads to
rectification of a directly excited infrared-active mode and to a net displacement of the crystal along the coordinate of all
anharmonically coupled modes. We present the theoretical basis and the experimental demonstration of this phenomenon, using
femtosecond optical spectroscopy and ultrafast X-ray diffraction at a free electron laser.
The observed nonlinear lattice dynamics is shown to drive electronic and magnetic phase transitions in many complex oxides,
including insulator−metal transitions, charge/orbital order melting and magnetic switching in manganites. Furthermore, we show
that the selective vibrational excitation can drive high-TC cuprates into a transient structure with enhanced superconductivity.
The combination of nonlinear phononics with ultrafast crystallography at X-ray free electron lasers may provide new design rules
for the development of materials that exhibit these exotic behaviors also at equilibrium.

■ INTRODUCTION
Coherent optical excitation of infrared-active lattice vibrations
in solids is emerging as a new tool to control the crystal
structure of solids directly and to drive phase transitions
dynamically. Particularly in correlated electronic systems, where
the phase state is determined by the interactions between
charges, orbitals, spins, and the crystal lattice,1 these optically
driven lattice distortions lead to colossal rearrangements in the
electronic and magnetic properties, opening up many
opportunities for applications in ultrafast data processing and
storage. Especially attractive is the ability to switch the
functionality of these solids at high speeds, while minimizing
heating and dissipation.
These advances are related to previous work aimed at driving

chemical reactions by the coherent control of specific molecular
vibrations,2,3 in what is often referred to as “bond selective
chemistry”. However, bond selective chemistry has been often
severely limited by the large atomic motions needed to break or
make chemical bonds. These dynamical distortions inevitably
lead to uncontrolled energy transfer to molecular and bath
modes, an effect typically referred to as internal vibrational
redistribution.4,5 Hence, the applicability of bond selective
control to chemical reactions has so far been limited.

Such limitations are far less important in the solid state. First,
due to cooperativity, the unit cell distortions that accompany a
phase transition are far smaller than the bond dilations and
bond breaking necessary for a chemical reaction. It is not
uncommon to observe enormous changes in the macroscopic
properties of solids for minute lattice distortions, sometimes of
only a few percent of the equilibrium lattice constant. This is
especially true for complex materials, in which electronic
correlations make the collective properties of the solid a highly
nonlinear function of many perturbations. Second, the internal
vibrational redistribution is far less pronounced in crystalline
solids, where translational invariance limits the density of states
of the lattice modes and introduces momentum-conservation
constraints for the decay of vibrational energy.
In this Account, we present some recent advances in this

area. We first discuss how anharmonic energy flow among
different modes is key to atomic structural control. We show
how cubic anharmonicities lead to net displacements of the
crystal lattice. We then summarize some recent experimental
demonstrations for this nonlinear phononics, which involve both

Received: October 24, 2014

Article

pubs.acs.org/accounts

© XXXX American Chemical Society A DOI: 10.1021/ar500391x
Acc. Chem. Res. XXXX, XXX, XXX−XXX

Classical lattice dynamics 

13	

„Nonlinear	phononics“	
M.	Först	et	al.,	Nature	Physics	7,	854	(2011)	
A.	Subedi,	A.	Cavalleri,	A.	Georges,	PRB	89,	220301R	(2014)	

THz	light	pulse	

LETTERS

PUBLISHED ONLINE: 7 AUGUST 2011 | DOI: 10.1038/NPHYS2055

Nonlinear phononics as an ultrafast route to
lattice control
M. Först1*, C. Manzoni1†, S. Kaiser1, Y. Tomioka2, Y. Tokura3, R. Merlin4 and A. Cavalleri1*
Two types of coupling between electromagnetic radiation and
a crystal lattice have so far been identified experimentally. The
first is the direct coupling of light to infrared-active vibrations
carrying an electric dipole. The second is indirect, involving
electron–phonon coupling and occurring through excitation of
the electronic system; stimulated Raman scattering1–3 is one
example. A third path, ionic Raman scattering (IRS; refs 4,5),
was proposed 40 years ago. It was posited that excitation
of an infrared-active phonon could serve as the intermediate
state for Raman scattering, a process that relies on lattice
anharmonicities rather than electron–phonon interactions6.
Here, we report an experimental demonstration of IRS using
femtosecond excitation and coherent detection of the lattice
response.We show how this mechanism is relevant to ultrafast
optical control in solids: a rectified phonon field can exert
a directional force onto the crystal, inducing an abrupt
displacement of the atoms from their equilibriumpositions. IRS
opens up a new direction for the optical control of solids in their
electronic ground state7–9, different fromcarrier excitation10–14.

