

Theory of ultrafast dynamics in superconductors

PRB 92, 224517 (2015) PRB 93, 144506 (2016) arXiv:1611.04307 arXiv:1607.02314

Collaborators:

A. F. Kemper, B. Moritz, J. K. Freericks, T. P. Devereaux,A. Georges, C. Kollath, A. Tokuno,E. Pomarico, I. Gierz, A. Cavalleri

Michael Sentef

SFB 1242 Kickoff Meeting

Bad Honnef, November 23, 2016

Pump-probe spectroscopy (1887)

stroboscopic investigations of dynamic phenomena

Muybridge 1887

Pump-probe spectroscopy (today)

stroboscopic investigations of dynamic phenomena

TbTe3 CDW metal

mps

J. Sobota et al., PRL 108, 117403 (2012) F. Schmitt et al., Science 321, 1649 (2008) Image courtesy: J. Sobota / F. Schmitt

Ultrafast Materials Science

1 μm

Understanding the nature of quasiparticles

Relaxation dynamics

PRL 111, 077401 (2013) PRX 3, 041033 (2013) PRB 87, 235139 (2013) PRB 90, 075126 (2014) arXiv:1505.07055, Nature Comm. arXiv:1607.02314

Understanding ordered phases

- Collective oscillat
- Competing order

PRB 92, 22 PRB 93, 14 arXiv:1611.04307

0.1 cm

Wavelength

10 µm

100 µm

Creating new states of matter

- Photo-induced phase transitions
- Floquet topological states

Nature Commun. 6, 7047 (2015) arXiv:1604.03399, Nature Comm.

Image courtesy: D. Basov

- Part I: Driven superconductors
 - Higgs amplitude mode oscillations for optical pumping (1.5 eV laser)
 PRB 92, 224517 (2015)
 - light-enhanced superconductivity via hopping control
 PRB 93, 144506 (2016)
- Part II: Laser-controlled competing orders *arXiv:1611.04307*
- Part III: Light-enhanced electron-phonon coupling arXiv:1607.02314

Non-Equilibrium Keldysh Formalism

Beyond BCS

System knows about its thermal initial state...

Max Planck Institute for the Structure and Dynamics of Matter

Include the effects of driving field through timedependent electronic dispersion

electron-electron scattering

electron-phonon scattering

 $\varepsilon(k) \rightarrow \varepsilon(k,t)$

Model and Method

$$\mathcal{H} = \sum_{\boldsymbol{k}\sigma} \epsilon(\boldsymbol{k}, t) c_{\boldsymbol{k}\sigma}^{\dagger} c_{\boldsymbol{k}\sigma} + \sum_{\boldsymbol{q},\gamma} \Omega_{\gamma} b_{\boldsymbol{q},\gamma}^{\dagger} b_{\boldsymbol{q},\gamma} - \sum_{\boldsymbol{q},\gamma,\sigma} g_{\gamma} c_{\boldsymbol{k}+\boldsymbol{q}\sigma}^{\dagger} c_{\boldsymbol{k}\sigma} \left(b_{\boldsymbol{q},\gamma} + b_{-\boldsymbol{q},\gamma}^{\dagger} \right)$$

- electrons (2D square latt.) + spectrum of phonons + el-ph coupling (Holstein)
- Migdal-Eliashberg (1st Born) + phonon heat bath approximation

also see: Murakami, Werner et al., PRB 93, 094509 (2016)

Higgs amplitude mode

Oscillations in photocurrent

Amplitude mode oscillations

Amplitude ("Higgs") mode oscillations predicted in time-resolved ARPES Reduced order parameter sets oscillation frequency Dissipation: Exciting Higgs even far away from gap resonance

Optics: Matsunaga et al., Phys. Rev. Lett. 111, 057002 (2013), Science 2014 [10.1126/science.1254697] Theory: Volkov & Kogan 1974, Barankov PRL 2004, Yuzbashyan PRL 2006, Tsuji PRL 2013, Murakami PRB 2016, Schnyder et al, PRB 2011, Krull et al., PRB 2014

How to enhance boson-mediated SC?

