TRANSIENT DYNAMICS IN AN EXCITONIC INSULATOR: FAST COMPUTATION OF NONEQUILIBRIUM GREEN'S FUNCTIONS

<u>Riku Tuovinen</u>, Denis Golež, Michael Schüler, Martin Eckstein, and Michael Sentef

Max-Planck-Institut für Struktur und Dynamik der Materie

DPG Spring Meeting, Berlin March 15th 2018

WHAT? EXCITONIC INSULATOR (EI) PHASE¹ Indirect semiconductor (small gap) or -metal (small overlap)

Reduce the gap below exciton binding energy \Rightarrow EI phase

Reduce the overlap \Rightarrow reduce the number of free carriers \Rightarrow less screening \Rightarrow EI phase

\sim BCS superconductivity: electrons form Cooper pairs

¹N. F. Mott, Phil. Mag. **6**, 287 (1961); L. V. Keldysh and Yu. V. Kopaev, Sov. Phys. Solid State **6**, 2219 (1965); D. Jérome, T. M. Rice, and W. Kohn, Phys. Rev. **158**, 462 (1967)

WHY? RECENT TIME-DOMAIN EXPERIMENTS

Time-resolved ARPES measurements for materials exhibiting the EI phase [TiSe_2 and Ta_2NiSe_5]

S. Mor, et al., Phys. Rev. Lett. **119**, 086401 (2017)

Critical photoexcitation observed: band gap can be either enhanced (\sim increased exciton condensation) or decreased

HOW? TIME-PROPAGATION OF GREEN FUNCTIONS^{2 3}

 Two-time Green's functions defined on the Keldysh contour

$$G(z,z') = -i\langle T_{\gamma}[\hat{\psi}(z)\hat{\psi}^{\dagger}(z')]\rangle$$

Integro–differential equations

$$\begin{bmatrix} i\partial_z - h \end{bmatrix} G = \delta + \int_{\gamma} \sum_{f} G$$

System Many-body effects

• Expensive for both CPU and RAM

²A. Stan, N. E. Dahlen, and R. van Leeuwen, J. Chem. Phys. **130**, 224101 (2009)
³G. Stefanucci and R. van Leeuwen, *Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction*, (Cambridge University Press, Cambridge, 2013)

GENERALIZED KADANOFF–BAYM ANSATZ (GKBA)^{4 5}

- ► Full Green's function reconstructed from time-diagonal $G^{\leq}(t,t') \approx$ $i \left[G^{R}(t,t')G^{\leq}(t',t') - G^{\leq}(t,t)G^{A}(t,t') \right]$
- ► Approximate propagators $G^{R/A}(t,t') \approx$ $\mp i\theta[\pm(t-t')] \exp[-ih(t-t')]$
- ⇒ Evolution of a time-local density matrix $\rho(t) \equiv -iG^{<}(t,t)$

⁴P. Lipavský, V. Špička, and B. Velický, Phys. Rev. B **34**, 6933 (1986)
⁵S. Hermanns, K. Balzer, and M. Bonitz, Phys. Scr. **T151**, 014036 (2012)

MODEL FOR THE EXCITONIC INSULATOR⁶

One-dimensional two-band system with interband Hubbard interaction

⁶D. Golež, P. Werner, and M. Eckstein, Phys. Rev. B **94**, 035121 (2016)

$$\begin{split} k^{\mathrm{M}}(\tau - \tau') &\equiv -\mathrm{i}k(-\mathrm{i}\tau, -\mathrm{i}\tau') \qquad (k = G, \Sigma) \\ (-\partial_{\tau} - h_{\mathrm{eq}})G^{\mathrm{M}}(\tau - \tau') &= \delta(\tau - \tau') + \int_{0}^{\beta} \mathrm{d}\bar{\tau}\Sigma^{\mathrm{M}}(\tau - \bar{\tau})G^{\mathrm{M}}(\bar{\tau} - \tau') \end{split}$$

$$k^{\mathrm{M}}(\tau - \tau') \equiv -\mathrm{i}k(-\mathrm{i}\tau, -\mathrm{i}\tau') \qquad (k = G, \Sigma)$$
$$(-\partial_{\tau} - h_{\mathrm{eq}})G^{\mathrm{M}}(\tau - \tau') = \delta(\tau - \tau') + \int_{0}^{\beta} \mathrm{d}\bar{\tau}\Sigma^{\mathrm{M}}(\tau - \bar{\tau})G^{\mathrm{M}}(\bar{\tau} - \tau')$$

"Phase diagrams" using different self-energy approximations

$$k^{\mathrm{M}}(\tau - \tau') \equiv -\mathrm{i}k(-\mathrm{i}\tau, -\mathrm{i}\tau') \qquad (k = G, \Sigma)$$
$$(-\partial_{\tau} - h_{\mathrm{eq}})G^{\mathrm{M}}(\tau - \tau') = \delta(\tau - \tau') + \int_{0}^{\beta} \mathrm{d}\bar{\tau}\Sigma^{\mathrm{M}}(\tau - \bar{\tau})G^{\mathrm{M}}(\bar{\tau} - \tau')$$

"Phase diagrams" using different self-energy approximations

$$k^{\mathrm{M}}(\tau - \tau') \equiv -\mathrm{i}k(-\mathrm{i}\tau, -\mathrm{i}\tau') \qquad (k = G, \Sigma)$$
$$(-\partial_{\tau} - h_{\mathrm{eq}})G^{\mathrm{M}}(\tau - \tau') = \delta(\tau - \tau') + \int_{0}^{\beta} \mathrm{d}\bar{\tau}\Sigma^{\mathrm{M}}(\tau - \bar{\tau})G^{\mathrm{M}}(\bar{\tau} - \tau')$$

"Phase diagrams" using different self-energy approximations

EQUILIBRIUM BY GKBA (ADIABATIC SWITCHING)

EQUILIBRIUM BY GKBA (ADIABATIC SWITCHING)

EQUILIBRIUM BY GKBA (ADIABATIC SWITCHING)

OUT-OF-EQUILIBRIUM: POPULATIONS AND ORDER

OUT-OF-EQUILIBRIUM: POPULATIONS AND ORDER

SUMMARY

- Ultrafast experiments available in materials exhibiting the excitonic insulator phase
- Theoretical description is a challenge (electronic correlations, transient regime, ...)
- Generalized Kadanoff–Baym Ansatz computationally more applicable (must be careful though!)
- Preliminary results show light-induced population inversion and melting of the excitonic condensate

