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Pump-probe spectroscopy (1887) 
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•  stroboscopic	inves5ga5ons	of	dynamic	phenomena	

Muybridge 1887
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Pump-probe spectroscopy (today) 
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•  stroboscopic	inves5ga5ons	of	dynamic	phenomena	

Image courtesy:
J. Sobota / F. Schmitt

TbTe3	CDW	metal	

Simula2ons	of	2me-resolved	
ARPES:	PRX	3,	041033	(2013)	
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Simulation of time-resolved ARPES 

Weak	pump	 Strong	pump	

5me	unit	=	0.66	fs	

nonlinear	response	for	strong	pump	

boson	window	effect	for	fast	versus	slow	relaxa5on	
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PRX	3,	041033	(2013)	
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Ultrafast Materials Science today 
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Image	courtesy:	
D.	Basov	

Understanding	ordered	phases	
§  Collec5ve	oscilla5ons	
§  Compe5ng	orders	

Understanding	the	nature	of	quasipar2cles	
§  Relaxa5on	dynamics	
§  Control	of		couplings	

PRL	111,	077401	(2013)	
PRX	3,	041033	(2013)	
PRB	87,	235139	(2013)	
PRB	90,	075126	(2014)	
Nature	Commun.	7,	13761	(2016)	
PRB	95,	024304	(2017)	
PRB	95,	205111	(2017)	
	
	

PRB	92,	224517	(2015)	
PRB	93,	144506	(2016)	
PRL	118,	087002	(2017)	

Crea2ng	new	states	of	maVer	
§  Floquet	topological	states	

Nature	Commun.	6,	7047	(2015)	
Nature	Commun.	8,	13940	(2017)	
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Outline 
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•  Part	I:	Laser-controlled	compe5ng	orders	
	Selec5ve	mel5ng	of	a	compe5ng	order	enhances	superconduc5vity	

•  Part	II:	Light-enhanced	electron-phonon	coupling	
	Resonant	excita5on	of	IR	phonon	enhances	electron-phonon	coupling	

PRL	118,	087002	(2017)			

PRB	95,	024304	(2017)	-	experiment	
PRB	95,	205111	(2017)	-	theory	

 
How to enhance pairing with light 
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I Theory of laser-controlled 
competing orders 
Phys.	Rev.	LeV.	118,	087002	(2017)	

Akiyuki Tokuno   Antoine Georges   Corinna Kollath 
 Palaiseau/Paris/Geneva               University of Bonn 
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Nonequilibrium superconductivity 
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Why?	
-  understand	ordering	mechanisms		
-  control	ordered	states:	ultrafast	switching	
-  induce	new	states	of	ma=er		

How	to	control?		
-  laser	near	resonance	with	collec5ve	modes	

Generic	mechanism	to	control	compe5ng	orders	with	light?	
Recent	theories	on	laser-controlled	couplings	and	compe5ng	orders:	
Akbari	et	al.,	EPL	101,	17003	(2013);	Moor	et	al.,	PRB	90,	024511	(2014);	Fu	et	al.,	PRB	90,	
024506	(2014);	Dzero	et	al.,	PRB	91,	214505	(2015);	Tsuji&Aoki,	PRB	92,	064508	(2015);	
Cea	et	al.,	PRB	93,	180507	(2016);	Kemper	et	al.,	PRB	92,	224517	(2015);	Sentef	et	al.,	PRB	
93,	144506	(2016);	Krull	et	al.,	Nat.	Commun.	7,	11921	(2016);	Patel&Eberlein,	PRB	93,	
195139	(2016);	Knap	et	al.,	PRB	94,	214504	(2016);	Komnik&Thorwart	EPJB	89,	244	(2016);	
Coulthard	et	al.,	1608.03964;	Kennes	et	al.,	Nat.	Physics	(2017),	doi:10.1038/nphys4024;	
Sentef,	1702.00952;	Babadi	et	al.	1702.02531;	Murakami	et	al.,1702.02942;	
Mazza&Georges,	1702.04675;	Dehghani&Mitra,	1703.01621	...	
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Experimental motivation: competing orders 
are everywhere 
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NATUREMATERIALS DOI: 10.1038/NMAT4682 LETTERS
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Figure 2 | Tomographic view of a 50-nm-thick YBCO layer in a
YBCO–LCMO SL. Electronic phases as a function of depth and temperature,
including antiferromagnetic insulating (AFI), spin density wave (SDW),
superconducting (SC) and charge-density-wave (CDW) states. FM denotes
the ferromagnetic state in the LCMO layers. The bottom panel is an
estimate of the corresponding charge carrier concentration p. Detailed
models of the charge carrier profile will have to consider the work function
di�erence between YBCO and LCMO, the interfacial structure, and
chemical intermixing (see Supplementary Methods).

intensity with thickness, and its large intensity for the D= 50 nm
sample, demonstrate that most (if not all) of the YBCO volume in
this SL is a�ected by CDW formation. Rather than being pinned
to the interfaces, as expected for an ordinary proximity e�ect, these
data imply that robust CDW order is present over a large fraction of
the 50-nm-thick layer with hpi=0.15.

Having established the presence of robust CDW order in the
50-nm-thick YBCO layer with hpi = 0.15, we now turn to its
temperature and magnetic field dependence. The temperature
dependence of the RXS intensity (Fig. 3) is indicative of a second-
order phase transition with a critical temperature of 110K. This
is in stark contrast to the gradual onset of CDW correlations with
decreasing temperature in bulk cuprates (shown for comparison in
Fig. 3), which has been attributed to the competition between CDW
and superconductivity and/or pinning of CDW domains to random
defects10,11. The RXS intensity in the SLs evolves smoothly through
the superconducting transition, with no sign of the sharp suppres-
sion belowTc seen in bulkYBCO.Moreover, Fig. 4 shows that amag-
netic field of 6 T does not a�ect the CDWcorrelations, again in con-
trast to the behaviour of bulk underdoped YBCO, where the CDW
is markedly enhanced by magnetic fields of this magnitude3,6,17.

These observations indicate that the CDW state in YBCO–
LCMO superlattices is much closer to a genuine thermodynamic
phase than it is in bulk YBCO. This provides a natural explanation
for modifications of the electron–phonon interactions32 and the
thermoelectric properties33 over a similar spatial range. Di�erent
mechanisms may contribute to the stabilization of the CDW over
a range of tens of nanometres. In particular, we note that the graded
charge carrier concentration profile (Fig. 2) includes regions close
to the interface where p is optimal for the formation of the CDW17.
These regions can act e�ectively as coherent nucleation centres of
CDWdomains in optimally doped regions further inside the YBCO
layers. In contrast, pinning of incommensurate CDW fluctuations
by randomly disordered defects in bulk YBCO11,12 is presumably
much less e�ective.

We now discuss the proximity-induced monotonic evolution
of the CDW order parameter below Tc. The strong, systematic
increase of both the CDW peak intensity and the superconducting
Tc with YBCO layer thickness implies that CDW order and
superconductivity coexist deep inside the YBCO layers. We
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Figure 3 | Temperature dependence of the RXS intensity for a SL with
50-nm-thick YBCO. The data for the SL are shown as blue circles and
compared to equivalent data on a single crystal of YBCO6.6 (ref. 17), shown
as open squares. Lines are guides to the eye.