- BCS theory plain vanilla SC (weak coupling)
 - $\Delta \approx 2\hbar\Omega_c \exp(-1/V_0 N(E_F))$
 - effective attraction $V_0 \sim g^2/(\hbar \Omega)$
 - e-boson coupling g
 - boson frequency ${oldsymbol {\Omega}}$
 - electronic DOS N(E_F)

Migdal-Eliashberg theory boson-mediated pairing

How to enhance boson-mediated SC?

- nonlinear phononics Q²Q: resonant excitation of vibrational modes – effects?
- 1. tune model parameters
 - e-boson coupling g
 - boson frequency \varOmega
 - electronic DOS N(E_F)
- $\alpha^2 F$ Eliashberg function

Gedankenexperiment (what if?)

- 2. dynamical effect
 - effective Hamiltonian (e.g., Floquet)

also see: Knap et al., arXiv:1511.07874, Patel & Eberlein PRB 93, 195139 (2016), Komnik & Thorwart arXiv:1607.03858

Classical lattice dynamics

$$\dot{Q}_{\rm IR} + \Omega_{\rm IR}^2 Q_{\rm IR} = \frac{e^* E_0}{\sqrt{M}_{\rm IR}} \sin(\Omega_{\rm IR} t) F(t)$$

$$\ddot{Q}_{\rm RS} + \Omega_{\rm RS}^2 Q_{\rm RS} = A Q_{\rm IR}^2$$

Rectification of a second (Raman) phonon via coherent driving of a first (IR) phonon

"Nonlinear phononics"

M. Först et al., Nature Physics 7, 854 (2011) A. Subedi, A. Cavalleri, A. Georges, PRB 89, 220301R (2014)

Classical lattice dynamics

"Nonlinear phononics"

M. Först et al., Nature Physics 7, 854 (2011) A. Subedi, A. Cavalleri, A. Georges, PRB 89, 220301R (2014)

Experimental motivation

"Possible light-induced superconductivity in K3C60 at high temperature" *M. Mitrano et al., Nature 530, 461 (2016)*

Simplest model: hopping ramp

Superconductor evolution

Enhancement during ramp

Order parameter enhancement $\sim \Delta_0$

Superconductor evolution

- Amplitude mode oscillations in pumped SC *PRB 92, 224517 (2015)*
- Light-enhanced SC via nonlinear phononics

II. Theory of laser-controlled competing orders

Akiyuki Tokuno, Antoine Georges, Corinna Kollath (Paris/Bonn)

arXiv:1611.04307

Ultrafast order

Why?

- understand ordering mechanisms
- control ordered states
- induce new states of matter

How?

- resonance with something

Is there a generic mechanism to control ordered states?

Experimental motivation

D. Fausti et al., Light-induced superconductivity in a stripe-ordered cuprate (LESCO), Science, 331, 189 (2011)

Nat. Nanotechnol. 10, 765 (2015)

YBCO-LCMO heterostructure

D. Nicoletti et al., Optically induced superconductivity in striped LBCO by polarizationselective excitation in the near infrared, PRB 90, 100503 (2014)

CDW ~ A 1-photon resonance

CDW ~ A 1-photon resonance

SC ~ A² 2-photon resonance

CDW ~ A 1-photon resonance

SC ~ A² 2-photon resonance

CDW ~ A 1-photon resonance

SC ~ A² 2-photon resonance

... laser lifts SC/CDW degeneracy

CDW ~ A 1-photon resonance

SC ~ A² 2-photon resonance

... laser lifts SC/CDW degeneracy... Goldstone-like collective mode?

Competing orders

- degeneracy of SC and CDW at perfect nesting
- SO(4) symmetry (SC, CDW, eta pairing)

VOLUME 63, NUMBER 19

PHYSICAL REVIEW LETTERS

6 NOVEMBER 1989

 η Pairing and Off-Diagonal Long-Range Order in a Hubbard Model

Chen Ning Yang

Reprinted from Mod. Phys. Lett. B4 (1990) 759-766 © World Scientific Publishing Company

C. N. Yang (1957 Nobel for parity violation in weak interaction)

S.-C. Zhang (Topological Insulators)