Crystal lattices respond to mid-infrared radiation with oscilla-
tory ionic motions along the eigenvector of the resonantly excited
vibration. Let QIR be the normal coordinate, PIR the conjugate
momentum and �IR the frequency of the relevant infrared-active
mode, which we assume to be non-degenerate, and HIR =N (P2

IR +
�2

IRQ2
IR)/2 its associated lattice energy (N is the number of cells).

For pulses that are short compared with the many-picoseconds
decay time of zone-centre optical phonons15, one can ignore dis-
sipation, and the equation of motion is

Q̈IR +�2
IRQIR = e⇤E0p

M IR
sin(�IRt )F(t )

where e⇤ is the effective charge,MIR is the reducedmass of themode,
E0 is the amplitude of the electric field of the pulse and F is the pulse
envelope. At timesmuch longer than the pulse width

QIR(t )=
Z +1

�1
F(⌧ )d⌧

�
e⇤E0

�IR
p
M IR

cos(�IRt ) (1)

For ionic Raman scattering (IRS), the coupling of the infrared-
active mode to Raman-active modes is described by the Hamilto-
nianHA =�NAQ2

IRQRS, whereA is an anharmonic constant andQRS
is the coordinate of a Raman-active mode, of frequency �RS, which
is also taken to be non-degenerate. Thus, the equation of motion
for the Raman mode is

Q̈RS +�2
RSQRS =AQ2

IR (2)
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Ignoring phonon field depletion, it follows from equation (1) that
excitation of the infrared mode leads to a constant force on the
Raman mode which, for �IR � �RS, undergoes oscillations of
the form

QRS(t )=
A

2�2
RS

Z +1

�1
F(⌧ )d⌧

�2 (e⇤E0)2

MIR�
2
IR
(1�cos�RSt ) (3)

around a new equilibrium position. Hence, the coherent nonlinear
response of the lattice results in rectification of the infrared
vibrational field with the concomitant excitation of a lower-
frequency Raman-active mode.

We stress that equation (2) describes a fundamentally different
process from conventional stimulated Raman scattering16–18, for
which the driving term 4̂ in the equation of motion Q̈RS +
�2

RSQRS =
⌦
4̂

↵
depends only on electron variables (see also

Supplementary Information).
To date, phonon nonlinearities have been evidenced only

by resonantly enhanced second harmonic generation19,20 or by
transient changes in the frequency of coherently excited Raman
modes in certain semimetals at high photoexcitation21. However,
the experimental demonstration of IRS,which offers significant new
opportunities for materials control, is still lacking.

Ultrafast optical experiments were performed on single crystal
La0.7Sr0.3MnO3, synthesized by the floating zone technique and
polished for optical experiments. La0.7Sr0.3MnO3 is a double-
exchange ferromagnet with rhombohedrally distorted perovskite
structure. Enhanced itinerancy of conducting electrons and
relaxation of a Jahn–Teller distortion are observed below the
ferromagnetic Curie temperature TC = 350K (refs 22–24). As
a result of the relatively low conductivity, phonon resonances
are clearly visible in the infrared spectra at all temperatures25.
The sample was held at a base temperature of 14 K, in
its ferromagnetic phase, and was excited using femtosecond
mid-infrared pulses tuned between 9 and 19 µm, at fluences
up to 2mJ cm�2. The pulse duration was determined to be
120 fs across the whole spectral range used here. The time-
dependent reflectivity was measured using 30-fs pulses at a
wavelength of 800 nm.