0.15 0.20 0.25 0.30 0.35 0.40

0.0

0.1

0.2

0.3

0 2 4 6
0

1

2

H (r.l.u. of YBCO)

In
te

gr
. i

nt
en

si
ty

 (a
.u

.)

Magnetic field (T)

In
te

ns
ity

 (a
.u

.)

0 T
3 T
6 T

Figure 4 | Magnetic field dependence of the RXS intensity for a SL with
50-nm-thick YBCO. The main panel shows background-subtracted RXS
scans with applied magnetic field nearly along the c-axis, taken at T =4 K.
The inset shows the magnetic field dependence of the RXS intensity,
extracted from the RXS profiles by fitting to Lorentzians. The error bars were
determined by the fitting procedure. The shaded line is a guide to the eye.

therefore consider possible scenarios for laterally modulated
structures comprising both superconducting and CDW order at
optimum doping. The first scenario involves mesoscopic patches of
non-superconducting CDWorder that coexist laterally with patches
of superconducting order. The order in the CDW patches is then
closely related to the CDWstate realized in bulk YBCO7 inmagnetic
fields of the order of 100 T, where superconductivity is obliterated
by orbital depairing14–16. The superconducting patches, on the other
hand, are CDW-free, as they are in bulk optimally doped YBCO.
Due to the mesoscopic phase separation, the interaction between
the two order parameters is strongly reduced, thus explaining
the lack of suppression of the CDW order parameter below Tc
(Fig. 3). However, there is no direct evidence for such mesoscopic
phase separation, and the mechanisms that might give rise to such
behaviour remain unclear.

Second, superconductivity and CDW order may be microscop-
ically ‘intertwined’. Since CDW order is strengthened by proximity
to the interfaces, and is fully established at the superconducting
Tc, the superconducting order parameter has to adjust to the pre-
existing CDW order, perhaps by forming a modulated state akin
to the ‘Fulde–Ferrell–Larkin–Ovchinnikov’ state in ferromagnetic

NATUREMATERIALS | VOL 15 | AUGUST 2016 | www.nature.com/naturematerials

© 2016 Macmillan Publishers Limited. All rights reserved
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YBCO-LCMO	heterostructure	

A.	Frano	et	al.,	
Nat.	Mater.	15,	831	(2016)	D.	Faus2	et	al.,		

Science,	331,	189	(2011)	

SC	

CDW	

Stripe-ordered	LESCO	

D.	NicoleZ		et	al.,		
PRB	90,	100503	(2014)	
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Figure 1. (a) Temperature-doping phase diagram of LBCO, as determined in Ref. 7. Tc, 

TCO, TSO, and TLT indicate the superconducting, charge-order, spin-order, and 

structural transition temperatures, respectively. Colored circles indicate the different 

dopings and temperatures for which data are reported here. (b) Periodic stacking of 

CuO2 planes in the stripe phase. The stripe orientation rotates by 90° between layers. 

(c) Equilibrium c-axis optical properties of LBCO. Left panel: THz reflectivity of the 

three samples at T = 5 K. The region investigated in this experiment is shaded in gray. 

Right panel and inset: broadband c-axis reflectivity and optical conductivity of LBCO 

from Ref. 27. Red arrows indicate the pump photon energy. 

  

Stripe-ordered	LBCO	

transition metal dichalcogenides (TMDCs) 

12/11/2015 SFB-Workshop "Exotic States of Condensed Matter" 7 

metals/CDWs/superconductors 

NbSe2 doped MoS2 

Nat. Nanotechnol. 10, 765 (2015) Science 338,  1193 (2012) X.	Xi	et	al.,	Nat.	Nanotechnol.	10,	
765	(2015)	

NbSe2	
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Competing orders 
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- attractive -U Hubbard model 
- degeneracy of SC and CDW at 
particle-hole symmetry (SU(2)) 
- SO(4) symmetry (SC, CDW, eta 
pairing) 
 
  

VOLUME 63, NUMBER 19 PHYSICAL REVIEW LETTERS 6 NOVEMBER 1989

rl Pairing and Off-Diagonal Long-Range Order in a Hubbard Model

Chen Ning Yang
State University ofNew York, Stony Brook, New York l 1794-3840

and Chinese University ofHong KongH, ong Kong
(Received 22 August 1989)

It is shown in a simple Hubbard model that through a mechanism called g pairing one can construct
many eigenstates of the Hamiltonian possessing OA-diagonal iong-range order. The intrapair distance is
small. It is shown that these eigenstates are metastable and possess an energy gap.

PACS numbers: 74.20.—z, 05.30.Fk

Since the discovery of high-temperature superconduc-
tivity' in 1986-1987 there have been many proposals
for the theoretical mechanism for such phenomena.
None has been generally accepted. Most proposals con-
cern some kind of Hubbard model, which unfortunately
is difFicult to solve except in one dimension.
In this paper we show that for the simplest Hubbard

model in three dimensions (also in one or two dimen-
sions), many eigenfunctions of the Hamiltonian can be
explicitly written down. Of particular interest is the fact
that these eigenfunctions possess off-diagonal long-range
order (ODLRO), the property of a dynamical system
that is essential for the phenomena of superconductivity
and superAuidity. This is a rather subtle long-range or-
der, especially for fermions, and no previous models of
fermions in dimensions higher than one has been proven
to have eigenstates with ODLRO. The usual BCS wave
function does have ODLRO via the mechanism of
Cooper pairs, but it is not an eigenstate of a Hamiltoni-
an system with a local potential energy.
The mechanism essential for the eigenfunctions of the

present paper is a g-pairing mechanism which seems to
be peculiar to lattice models, and is absent in any contin-
uum model.
For the attractive case these eigenfunctions are shown

to be metastable at low temperatures. They possess
ODLRO, and thus are superconducting.
(I) ri pairing Consid. e—r a three-dimensional Hub-

bard model on a periodic L xL x L lattice where L is even
(e) 0):
H=T+ V,

given by

ay=(L) 'l'ga, exp( —ik r), (4)

where

k =2tr/L (three-dimensional integer) (mod2n) . (5)
We choose the fermion operators so that

[al„alt]p =b(k —k'), etc. ,
but

[al„bl, ] = [al„bl, ] =O. (6)
The kinetic energy T of Eq. (2) is trivially diff'erent

from the kinetic energy in the usual Hubbard model in
the appearance of the term 6, which is inserted here to
make T a positive operator. This insertion makes it pos-
sible to compare with such concepts in the continuum
problem as particles, collisions, bound states, etc. No
physical conclusion is altered by this insertion.
We shall show that many eigenstates of the Hamil-

tonian H can be explicitly written down with the aid of
an operator g defined as

ri=gat, b -1„ =tr( , tr, tr)tr.
k

(7)

Notice that this definition is only meaningful when L is
even, because otherwise k and x—k would not be simul-
taneously possible k values. Using (4), we also have
ri=ge "'a,b, .