SO₄ SYMMETRY IN A HUBBARD MODEL

CHEN NING YANG Institute for Theoretical Physics, State University of New York, Stony Brook, NY 11794-3840, USA

and

S. C. ZHANG IBM Research Division, Almaden Research Center, San Jose, CA 95120-6099, USA

Simplistic Model

$$H = \sum_{k\sigma} \epsilon(k) n_{k\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} = H_J + H_U,$$
$$\epsilon(k) = -2J(\cos(k_x) + \cos(k_y)),$$

attractive U + mean-field decoupling

$$\begin{split} \Delta_{SC} &= U \sum_{k} f_{k}, \qquad f_{k} \equiv \langle c_{-k\downarrow} c_{k\uparrow} \rangle \qquad (\text{SC}), \\ \Delta_{CDW} &= U \sum_{k} g_{k}, \qquad g_{k} \equiv \frac{1}{2} \sum_{\sigma} \langle c_{k\sigma}^{\dagger} c_{k+Q\sigma} \rangle \quad (\text{CDW}), \\ \Delta_{\eta} &= U \sum_{k} \eta_{k}. \qquad \eta_{k} \equiv \langle c_{-(k+Q)\downarrow} c_{k\uparrow} \rangle \quad (\eta \text{ pairing}). \end{split}$$

$$H_{MF} = \sum_{k} \begin{pmatrix} c_{k\uparrow}^{\dagger} \\ c_{k+Q\uparrow}^{\dagger} \\ c_{-k\downarrow} \\ c_{-(k+Q)\downarrow} \end{pmatrix}^{T} \begin{pmatrix} \epsilon(k-A) & \Delta_{CDW}^{*} & \Delta_{SC} & \Delta_{\eta} \\ \Delta_{CDW} & \epsilon(k+Q-A) & \Delta_{\eta} & \Delta_{SC} \\ \Delta_{SC}^{*} & \Delta_{\eta}^{*} & -\epsilon(k+A) & -\Delta_{CDW} \\ \Delta_{SC}^{*} & \Delta_{\eta}^{*} & \Delta_{SC}^{*} & -\delta_{CDW}^{*} & -\epsilon(k+Q+A) \end{pmatrix} \begin{pmatrix} c_{k\uparrow} \\ c_{k+Q\uparrow} \\ c_{-k\downarrow}^{\dagger} \\ c_{-(k+Q)\downarrow}^{\dagger} \end{pmatrix}^{T} \begin{pmatrix} \epsilon(k-A) & \Delta_{CDW}^{*} & \Delta_{SC} \\ \Delta_{SC}^{*} & \Delta_{\eta}^{*} & -\epsilon(k+A) & -\Delta_{CDW} \\ \Delta_{\eta}^{*} & \Delta_{SC}^{*} & -\Delta_{CDW}^{*} & -\epsilon(k+Q+A) \end{pmatrix} \begin{pmatrix} c_{k\uparrow} \\ c_{-k\downarrow} \\ c_{-(k+Q)\downarrow}^{\dagger} \end{pmatrix}^{T} \begin{pmatrix} c_{k\uparrow} \\ c_{-k\downarrow} \\ c_{-(k+Q)\downarrow} \end{pmatrix}^{T} \begin{pmatrix} c_{k\downarrow} \\ c_{-k\downarrow} \\ c_{-(k+Q)\downarrow \end{pmatrix}^{T} \begin{pmatrix} c_{k\downarrow} \\ c_{-$$

4x4 matrix: SO(4) algebra

$$\Delta_{SC} = U \sum_{k} f_{k}, \qquad f_{k} \equiv \langle c_{-k\downarrow} c_{k\uparrow} \rangle \qquad \text{(SC)},$$

$$\Delta_{CDW} = U \sum_{k} g_{k}, \qquad g_{k} \equiv \frac{1}{2} \sum_{\sigma} \langle c_{k\sigma}^{\dagger} c_{k+Q\sigma} \rangle \qquad \text{(CDW)},$$

$$\Delta_{\eta} = U \sum_{k} \eta_{k}. \qquad \eta_{k} \equiv \langle c_{-(k+Q)\downarrow} c_{k\uparrow} \rangle \qquad (\eta \text{ pairing}).$$

Mean-field equations

$$[G_k^{<}(t,t')]_{\alpha\beta} = +i\langle [\Psi_k^{\dagger}(t')]_{\beta} [\Psi_k(t)]_{\alpha} \rangle.$$