Figure 1a shows time-resolved reflectivity changes for excitation
at 14.3-µm wavelength at 2-mJ cm�2 fluence, resonant with
the 75-meV (605 cm�1) Eu stretching mode25,26. The sample
reflectivity decreased during the pump pulse, rapidly relaxing into
a long-lived state and exhibiting coherent oscillations at 1.2 THz
(40 cm�1). This frequency corresponds to one of the Eg Raman
modes of La0.7Sr0.3MnO3 associated with rotations of the oxygen
octahedra26,27, as sketched in the figure. Consistent with the Eg
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CONSPECTUS: Driving phase changes by selective optical excitation of specific
vibrational modes in molecular and condensed phase systems has long been a
grand goal for laser science. However, phase control has to date primarily been
achieved by using coherent light fields generated by femtosecond pulsed lasers at
near-infrared or visible wavelengths.
This field is now being advanced by progress in generating intense femtosecond
pulses in the mid-infrared, which can be tuned into resonance with infrared-active
crystal lattice modes of a solid. Selective vibrational excitation is particularly
interesting in complex oxides with strong electronic correlations, where even
subtle modulations of the crystallographic structure can lead to colossal changes
of the electronic and magnetic properties.
In this Account, we summarize recent efforts to control the collective phase state
in solids through mode-selective lattice excitation. The key aspect of the
underlying physics is the nonlinear coupling of the resonantly driven phonon to other (Raman-active) modes due to lattice
anharmonicities, theoretically discussed as ionic Raman scattering in the 1970s. Such nonlinear phononic excitation leads to
rectification of a directly excited infrared-active mode and to a net displacement of the crystal along the coordinate of all
anharmonically coupled modes. We present the theoretical basis and the experimental demonstration of this phenomenon, using
femtosecond optical spectroscopy and ultrafast X-ray diffraction at a free electron laser.
The observed nonlinear lattice dynamics is shown to drive electronic and magnetic phase transitions in many complex oxides,
including insulator−metal transitions, charge/orbital order melting and magnetic switching in manganites. Furthermore, we show
that the selective vibrational excitation can drive high-TC cuprates into a transient structure with enhanced superconductivity.
The combination of nonlinear phononics with ultrafast crystallography at X-ray free electron lasers may provide new design rules
for the development of materials that exhibit these exotic behaviors also at equilibrium.

■ INTRODUCTION
Coherent optical excitation of infrared-active lattice vibrations
in solids is emerging as a new tool to control the crystal
structure of solids directly and to drive phase transitions
dynamically. Particularly in correlated electronic systems, where
the phase state is determined by the interactions between
charges, orbitals, spins, and the crystal lattice,1 these optically
driven lattice distortions lead to colossal rearrangements in the
electronic and magnetic properties, opening up many
opportunities for applications in ultrafast data processing and
storage. Especially attractive is the ability to switch the
functionality of these solids at high speeds, while minimizing
heating and dissipation.
These advances are related to previous work aimed at driving

chemical reactions by the coherent control of specific molecular
vibrations,2,3 in what is often referred to as “bond selective
chemistry”. However, bond selective chemistry has been often
severely limited by the large atomic motions needed to break or
make chemical bonds. These dynamical distortions inevitably
lead to uncontrolled energy transfer to molecular and bath
modes, an effect typically referred to as internal vibrational
redistribution.4,5 Hence, the applicability of bond selective
control to chemical reactions has so far been limited.

Such limitations are far less important in the solid state. First,
due to cooperativity, the unit cell distortions that accompany a
phase transition are far smaller than the bond dilations and
bond breaking necessary for a chemical reaction. It is not
uncommon to observe enormous changes in the macroscopic
properties of solids for minute lattice distortions, sometimes of
only a few percent of the equilibrium lattice constant. This is
especially true for complex materials, in which electronic
correlations make the collective properties of the solid a highly
nonlinear function of many perturbations. Second, the internal
vibrational redistribution is far less pronounced in crystalline
solids, where translational invariance limits the density of states
of the lattice modes and introduces momentum-conservation
constraints for the decay of vibrational energy.
In this Account, we present some recent advances in this

area. We first discuss how anharmonic energy flow among
different modes is key to atomic structural control. We show
how cubic anharmonicities lead to net displacements of the
crystal lattice. We then summarize some recent experimental
demonstrations for this nonlinear phononics, which involve both
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Fig. 2. Transient optical response of photo-excited K3C60 at T = 25 K and T = 
100 K. Reflectivity and complex optical conductivity of K3C60 at equilibrium 
(red) and 1 ps after photo-excitation (blue) with a pump fluence of 1.1 mJ/cm2, 
measured at base temperatures T = 25 K (A.1-3) and T = 100 K (B.1-3). Fits to 
the data are displayed as dashed lines. Those at equilibrium were performed 
with a Drude-Lorentz model, while those for the excited state using a model 
describing the optical response of a superconductor with a gap of 11 meV. The 
band at 55 meV was assumed to stay unaffected.  
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FIGURES (Main Text) 

 
 

 
 

 

Fig. 1. Structure and equilibrium optical properties of K3C60. (A) Face 

centered cubic (fcc) unit cell of K3C60
xxxviii. Blue bonds link the C atoms on each 

C60 molecule. K atoms are represented as red spheres. (B) C60 molecular 

distortion (red) along the T1u(4) vibrational mode coordinates. Equilibrium 

structure is displayed in blue. The displacement shown here corresponds to 

~12% of the C-C bond length. (C-E) Equilibrium reflectivity and complex optical 

conductivity of K3C60 measured at T = 25 K (red) and T = 10 K (blue).  