T=eg (6—2cosk„—2 cosks —2 cosk, ) It is easy to prove
qtT —Tg~ =—12eg~, (9)

X (al, ay+ bltbg),
V=2W+a ta,b tb

(2)
(3)

where a, and b, are coordinate-space annihilation opera-
tors for spin-up and spin-down electrons, respectively,
and r is a three-dimensional integral coordinate variable
that designates the L x L xL lattices sites. The annihila-
tion operators a~ and bg are momentum-space operators

by going into the representation where all ai, ap and all
be~bi, are simultaneously diagonal. The basic kets in this
representation will be denoted by I n) Now ta. ke
(n'I

I n) of both sides of (9). Since T is diagonal in this
representation, (9) becomes
&n'

I ri In&[&n I T I n&
—&n'

I T I
n'&]

12e(n I
Gt

I n) . (9 )

2144 l989 The American Physical Society

C.	N.	Yang	
	

S.-C.	Zhang	

SC	

CDW	

also	see:	Demler,	Hanke,	Zhang,	SO(5)	theory	of	an5ferromagne5sm	and	dSC,	RMP	76,	909	(2004)		
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Driven SC/CDW: Gauge field coupling  
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CDW ~ A 
1-photon resonance 

2ΔΩ

...	laser	liis	SC/CDW	degeneracy	

...	Goldstone-like	collec5ve	mode?	

SC	

CDW	

2Δ
Ω

Ω

SC ~ A2 

2-photon resonance 
Tsuji&Aoki,	PRB	92,	064508	(2015)	
Cea	et	al.,	PRB	93,	180507	(2016)	
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Model 
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2D	square	lakce	+	a=rac5ve	U	+	mean-field	decoupling	
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Mean-field equations 
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nonlinear equations: 
self-consistency in real time 
 
 
  

eta	pairing	provides	coupling	

Equations of motion for electronic driving:  

Nonequilibrium:	
Periodic	driving	field:	A(t)	=	Amax	sin(ωt)	(ex	+	ey)	
Amax	=	5	x	10-5,	Emax	~	10-100	V/cm	–	weak	fields!	
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Gap resonance – coexisting initial state 
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Below	resonance:	
SC	down,	CDW	up	

SC	

CDW	
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Gap resonance – coexisting initial state 
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SC	

CDW	

Above	resonance:	
SC	up,	CDW	down	

-10

-5

 0

 5

 10

 15

R
e
 ∆

 [
m

e
V

]
CDW

SC
total

ω = 19 meV, below resonance

(a)

-15

-10

-5

 0

 5

 10

 15

0 50 100 150 200 250 300

Im
 ∆

 [
m

e
V

 x
 1

0
-3

]

time [ps]

ETA(b)

SC
CDW
total

ω = 21 meV, above resonance

(d)

0 50 100 150 200 250 300

time [ps]

ETA(e)



Max Planck Institute for the Structure and Dynamics of Matter 

Gap resonance – coexisting initial state 
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„Floquet	5me	crystal“	without	many-
body	localiza5on??	
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Gap resonance 
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collec5ve	mode	frequency	set	by	light-induced	eta	pairing	
amplitude,	which	gives	„mass“	to	collec5ve	mode	
	
resonance	at	photon	frequency	ω=2Δ =	single-par5cle	gap	
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Gap resonance – why? 
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short	5me	expansion:	leading	contribu5on	resonant	for	light-
induced	eta	pairing	–	sign	change	when	crossing	ω=2Δ

->	this	triggers	the	dynamics	between	SC	and	CDW	
	
generic	mechanism	for	coexis5ng,	non-commu5ng	orders!	

η~k;1ðtÞ ¼ −A~k;0Δ0g~k;0
−ω sinð2E~ktÞ þ 2E~k sinðωtÞ

E~kð4E
2
~k
− ω2Þ

; ð6Þ

with A~k;0 ≡ Amaxðv~k;x þ v~k;yÞ. The vanishing imaginary part
of η~k;1 together with the odd-in-momentum real part due to
A−~k;0 ¼ −A~k;0 implies that Δη;1ðtÞ ¼ 0. However, if we use
η~k;1 as a seed for the next iteration, focusing on the next order
in the field of the imaginary part of η pairing, we find

Imη~k;2ðtÞ ¼ 2A~k;0

Z
t

0
η~k;1ðt

0Þ sinðωt0Þdt0

¼
2A2

~k;0
Δ0g~k;0t

4E2
~k
− ω2

þ η~k;2;oscðtÞ; ð7Þ

wherewe isolate the first term, which grows linearly in time.
The remaining terms, η~k;2;oscðtÞ, oscillate with frequency ω
and time average to zero.
Noting that the dominant contribution comes from near

the Fermi level, where ϵ~k ¼ 0 and E~k ¼ Δ0, this result
explains the ω ¼ 2Δ0 resonance and shows how the laser
frequency controls the initial sign of the induced Δη.
Importantly, below the resonance, Imη~k;2 is positive; hence,
Δη is negative, with a sign change when going above
resonance, as observed in the numerics. Together with the
correlation between this sign and the respective upturn or
downturn ofΔSC andΔCDW (see Fig. 1), the laser control of
SC and CDWorders is thus understood as a consequence of
the linear-in-the-field coupling of charge-modulated orders
versus the quadratic-in-the-field coupling of the super-
conducting condensate, together with the way SC and
CDWorders couple to η pairing in Eq. (4). Notice that this
coupling is generic: η pairing is given by the commutator
between the SC and CDW operators, whose expectation
values determine the gap values according to Eq. (2).
Therefore, the mathematical structure enabling the induced
η pairing to control the enhancement and suppression of SC
and CDW appears naturally for competing orders.
Finally, we turn to the question as to whether this

mechanism can also explain light-induced superconductiv-
ity when starting from an initial state with predominant
CDW order. To this end, we investigate the case in which
we choose an initial solution with ðΔCDW;0=ΔSC;0Þ ¼ 99.
This ratio is chosen to provide a seed for ΔSC, which is
needed in a mean-field treatment to obtain a nonzero ΔSC.
We show the dynamics for blue-detuned driving fields with
three different maximal field strengths in Fig. 3. Apparently
it is possible to light induce SC starting from a state which
has predominant CDW order. The approximate conserva-
tion of the total gap is still observed. Thus, in all cases the
maximal SC order reached corresponds to the initial
CDW order. At small field strength, a regular oscillation
is found for the considered times, whereas at larger driving
fields, the sign of the SC order can change and regular
oscillations are only seen in certain time windows. The
regular oscillations behave very similarly to the previously

considered case of a balanced initial order. In particular, a
finite value of ImΔη is again induced. Its oscillation
frequency corresponds to the one of the CDW order, and
the induced SC order has twice this frequency. As in the
case of the initially balanced order, the slow oscillation
frequency in the regular part of the oscillations corresponds
again to the amplitude of the induced η pairing. The time on
which the initial switching from CDW to SC happens, i.e.,
the time for SC to reach its first maximum, scales
approximately inversely with the field strength Amax.
This can be seen from Fig. 3 by noting that the first
maximum of ΔSC is reached in half the time when Amax is
doubled, as is the amplitude of η pairing. Notice that this
observation is again consistent with the fact that the
oscillation frequency scales linearly with the induced η
pairing. In addition, we note that we have also checked that
light-induced superconductivity is stable after the field is
switched off in a situation with a laser pulse of finite
duration. In that case, η pairing is induced and remains
constant after the pulse, while ΔSC and ΔCDW continue
oscillating, preserving the total gap, at a slow frequency
determined by the magnitude of Δη.
In conclusion, we solved a minimal model of competing