 $i\partial_t G_k^{<}(t,t) = [H_{MF}(k,t), G_k^{<}(t,t)].$

$$\begin{split} &i\partial_t n_k = -\Delta_{SC}(f_k - f_k^*) + \Delta_{CDW}(g_k - g_k^*) - \Delta_\eta^* \eta_k + \Delta_\eta \eta_k^*, \quad \text{eta pairing provides coupling} \\ &i\partial_t f_k = \Delta_{SC}(1 - (n_k + n_{-k})) + (\epsilon(k - A) + \epsilon(k + A))f_k + \Delta_{CDW}(\eta_k + \eta_{k+Q}) - \Delta_\eta(g_k^* + g_{-k}^*), \\ &i\partial_t g_k = \Delta_{CDW}(n_k - n_{k+Q}) - 2\epsilon(k - A)g_k + \Delta_{SC}(\eta_k^* - \eta_{k+Q}) + \Delta_\eta f_k^* - \Delta_\eta^* f_{k+Q}, \\ &i\partial_t \eta_k = \eta_k(\epsilon(k - A) - \epsilon(k + A)) + \Delta_{CDW}(f_k + f_{k+Q}) - \Delta_{SC}(g_{-k} + g_k^*) - \Delta_\eta(n_k + n_{-(k+Q)} - 1). \end{split}$$

nonlinear equations + self-consistency: $\Delta_{SC} = U \sum_{k} f_{k},$ $\Delta_{CDW} = U \sum_{k} g_{k},$ $\Delta_{\eta} = U \sum_{k} \eta_{k}.$

Above resonance: SC up, CDW down

 ω = 21 meV, above resonance

Gap resonance - cw driving

oscillation frequency set by light-induced eta pairing amplitude, which gives "mass" to collective mode

resonant behavior at $\Omega = 2\Delta = \text{single-particle gap}$

99% CDW initial state Drive slightly above gap

SC comes alive! Irregular behavior for stronger driving

Summary part II

- laser-controlled switching between SC/CDW
- light-induced eta pairing and a collective mode
- path to understanding of light-induced superconductivity

arXiv:1611.04307

III. Dynamically enhanced coupling

Enhanced electron-phonon coupling in graphene with periodically

distorted lattice

E. Pomarico,^{1,2,*} M. Mitrano,^{1,3} H. Bromberger,¹ M. A. Sentef,¹ A.

Al-Temimy,⁴ S. Forti,⁴ C. Coletti,⁴ A. Stöhr,⁵ S. Link,⁵ U. Starke,⁵ C.

Cacho,⁶ R. Chapman,⁶ E. Springate,⁶ A. Cavalleri,^{1,7} and I. Gierz^{1,†}

arXiv:1607.02314 **enhanced** electron-phonon coupling in a periodically distorted graphene lattice driven on resonance with IR phonon

Dynamically enhanced coupling?

Enhanced electron-phonon coupling in graphene with periodically

distorted lattice

arXiv:1607.02314

3-fold enhancement of effective A_{el-ph}! Why?

Hamiltonian involving nonlinear el-ph coupling:

$$H = H_{el} + \sum_{i} \omega_R b_{R,i}^{\dagger} b_{R,i} + \sum_{i} g_1 n_{el,i} x_{R,i} + \sum_{i} g_2 n_{el,i} x_{R,i} x_{IR,i} + H_{IR},$$

Coherently driven fast IR mode: $\langle x_{IR,i}(t) \rangle = x_{max} \cos \omega_{IR} t.$

High-frequency limit (Floquet expansion):

$$H_{eff} = \sum_{i} \frac{g_2 x_{max}}{\omega_{IR}} \frac{2\pi}{\omega_{IR}} \int_0^{\frac{2\pi}{\omega_{IR}}} \cos(\omega_{IR} t)^2 [x_{R,i}, n_{el,i} \omega_R b_{R,i}^{\dagger} b_{R,i}]$$
$$= \sum_{i} \frac{g_2 x_{max} \omega_R}{2\omega_{IR}} n_{el,i} p_{R,i}.$$

Induced additional linear term ~ amplitude of driven mode:

$$H_{eff,el-ph} = \sum_{i} (g_1 n_{el,i} x_{R,i} + \frac{g_2 x_{max}}{2} n_{el,i} p_{R,i})$$

similar idea in context of induced attraction: D. Kennes et al., arXiv:1609.03802

• Enhanced electron-phonon coupling in phononically driven bilayer graphene

arXiv:1607.02314

E. Pomarico

I. Gierz

A. Cavalleri