 

 

 

 

 

 

„Possible	light-induced	superconduc@vity	in	K3C60	at	high	temperature“	
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Why? 
-  understand ordering mechanisms  
-  control ordered states 
-  induce new states of matter  

How?		
-  resonance	with	something	
	

Is	there	a	generic	mechanism	to	control	ordered	states?	
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Figure 1. (a) Temperature-doping phase diagram of LBCO, as determined in Ref. 7. Tc, 

TCO, TSO, and TLT indicate the superconducting, charge-order, spin-order, and 

structural transition temperatures, respectively. Colored circles indicate the different 

dopings and temperatures for which data are reported here. (b) Periodic stacking of 

CuO2 planes in the stripe phase. The stripe orientation rotates by 90° between layers. 

(c) Equilibrium c-axis optical properties of LBCO. Left panel: THz reflectivity of the 

three samples at T = 5 K. The region investigated in this experiment is shaded in gray. 

Right panel and inset: broadband c-axis reflectivity and optical conductivity of LBCO 

from Ref. 27. Red arrows indicate the pump photon energy. 
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Figure 2 | Tomographic view of a 50-nm-thick YBCO layer in a
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estimate of the corresponding charge carrier concentration p. Detailed
models of the charge carrier profile will have to consider the work function
di�erence between YBCO and LCMO, the interfacial structure, and
chemical intermixing (see Supplementary Methods).

intensity with thickness, and its large intensity for the D= 50 nm
sample, demonstrate that most (if not all) of the YBCO volume in
this SL is a�ected by CDW formation. Rather than being pinned
to the interfaces, as expected for an ordinary proximity e�ect, these
data imply that robust CDW order is present over a large fraction of
the 50-nm-thick layer with hpi=0.15.

Having established the presence of robust CDW order in the
50-nm-thick YBCO layer with hpi = 0.15, we now turn to its
temperature and magnetic field dependence. The temperature
dependence of the RXS intensity (Fig. 3) is indicative of a second-
order phase transition with a critical temperature of 110K. This
is in stark contrast to the gradual onset of CDW correlations with
decreasing temperature in bulk cuprates (shown for comparison in
Fig. 3), which has been attributed to the competition between CDW
and superconductivity and/or pinning of CDW domains to random
defects10,11. The RXS intensity in the SLs evolves smoothly through
the superconducting transition, with no sign of the sharp suppres-
sion belowTc seen in bulkYBCO.Moreover, Fig. 4 shows that amag-
netic field of 6 T does not a�ect the CDWcorrelations, again in con-
trast to the behaviour of bulk underdoped YBCO, where the CDW
is markedly enhanced by magnetic fields of this magnitude3,6,17.

These observations indicate that the CDW state in YBCO–
LCMO superlattices is much closer to a genuine thermodynamic
phase than it is in bulk YBCO. This provides a natural explanation
for modifications of the electron–phonon interactions32 and the
thermoelectric properties33 over a similar spatial range. Di�erent
mechanisms may contribute to the stabilization of the CDW over
a range of tens of nanometres. In particular, we note that the graded
charge carrier concentration profile (Fig. 2) includes regions close
to the interface where p is optimal for the formation of the CDW17.
These regions can act e�ectively as coherent nucleation centres of
CDWdomains in optimally doped regions further inside the YBCO
layers. In contrast, pinning of incommensurate CDW fluctuations
by randomly disordered defects in bulk YBCO11,12 is presumably
much less e�ective.