coexisting orders in the time domain. A continuous-wave
laser tuned to frequencies near the 2Δ0 resonance was
shown to control the orders in real time on picosecond time
scales for extremely small laser intensities. This low-field
stimulation of coexisting orders apparently requires a
symmetry between these orders, in this case SOð4Þ
symmetry, leading to a perfect ground-state degeneracy
and the existence of a long-wavelength Goldstone mode
that corresponds to a rotation of the general vector order
parameter. If this degeneracy did not exist, it would cost
a finite amount of excitation energy to rotate from one state
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FIG. 3. Light-induced superconductivity. (a) ΔSCðtÞ and
ΔCDWðtÞ for a driving field with ω ¼ 21 meV and
Amax ¼ 5 × 10−5, starting from an initial state with mostly
CDW order. (b) The corresponding ΔηðtÞ (“ETA”). (c), (d)
The same for Amax ¼ 10 × 10−5. (e), (f) The same for
Amax ¼ 20 × 10−5. Dashed black line indicates the total half gap.
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Inducing superconductivity 
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99%	CDW	ini5al	state	
Drive	slightly	above	gap	
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SC	comes	alive!	
Irregular	behavior	for	
stronger	driving	
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-  laser-controlled switching between SC/CDW 
-  path to understanding of light-induced superconductivity 

and light-induced CDW in systems with competing orders? 

Phys.	Rev.	LeV.	118,	087002	(2017)	

Akiyuki Tokuno   Antoine Georges   Corinna Kollath 
 Palaiseau/Paris/Geneva               University of Bonn 

Tight-binding model + time-dependent mean-field theory: 
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Resonant excitation of crystal lattice 
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H = AQIR
2QRS

Rec5fied	phonon	field	èdirec5onal	force	

QRS	

„nonlinear	phononics“	Simplest	model:	classical	dynamics	
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Nonlinear phononics as an ultrafast route to
lattice control
M. Först1*, C. Manzoni1†, S. Kaiser1, Y. Tomioka2, Y. Tokura3, R. Merlin4 and A. Cavalleri1*
Two types of coupling between electromagnetic radiation and
a crystal lattice have so far been identified experimentally. The
first is the direct coupling of light to infrared-active vibrations
carrying an electric dipole. The second is indirect, involving
electron–phonon coupling and occurring through excitation of
the electronic system; stimulated Raman scattering1–3 is one
example. A third path, ionic Raman scattering (IRS; refs 4,5),
was proposed 40 years ago. It was posited that excitation
of an infrared-active phonon could serve as the intermediate
state for Raman scattering, a process that relies on lattice
anharmonicities rather than electron–phonon interactions6.
Here, we report an experimental demonstration of IRS using
femtosecond excitation and coherent detection of the lattice
response.We show how this mechanism is relevant to ultrafast
optical control in solids: a rectified phonon field can exert
a directional force onto the crystal, inducing an abrupt
displacement of the atoms from their equilibriumpositions. IRS
opens up a new direction for the optical control of solids in their
electronic ground state7–9, different fromcarrier excitation10–14.

Crystal lattices respond to mid-infrared radiation with oscilla-
tory ionic motions along the eigenvector of the resonantly excited
vibration. Let QIR be the normal coordinate, PIR the conjugate
momentum and �IR the frequency of the relevant infrared-active
mode, which we assume to be non-degenerate, and HIR =N (P2

IR +
�2

IRQ2
IR)/2 its associated lattice energy (N is the number of cells).

For pulses that are short compared with the many-picoseconds
decay time of zone-centre optical phonons15, one can ignore dis-
sipation, and the equation of motion is

Q̈IR +�2
IRQIR = e⇤E0p

M IR
sin(�IRt )F(t )

where e⇤ is the effective charge,MIR is the reducedmass of themode,
E0 is the amplitude of the electric field of the pulse and F is the pulse
envelope. At timesmuch longer than the pulse width

QIR(t )=
Z +1

�1
F(⌧ )d⌧

�
e⇤E0

�IR
p
M IR

cos(�IRt ) (1)

For ionic Raman scattering (IRS), the coupling of the infrared-
active mode to Raman-active modes is described by the Hamilto-
nianHA =�NAQ2

IRQRS, whereA is an anharmonic constant andQRS
is the coordinate of a Raman-active mode, of frequency �RS, which
is also taken to be non-degenerate. Thus, the equation of motion
for the Raman mode is

Q̈RS +�2
RSQRS =AQ2

IR (2)

1Max-Planck Research Group for Structural Dynamics, University of Hamburg, Center for Free Electron Laser Science, 22607 Hamburg, Germany,
2Correlated Electron Engineering Group, AIST, Tsukuba, Ibaraki, 305-8562, Japan, 3Department of Applied Physics, University of Tokyo, Tokyo, 113-8656,
Japan, 4Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA. †Present address: CNR-IFN Dipartimento di Fisica,
Politecnico di Milano, 20133 Milan, Italy. *e-mail: michael.foerst@mpsd.cfel.de; andrea.cavalleri@mpsd.cfel.de.

Ignoring phonon field depletion, it follows from equation (1) that
excitation of the infrared mode leads to a constant force on the
Raman mode which, for �IR � �RS, undergoes oscillations of
the form

QRS(t )=
A

2�2
RS

Z +1

�1
F(⌧ )d⌧

�2 (e⇤E0)2

MIR�
2
IR
(1�cos�RSt ) (3)

around a new equilibrium position. Hence, the coherent nonlinear
response of the lattice results in rectification of the infrared
vibrational field with the concomitant excitation of a lower-
frequency Raman-active mode.

We stress that equation (2) describes a fundamentally different
process from conventional stimulated Raman scattering16–18, for
which the driving term 4̂ in the equation of motion Q̈RS +
�2

RSQRS =
⌦
4̂

↵
depends only on electron variables (see also

Supplementary Information).
To date, phonon nonlinearities have been evidenced only

by resonantly enhanced second harmonic generation19,20 or by
transient changes in the frequency of coherently excited Raman
modes in certain semimetals at high photoexcitation21. However,
the experimental demonstration of IRS,which offers significant new
opportunities for materials control, is still lacking.

Ultrafast optical experiments were performed on single crystal
La0.7Sr0.3MnO3, synthesized by the floating zone technique and
polished for optical experiments. La0.7Sr0.3MnO3 is a double-
exchange ferromagnet with rhombohedrally distorted perovskite
structure. Enhanced itinerancy of conducting electrons and
relaxation of a Jahn–Teller distortion are observed below the
ferromagnetic Curie temperature TC = 350K (refs 22–24). As
a result of the relatively low conductivity, phonon resonances
are clearly visible in the infrared spectra at all temperatures25.
The sample was held at a base temperature of 14 K, in
its ferromagnetic phase, and was excited using femtosecond
mid-infrared pulses tuned between 9 and 19 µm, at fluences
up to 2mJ cm�2. The pulse duration was determined to be
120 fs across the whole spectral range used here. The time-
dependent reflectivity was measured using 30-fs pulses at a
wavelength of 800 nm.

Figure 1a shows time-resolved reflectivity changes for excitation
at 14.3-µm wavelength at 2-mJ cm�2 fluence, resonant with
the 75-meV (605 cm�1) Eu stretching mode25,26. The sample
reflectivity decreased during the pump pulse, rapidly relaxing into
a long-lived state and exhibiting coherent oscillations at 1.2 THz
(40 cm�1). This frequency corresponds to one of the Eg Raman
modes of La0.7Sr0.3MnO3 associated with rotations of the oxygen
octahedra26,27, as sketched in the figure. Consistent with the Eg
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exchange ferromagnet with rhombohedrally distorted perovskite
structure. Enhanced itinerancy of conducting electrons and
relaxation of a Jahn–Teller distortion are observed below the
ferromagnetic Curie temperature TC = 350K (refs 22–24). As
a result of the relatively low conductivity, phonon resonances
are clearly visible in the infrared spectra at all temperatures25.
The sample was held at a base temperature of 14 K, in
its ferromagnetic phase, and was excited using femtosecond
mid-infrared pulses tuned between 9 and 19 µm, at fluences
up to 2mJ cm�2. The pulse duration was determined to be
120 fs across the whole spectral range used here. The time-
dependent reflectivity was measured using 30-fs pulses at a
wavelength of 800 nm.

Figure 1a shows time-resolved reflectivity changes for excitation
at 14.3-µm wavelength at 2-mJ cm�2 fluence, resonant with
the 75-meV (605 cm�1) Eu stretching mode25,26. The sample
reflectivity decreased during the pump pulse, rapidly relaxing into
a long-lived state and exhibiting coherent oscillations at 1.2 THz
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modes of La0.7Sr0.3MnO3 associated with rotations of the oxygen
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M.	Mitrano	et	al.,	
Nature	530,	461	(2016)	
Lakce	control	of	reflec5vity	in	K3C60	

Light-induced superconductivity? 

Hard	problem!	(see	Knap	&	Demler;	Murakami,	
Eckstein,	Werner;	Mazza	&	Georges	...	)	
	
Simpler	ques5on:	what	happens	to	electron-
phonon	coupling	under	driving?	
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Electrons 
(Fermi gas/liquid) 

Bosons 
(e.g., Einstein phonon) 

Electron-boson 
coupling 

Holstein	model	(minimal	version):	

Σ =

Ω

g	 g	
Migdal-Eliashberg	theory	
boson-mediated	pairing	

N(EF)	
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PRB	95,	024304	(2017)	
enhanced	electron-phonon	for	pump	on	resonance	with	IR	
phonon	
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transient	reduc5on	of	THz	Drude	weight	 enhanced	tr-ARPES	relaxa5on	

PRB	95,	024304	(2017)	

3-fold	enhancement	of	effec5ve	λel-ph!	Why?	
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Idea:	Drive	nonlinearly	coupled	phonon	and	look	at	electronic	response	

2

coherent state in Ref. 36,

Ĥ(t) = �J
X

�

(c†1,�c2,� + c†2,�c1,�)

+ g2
X

�,l=1,2

n̂l,�(bl + b†l )
2

+ ⌦
X

l=1,2

b†l bl + F (t)
X

l=1,2

(bl + b†l ), (1)

where J is the electronic hopping matrix element be-

tween sites l = 1, 2, c(†)l,� annihilates (creates) an electron
of spin � =", # on site l with electron number operator
n̂l,� ⌘ c†l,�cl,�, g2 is the nonlinear electron-phonon cou-
pling with bosonic phonon annihilation (creation) opera-

tors b(†)l on site l, ⌦ is the phonon frequency, and F (t) is
a driving field coupling to the phononic position (dipole)
operator x̂l ⌘ bl + b†l . In a generic lattice with inversion
symmetry, the phonon modes to which F (t) couples are
ungerade and thus infrared active, which does not allow
for a linear term and makes the g2 term the lowest order
allowed interaction term for infrared phonons. By multi-
plying out the (bl+b†l )

2 term, one finds that the nonlinear
interaction renormalizes the phonon frequency locally on
site l to ⌦e↵ ⌘ ⌦+2g2hn̂li, where hn̂li ⌘ hn̂l,"+ n̂l,#i = 1
is the average local electronic occupation with electron
number operator n̂l,� ⌘ c†l,�cl,�. The system is driven
out of equilibrium by a time-dependent periodic field

F (t) = F sin(!t), (2)

with laser frequency !.
The time-evolved wave function of the system is com-

puted by starting in the ground state | 0i at time t = 0
and propagating forward in time,

| (t)i = T e�i
´ t
0 H(t0)dt0 | 0i. (3)

In practice we use the commutator-free fourth order
scheme introduced in Ref. 37 to compute the time-
ordered (T ) exponentials, which allows us to use a rel-
atively coarse time step of �t = 0.5 without time dis-
cretization issues. Convergence in the time step size was
checked. The phononic Hilbert space is truncated us-
ing up to 20 phonons per site, and convergence checked.
Signatures of electron-phonon coupling in the electronic
single-particle spectrum are extracted by computing the
time-resolved electronic spectrum38 for site 1 and spin "
with spectral intensity

I(!, t0) = Re

ˆ
dt1 dt2 ei!(t1�t2)st1,t2,⌧ (t0)

⇥
h
h (t2)|c†1,"T e�i

´ t2
t1

H(t)dtc1,"| (t1)i+

+ h (t1)|c1,"T e�i
´ t1
t2

H(t)dtc†1,"| (t2)i
i
, (4)

using the retarded Green’s function. The second and
third lines in Eq. (4) are the lesser and greater Green’s

functions, which contain information about the occupied
and unoccupied spectral intensities, respectively. We em-
ploy a Gaussian probe pulse shape function

st1,t2,�(t0) ⌘
1

2⇡�
e�

(t1�t0)2

2�2 e�
(t2�t0)2

2�2 (5)

centered around probe time t0 with probe duration �.
The duration of the probe pulse plays the role of the
time scale of an e↵ective degree of freedom that “sees”
signatures of e↵ective couplings out of equilibrium.
We set J = 0.15, ⌦ = 0.5, and g2 = �0.05 and prop-

agate the wavefunction from t = 0 to t = 50. For the
given parameters the renormalized phonon frequency is
⌦e↵ = 0.40. We note that this choice of negative g2 is not
mandatory, and the light-induced spectral weight trans-
fer discussed in the following can be observed for positive
g2 as well. However, the present case is particularly in-
teresting, as the phonon is softened by the coupling to
the electrons, and in principle strong driving could also
lead to a dynamical lattice instability in this case. The
probe duration is taken to be � = 8 with center time
t0 = 25.

III. RESULTS

A. Spectral weight transfer
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FIG. 1. Light-induced spectral weight transfer. Single-
particle spectrum for g2 = �0.05 and di↵erent field strengths
F , as indicated. Spectra are shifted vertically for clarity. The
dashed vertical line indicates the peak position of the bonding
state in the undriven case. For the lowest curve, the coherent
part of the spectrum that emerges from the main peaks at
weak driving field is indicated by the grey-shaded area.

Fig. 1 shows the spectral intensity during laser irradi-
ation with slightly o↵-resonant field frequency ! = 0.55
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st1,t2,�(t0) ⌘
1

2⇡�
e�

(t1�t0)2

2�2 e�
(t2�t0)2

2�2 (5)

centered around probe time t0 with probe duration �.
The duration of the probe pulse plays the role of the
time scale of an e↵ective degree of freedom that “sees”
signatures of e↵ective couplings out of equilibrium.
We set J = 0.15, ⌦ = 0.5, and g2 = �0.05 and prop-

agate the wavefunction from t = 0 to t = 50. For the
given parameters the renormalized phonon frequency is
⌦e↵ = 0.40. We note that this choice of negative g2 is not
mandatory, and the light-induced spectral weight trans-
fer discussed in the following can be observed for positive
g2 as well. However, the present case is particularly in-
teresting, as the phonon is softened by the coupling to
the electrons, and in principle strong driving could also
lead to a dynamical lattice instability in this case. The
probe duration is taken to be � = 8 with center time
t0 = 25.