We now discuss the proximity-induced monotonic evolution
of the CDW order parameter below Tc. The strong, systematic
increase of both the CDW peak intensity and the superconducting
Tc with YBCO layer thickness implies that CDW order and
superconductivity coexist deep inside the YBCO layers. We
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Figure 3 | Temperature dependence of the RXS intensity for a SL with
50-nm-thick YBCO. The data for the SL are shown as blue circles and
compared to equivalent data on a single crystal of YBCO6.6 (ref. 17), shown
as open squares. Lines are guides to the eye.
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Figure 4 | Magnetic field dependence of the RXS intensity for a SL with
50-nm-thick YBCO. The main panel shows background-subtracted RXS
scans with applied magnetic field nearly along the c-axis, taken at T =4 K.
The inset shows the magnetic field dependence of the RXS intensity,
extracted from the RXS profiles by fitting to Lorentzians. The error bars were
determined by the fitting procedure. The shaded line is a guide to the eye.

therefore consider possible scenarios for laterally modulated
structures comprising both superconducting and CDW order at
optimum doping. The first scenario involves mesoscopic patches of
non-superconducting CDWorder that coexist laterally with patches
of superconducting order. The order in the CDW patches is then
closely related to the CDWstate realized in bulk YBCO7 inmagnetic
fields of the order of 100 T, where superconductivity is obliterated
by orbital depairing14–16. The superconducting patches, on the other
hand, are CDW-free, as they are in bulk optimally doped YBCO.
Due to the mesoscopic phase separation, the interaction between
the two order parameters is strongly reduced, thus explaining
the lack of suppression of the CDW order parameter below Tc
(Fig. 3). However, there is no direct evidence for such mesoscopic
phase separation, and the mechanisms that might give rise to such
behaviour remain unclear.

Second, superconductivity and CDW order may be microscop-
ically ‘intertwined’. Since CDW order is strengthened by proximity
to the interfaces, and is fully established at the superconducting
Tc, the superconducting order parameter has to adjust to the pre-
existing CDW order, perhaps by forming a modulated state akin
to the ‘Fulde–Ferrell–Larkin–Ovchinnikov’ state in ferromagnetic
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- attractive -U Hubbard model 
- degeneracy of SC and CDW at 
perfect nesting 
- SO(4) symmetry (SC, CDW, eta 
pairing) 
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rl Pairing and Off-Diagonal Long-Range Order in a Hubbard Model

Chen Ning Yang
State University ofNew York, Stony Brook, New York l 1794-3840

and Chinese University ofHong KongH, ong Kong
(Received 22 August 1989)

It is shown in a simple Hubbard model that through a mechanism called g pairing one can construct
many eigenstates of the Hamiltonian possessing OA-diagonal iong-range order. The intrapair distance is
small. It is shown that these eigenstates are metastable and possess an energy gap.

PACS numbers: 74.20.—z, 05.30.Fk

Since the discovery of high-temperature superconduc-
tivity' in 1986-1987 there have been many proposals
for the theoretical mechanism for such phenomena.
None has been generally accepted. Most proposals con-
cern some kind of Hubbard model, which unfortunately
is difFicult to solve except in one dimension.
In this paper we show that for the simplest Hubbard

model in three dimensions (also in one or two dimen-
sions), many eigenfunctions of the Hamiltonian can be
explicitly written down. Of particular interest is the fact
that these eigenfunctions possess off-diagonal long-range
order (ODLRO), the property of a dynamical system
that is essential for the phenomena of superconductivity
and superAuidity. This is a rather subtle long-range or-
der, especially for fermions, and no previous models of
fermions in dimensions higher than one has been proven
to have eigenstates with ODLRO. The usual BCS wave
function does have ODLRO via the mechanism of
Cooper pairs, but it is not an eigenstate of a Hamiltoni-
an system with a local potential energy.
The mechanism essential for the eigenfunctions of the

present paper is a g-pairing mechanism which seems to
be peculiar to lattice models, and is absent in any contin-
uum model.
For the attractive case these eigenfunctions are shown

to be metastable at low temperatures. They possess
ODLRO, and thus are superconducting.
(I) ri pairing Consid. e—r a three-dimensional Hub-

bard model on a periodic L xL x L lattice where L is even
(e) 0):
H=T+ V,

given by

ay=(L) 'l'ga, exp( —ik r), (4)

where

k =2tr/L (three-dimensional integer) (mod2n) . (5)
We choose the fermion operators so that

[al„alt]p =b(k —k'), etc. ,
but

[al„bl, ] = [al„bl, ] =O. (6)
The kinetic energy T of Eq. (2) is trivially diff'erent

from the kinetic energy in the usual Hubbard model in
the appearance of the term 6, which is inserted here to
make T a positive operator. This insertion makes it pos-
sible to compare with such concepts in the continuum
problem as particles, collisions, bound states, etc. No
physical conclusion is altered by this insertion.
We shall show that many eigenstates of the Hamil-

tonian H can be explicitly written down with the aid of
an operator g defined as

ri=gat, b -1„ =tr( , tr, tr)tr.
k

(7)

Notice that this definition is only meaningful when L is
even, because otherwise k and x—k would not be simul-
taneously possible k values. Using (4), we also have
ri=ge "'a,b, .