III. RESULTS

A. Spectral weight transfer
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FIG. 1. Light-induced spectral weight transfer. Single-
particle spectrum for g2 = �0.05 and di↵erent field strengths
F , as indicated. Spectra are shifted vertically for clarity. The
dashed vertical line indicates the peak position of the bonding
state in the undriven case. For the lowest curve, the coherent
part of the spectrum that emerges from the main peaks at
weak driving field is indicated by the grey-shaded area.

Fig. 1 shows the spectral intensity during laser irradi-
ation with slightly o↵-resonant field frequency ! = 0.55

also	cf.	
Kennes	et	al.,	
Nature	Physics	13,	479	(2017),	
1609.03802	

electron-occupa5on	dependent	
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coherent state in Ref. 36,

Ĥ(t) = �J
X

�

(c†1,�c2,� + c†2,�c1,�)

+ g2
X

�,l=1,2

n̂l,�(bl + b†l )
2

+ ⌦
X

l=1,2

b†l bl + F (t)
X

l=1,2

(bl + b†l ), (1)

where J is the electronic hopping matrix element be-

tween sites l = 1, 2, c(†)l,� annihilates (creates) an electron
of spin � =", # on site l with electron number operator
n̂l,� ⌘ c†l,�cl,�, g2 is the nonlinear electron-phonon cou-
pling with bosonic phonon annihilation (creation) opera-

tors b(†)l on site l, ⌦ is the phonon frequency, and F (t) is
a driving field coupling to the phononic position (dipole)
operator x̂l ⌘ bl + b†l . In a generic lattice with inversion
symmetry, the phonon modes to which F (t) couples are
ungerade and thus infrared active, which does not allow
for a linear term and makes the g2 term the lowest order
allowed interaction term for infrared phonons. By multi-
plying out the (bl+b†l )

2 term, one finds that the nonlinear
interaction renormalizes the phonon frequency locally on
site l to ⌦e↵ ⌘ ⌦+2g2hn̂li, where hn̂li ⌘ hn̂l,"+ n̂l,#i = 1
is the average local electronic occupation with electron
number operator n̂l,� ⌘ c†l,�cl,�. The system is driven
out of equilibrium by a time-dependent periodic field

F (t) = F sin(!t), (2)

with laser frequency !.
The time-evolved wave function of the system is com-

puted by starting in the ground state | 0i at time t = 0
and propagating forward in time,

| (t)i = T e�i
´ t
0 H(t0)dt0 | 0i. (3)

In practice we use the commutator-free fourth order
scheme introduced in Ref. 37 to compute the time-
ordered (T ) exponentials, which allows us to use a rel-
atively coarse time step of �t = 0.5 without time dis-
cretization issues. Convergence in the time step size was
checked. The phononic Hilbert space is truncated us-
ing up to 20 phonons per site, and convergence checked.
Signatures of electron-phonon coupling in the electronic
single-particle spectrum are extracted by computing the
time-resolved electronic spectrum38 for site 1 and spin "
with spectral intensity

I(!, t0) = Re

ˆ
dt1 dt2 ei!(t1�t2)st1,t2,⌧ (t0)

⇥
h
h (t2)|c†1,"T e�i

´ t2
t1

H(t)dtc1,"| (t1)i+

+ h (t1)|c1,"T e�i
´ t1
t2

H(t)dtc†1,"| (t2)i
i
, (4)

using the retarded Green’s function. The second and
third lines in Eq. (4) are the lesser and greater Green’s

functions, which contain information about the occupied
and unoccupied spectral intensities, respectively. We em-
ploy a Gaussian probe pulse shape function

st1,t2,�(t0) ⌘
1

2⇡�
e�

(t1�t0)2

2�2 e�
(t2�t0)2

2�2 (5)

centered around probe time t0 with probe duration �.
The duration of the probe pulse plays the role of the
time scale of an e↵ective degree of freedom that “sees”
signatures of e↵ective couplings out of equilibrium.
We set J = 0.15, ⌦ = 0.5, and g2 = �0.05 and prop-

agate the wavefunction from t = 0 to t = 50. For the
given parameters the renormalized phonon frequency is
⌦e↵ = 0.40. We note that this choice of negative g2 is not
mandatory, and the light-induced spectral weight trans-
fer discussed in the following can be observed for positive
g2 as well. However, the present case is particularly in-
teresting, as the phonon is softened by the coupling to
the electrons, and in principle strong driving could also
lead to a dynamical lattice instability in this case. The
probe duration is taken to be � = 8 with center time
t0 = 25.

III. RESULTS

A. Spectral weight transfer

 0

 2

 4

 6

 8

 10

-2 -1.5 -1 -0.5  0  0.5  1

S
p

e
ct

ra
l I

n
te

n
si

ty
 I

(ω
,t

0
)

Energy ω

F=0.00
F=0.05
F=0.10
F=0.15
F=0.20
F=0.25
F=0.30

FIG. 1. Light-induced spectral weight transfer. Single-
particle spectrum for g2 = �0.05 and di↵erent field strengths
F , as indicated. Spectra are shifted vertically for clarity. The
dashed vertical line indicates the peak position of the bonding
state in the undriven case. For the lowest curve, the coherent
part of the spectrum that emerges from the main peaks at
weak driving field is indicated by the grey-shaded area.

Fig. 1 shows the spectral intensity during laser irradi-
ation with slightly o↵-resonant field frequency ! = 0.55

Reduced	coherence	peaks	
with	stronger	driving	
	
Looks	like	enhanced	el-ph	
coupling	

light-induced	polaron	forma5on	

PRB	95,	205111	(2017)	

2-phonon	shakeoff	

Here:	g2=-0.05	<	0	
Does	not	ma=er	for	light-enhanced	coupling	
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Scaling	of	coherent	spectral	weight	loss:	propor5onal	to	
field	intensity	F^2	consistent	with	experiments	

3

and field strengths F = 0.00 . . . 0.30 as indicated. In the
undriven case (top), there are dominant spectral lines
corresponding to the bonding and antibonding states,
with energy position of the bonding state indicated by
the vertical dashed line. One can also see faint two-
phonon sidepeaks roughly 2⌦e↵ = 0.80 below and above
the main peaks, respectively. As the field is turned on,
the main peaks broaden and lose spectral weight. At the
same time they also shift down in energy. This line shift
stems mainly from the local electronic energy contribu-
tion g2n̂lh2b†l bl + 1i < 0 (for g2 < 0), which increases in
magnitude approximately linearly with F , as more en-
ergy is pumped into the phonons when F increases. For
the strongest drivings, one clearly sees the emergence of
incoherent spectral weight and strongly reduced coherent
peaks, indicating dynamical polaron formation via spec-
tral weight transfer. By varying the driving frequency,
we have checked that the additional peaks in the inco-
herent part of the spectrum are not Floquet sidepeaks30

but really incoherent spectral weight related to electron-
phonon coupling. We also note that spectral redistri-
bution in pump-probe experiments was investigated in
Refs. 39 and 40 for electronically driven systems. In
stark contrast to the present work, it was found that elec-
tronically driven systems usually look “less correlated”
rather than “more correlated” compared to thermal equi-
librium.

B. Field scaling
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FIG. 2. Field intensity scaling. Spectral weight loss in
the coherent peaks, extracted by fitting a sum of Gaussians
to the corresponding peaks, as a function of field intensity
F

2 at fixed g2 = �0.05 and two di↵erent driving frequencies
! = 0.55 and ! = 0.50, respectively. The straight lines are
guides to the eye.

Having demonstrated that a driven nonlinearly cou-
pled phonon leads to coherence-incoherence phenomena

in the time-resolved electronic spectra, we now investi-
gate quantitative aspects of the laser-induced spectral
redistribution. To this end, we fit a pair of Gaussians
to the coherent part of the spectrum, as shown in one
example in Fig. 1 for the lowest curve. We subtract the
fitted spectral weight from the one at F = 0 and obtain
the spectral weight loss shown in Fig. 2 as a function of
the pump field intensity F 2 for two di↵erent driving fre-
quencies. This spectral weight loss is proportional to the
coherent quasiparticle weight (Z) that is renormalized
from its value Z0 at F = 0. Using that the loss Z0 � Z
is proportional to � � �0, the enhancement of e↵ective
dimensionless electron-phonon coupling �, a proportion-
ality that holds at weak coupling. Apparently Fig. 2
suggests

�� �0 / F 2, (6)

where �0 is the dimensionless electron-phonon coupling
at zero field. Only at the strongest fields considered, we
observe a saturation e↵ect deviating from linear behavior,
which is expected since the maximal spectral weight loss
is bounded (for two electrons, 2Z 2 [0, 2]) and the linear
behavior of the spectral weight loss with e↵ective � only
holds at small �. Keeping in mind the uncertainty that
comes with the fitting of quasiparticle spectral weight,
the linear scaling at not too strong fields leads us to pre-
dict a linear scaling of light-enhanced electron-phonon
coupling with the driving field intensity or, equivalently,
the pump fluence in a pump-probe experiment. One can
also see in Fig. 2 that the e↵ect is stronger as the driv-
ing frequency ! moves closer to the resonance frequency
⌦e↵ = 0.40.

We now seek a minimal explanation for the observed
scaling behavior. To this end, we first notice that a
driven mode is expected to approach coherent state with
well-defined phonon coordinate exhibiting quasi-classical
forced oscillations hx̂l(t)i / F sin(!t), described by bo-
son coherent states. A mean-field decoupling yields
⌦e↵ = ⌦+2g2hn̂li and an interaction term g2n̂l(blhbl(t)i+
b†l hb

†
l (t)i, with oscillating mean fields hbl(t)i and hb†l (t)i

such that hbl(t) + b†l (t)i / F sin(!t). In the mean-field
picture, the interaction looks like a linear interaction with
a time-dependent interaction vertex that scales linearly in
g2, and via the coherent-phonon mean fields also linearly
in F .

In many-body perturbation theory, the lowest-order
time-nonlocal self-energy contribution is the first Born
approximation, or Migdal diagram,

⌃(t, t0) = ig(t)g⇤(t0)G(t, t0)D(t, t0), (7)

where we have dropped site and spin indices and in-
troduced the local electronic Green’s function G(t, t0) ⌘
�ihTCc(t)c†(t0)i and phonon Green’s function D(t, t0) ⌘
�ihTCx̂(t)x̂(t0)i on the three-branch Kadano↵-Baym-
Keldysh contour C with contour-time ordering TC . From
this Migdal diagram one can see that the above F 2

scaling is indeed explained via the F 2 scaling of the

Theory	 Data	by	E.	Pomarico,	
unpublished	

PRB	95,	205111	(2017)	



Max Planck Institute for the Structure and Dynamics of Matter 

Quantum nonlinear phononics 

30	

Σ =

g	 g	
Migdal-Eliashberg	theory	

LIGHT-ENHANCED ELECTRON-PHONON COUPLING FROM . . . PHYSICAL REVIEW B 95, 205111 (2017)

 0

 2

 4

 6

 8

 10

-2 -1.5 -1 -0.5  0  0.5  1

S
pe

ct
ra

l I
nt

en
si

ty
 I(

ω
,t 0

)

Energy ω

F=0.00
F=0.05
F=0.10
F=0.15
F=0.20
F=0.25
F=0.30

FIG. 1. Light-induced spectral weight transfer. Single-particle
spectrum for g2 = −0.05 and different field strengths F , as indicated.
Spectra are shifted vertically for clarity. The dashed vertical line
indicates the peak position of the bonding state in the undriven
case. For the lowest curve, the coherent part of the spectrum that
emerges from the main peaks at weak driving field is indicated by the
gray-shaded area.

B. Field scaling

Having demonstrated that a driven nonlinearly coupled
phonon leads to coherence-incoherence phenomena in the
time-resolved electronic spectra, we now investigate quanti-
tative aspects of the laser-induced spectral redistribution. To
this end, we fit a pair of Gaussians to the coherent part of the
spectrum, as shown in one example in Fig. 1 for the lowest
curve. We subtract the fitted spectral weight from the one at
F = 0 and obtain the spectral weight loss shown in Fig. 2
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FIG. 2. Field intensity scaling. Spectral weight loss in the coher-
ent peaks, extracted by fitting a sum of Gaussians to the corresponding
peaks, as a function of field intensity F 2 at fixed g2 = −0.05 and two
different driving frequencies ω = 0.55 and ω = 0.50, respectively.
The straight lines are guides to the eye.

as a function of the pump field intensity F 2 for two different
driving frequencies. This spectral weight loss is proportional
to the coherent quasiparticle weight (Z) that is renormalized
from its value Z0 at F = 0. The loss Z0 − Z is proportional
to λ − λ0 at weak coupling, which implies an enhancement
of the dimensionless electron-phonon coupling λ. Apparently
Fig. 2 suggests

λ − λ0 ∝ F 2, (7)

where λ0 is the dimensionless electron-phonon coupling at
zero field. Only at the strongest fields considered do we
observe a saturation effect deviating from linear behavior,
which is expected since the maximal spectral weight loss
is bounded (for two electrons, 2Z ∈ [0,2]) and the linear
behavior of the spectral weight loss with effective λ only holds
at small λ. Keeping in mind the uncertainty that comes with
the fitting of quasiparticle spectral weight, the linear scaling
at not too strong fields leads us to predict a linear scaling of
light-enhanced electron-phonon coupling with the driving field
intensity or, equivalently, the pump fluence in a pump-probe
experiment. One can also see in Fig. 2 that the effect is stronger
as the driving frequency ω moves closer to the resonance
frequency #eff = 0.40.

We now seek a minimal explanation for the observed scaling
behavior. To this end, we first notice that a driven mode is
expected to approach a coherent state with a well-defined
phonon coordinate exhibiting quasiclassical forced oscilla-
tions ⟨x̂l(t)⟩ ∝ F sin(ωt), described by boson coherent states.
A mean-field decoupling yields #eff = # + 2g2⟨n̂l⟩ and an
interaction term g2n̂l(bl⟨bl(t)⟩ + b

†
l ⟨b

†
l (t)⟩), with oscillating

mean fields ⟨bl(t)⟩ and ⟨b†l (t)⟩ such that ⟨bl(t) + b
†
l (t)⟩ ∝

F sin(ωt). In the mean-field picture, the interaction resembles
a linear interaction with a time-dependent interaction vertex
that scales linearly in g2, and via the coherent-phonon mean
fields also linearly in F .