T=eg (6—2cosk„—2 cosks —2 cosk, ) It is easy to prove
qtT —Tg~ =—12eg~, (9)

X (al, ay+ bltbg),
V=2W+a ta,b tb

(2)
(3)

where a, and b, are coordinate-space annihilation opera-
tors for spin-up and spin-down electrons, respectively,
and r is a three-dimensional integral coordinate variable
that designates the L x L xL lattices sites. The annihila-
tion operators a~ and bg are momentum-space operators

by going into the representation where all ai, ap and all
be~bi, are simultaneously diagonal. The basic kets in this
representation will be denoted by I n) Now ta. ke
(n'I

I n) of both sides of (9). Since T is diagonal in this
representation, (9) becomes
&n'

I ri In&[&n I T I n&
—&n'

I T I
n'&]

12e(n I
Gt

I n) . (9 )
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a`rac>ve	U	+	mean-field	decoupling	
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4x4	matrix:	SO(4)	algebra	
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nonlinear equations + self-consistency: 
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oscilla>on	frequency	set	by	light-induced	eta	pairing	
amplitude,	which	gives	„mass“	to	collec>ve	mode	
	
resonant	behavior	at	Ω=2Δ =	single-par>cle	gap	
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99%	CDW	ini>al	state	
Drive	slightly	above	
gap	
	
SC	comes	alive!	
Irregular	behavior	for	
stronger	driving	
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-  laser-controlled switching between SC/CDW 
-  light-induced eta pairing and a collective mode 
-  path to understanding of light-induced superconductivity 

arXiv:1611.04307	
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enhanced	electron-phonon	coupling	in	a	periodically	distorted	
graphene	lauce	driven	on	resonance	with	IR	phonon	
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transient	reduc>on	of	Drude	weight	
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3-fold	enhancement	of	effec>ve	λel-ph!	Why?	
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similar	idea	in	context	of	induced	aEracSon:	D.	Kennes	et	al.,	arXiv:1609.03802	

Hamiltonian	involving	nonlinear	el-ph	coupling:	

Possible explanation for enhanced electron-phonon coupling in

driven bilayer graphene

Michael Sentef

September 12, 2016

1 Nonlinear electron-phonon coupling

Consider a Hamiltonian

H = H
el

+
X

i

!
R

b†
R,i

b
R,i

+
X

i

g1nel,i

x
R,i

+
X

i

g2nel,i

x
R,i

x
IR,i

+H
IR

, (1)

with a bilinear electron-phonon interaction strength g1 coupling the electronic charge density to a Raman
mode with normal coordinate x

R,i

, and a nonlinear electron-phonon coupling g2 involving the Raman
mode as well as an IR mode x

IR,i

. Note that this form is allowed if inversion symmetry is broken, as is
the case for bilayer graphene on a substrate, which makes the two layers inequivalent.

Now we drive the IR mode resonantly with a laser field, leading to oscillatory behavior of the IR
coordinate:

hx
IR,i

(t)i = x
max

cos!
IR

t. (2)

Assuming the IR frequency to be large compared to other relevant energy scales (antiadiabatic limit), we
write down a high-frequency expansion in Floquet theory. The time average vanishes, but the subleading
term is nonzero:

H
eff

=
X

i

g2xmax

!
IR

2⇡

!
IR

ˆ 2⇡
!IR

0
cos(!

IR

t)2[x
R,i

, n
el,i

!
R

b†
R,i

b
R,i

]

=
X

i

g2xmax

!
R

2!
IR

n
el,i

p
R,i

. (3)

In a case where both frequencies are nearly degenerate, !
R

⇡ !
IR

, we arrive at an e↵ective bilinear
coupling Hamiltonian

H
eff,el�ph

=
X

i

(g1nel,i

x
R,i

+
g2xmax

2
n
el,i

p
R,i

) (4)
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Coherently	driven	fast	IR	mode:	

High-frequency	limit	(Floquet	expansion):	

Induced	addi>onal	linear	term	~	amplitude	of	driven	mode:	
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