In many-body perturbation theory, the lowest-order time-
nonlocal self-energy contribution is the first Born approxima-
tion, or Migdal diagram,

$(t,t ′) = ig(t)g∗(t ′)G(t,t ′)D(t,t ′), (8)

where we have dropped site and spin indices and introduced the
local electronic Green’s function G(t,t ′) ≡ −i⟨TCc(t)c†(t ′)⟩
and phonon Green’s function D(t,t ′) ≡ −i⟨TC x̂(t)x̂(t ′)⟩ on
the three-branch Kadanoff-Baym-Keldysh contour C with
contour-time ordering TC . From this Migdal diagram one can
see that the above F 2 scaling is indeed explained via the F 2

scaling of the pair of time-dependent vertices g(t)g∗(t ′). We
notice that this interpretation of enhanced electron-phonon
coupling via a time-nonlocal self-energy is quite natural, but
somewhat different from the time-local interpretation in Ref.
[37] using a unitary squeezing transformation. Here, we have
shown that this self-energy provides a consistent picture for a
quantitative understanding of the light-induced spectral weight
transfer.

C. Effective attraction

Having established an increased λ, we now demonstrate that
this also leads to an enhancement of double occupancy, mim-
icking the effect of light-induced electron-electron attraction.
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FIG. 1. Light-induced spectral weight transfer. Single-particle
spectrum for g2 = −0.05 and different field strengths F , as indicated.
Spectra are shifted vertically for clarity. The dashed vertical line
indicates the peak position of the bonding state in the undriven
case. For the lowest curve, the coherent part of the spectrum that
emerges from the main peaks at weak driving field is indicated by the
gray-shaded area.

B. Field scaling

Having demonstrated that a driven nonlinearly coupled
phonon leads to coherence-incoherence phenomena in the
time-resolved electronic spectra, we now investigate quanti-
tative aspects of the laser-induced spectral redistribution. To
this end, we fit a pair of Gaussians to the coherent part of the
spectrum, as shown in one example in Fig. 1 for the lowest
curve. We subtract the fitted spectral weight from the one at
F = 0 and obtain the spectral weight loss shown in Fig. 2
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FIG. 2. Field intensity scaling. Spectral weight loss in the coher-
ent peaks, extracted by fitting a sum of Gaussians to the corresponding
peaks, as a function of field intensity F 2 at fixed g2 = −0.05 and two
different driving frequencies ω = 0.55 and ω = 0.50, respectively.
The straight lines are guides to the eye.

as a function of the pump field intensity F 2 for two different
driving frequencies. This spectral weight loss is proportional
to the coherent quasiparticle weight (Z) that is renormalized
from its value Z0 at F = 0. The loss Z0 − Z is proportional
to λ − λ0 at weak coupling, which implies an enhancement
of the dimensionless electron-phonon coupling λ. Apparently
Fig. 2 suggests

λ − λ0 ∝ F 2, (7)

where λ0 is the dimensionless electron-phonon coupling at
zero field. Only at the strongest fields considered do we
observe a saturation effect deviating from linear behavior,
which is expected since the maximal spectral weight loss
is bounded (for two electrons, 2Z ∈ [0,2]) and the linear
behavior of the spectral weight loss with effective λ only holds
at small λ. Keeping in mind the uncertainty that comes with
the fitting of quasiparticle spectral weight, the linear scaling
at not too strong fields leads us to predict a linear scaling of
light-enhanced electron-phonon coupling with the driving field
intensity or, equivalently, the pump fluence in a pump-probe
experiment. One can also see in Fig. 2 that the effect is stronger
as the driving frequency ω moves closer to the resonance
frequency #eff = 0.40.

We now seek a minimal explanation for the observed scaling
behavior. To this end, we first notice that a driven mode is
expected to approach a coherent state with a well-defined
phonon coordinate exhibiting quasiclassical forced oscilla-
tions ⟨x̂l(t)⟩ ∝ F sin(ωt), described by boson coherent states.
A mean-field decoupling yields #eff = # + 2g2⟨n̂l⟩ and an
interaction term g2n̂l(bl⟨bl(t)⟩ + b

†
l ⟨b

†
l (t)⟩), with oscillating

mean fields ⟨bl(t)⟩ and ⟨b†l (t)⟩ such that ⟨bl(t) + b
†
l (t)⟩ ∝

F sin(ωt). In the mean-field picture, the interaction resembles
a linear interaction with a time-dependent interaction vertex
that scales linearly in g2, and via the coherent-phonon mean
fields also linearly in F .

In many-body perturbation theory, the lowest-order time-
nonlocal self-energy contribution is the first Born approxima-
tion, or Migdal diagram,

$(t,t ′) = ig(t)g∗(t ′)G(t,t ′)D(t,t ′), (8)

where we have dropped site and spin indices and introduced the
local electronic Green’s function G(t,t ′) ≡ −i⟨TCc(t)c†(t ′)⟩
and phonon Green’s function D(t,t ′) ≡ −i⟨TC x̂(t)x̂(t ′)⟩ on
the three-branch Kadanoff-Baym-Keldysh contour C with
contour-time ordering TC . From this Migdal diagram one can
see that the above F 2 scaling is indeed explained via the F 2

scaling of the pair of time-dependent vertices g(t)g∗(t ′). We
notice that this interpretation of enhanced electron-phonon
coupling via a time-nonlocal self-energy is quite natural, but
somewhat different from the time-local interpretation in Ref.
[37] using a unitary squeezing transformation. Here, we have
shown that this self-energy provides a consistent picture for a
quantitative understanding of the light-induced spectral weight
transfer.

C. Effective attraction

Having established an increased λ, we now demonstrate that
this also leads to an enhancement of double occupancy, mim-
icking the effect of light-induced electron-electron attraction.
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FIG. 1. Light-induced spectral weight transfer. Single-particle
spectrum for g2 = −0.05 and different field strengths F , as indicated.
Spectra are shifted vertically for clarity. The dashed vertical line
indicates the peak position of the bonding state in the undriven
case. For the lowest curve, the coherent part of the spectrum that
emerges from the main peaks at weak driving field is indicated by the
gray-shaded area.

B. Field scaling

Having demonstrated that a driven nonlinearly coupled
phonon leads to coherence-incoherence phenomena in the
time-resolved electronic spectra, we now investigate quanti-
tative aspects of the laser-induced spectral redistribution. To
this end, we fit a pair of Gaussians to the coherent part of the
spectrum, as shown in one example in Fig. 1 for the lowest
curve. We subtract the fitted spectral weight from the one at
F = 0 and obtain the spectral weight loss shown in Fig. 2
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FIG. 2. Field intensity scaling. Spectral weight loss in the coher-
ent peaks, extracted by fitting a sum of Gaussians to the corresponding
peaks, as a function of field intensity F 2 at fixed g2 = −0.05 and two
different driving frequencies ω = 0.55 and ω = 0.50, respectively.
The straight lines are guides to the eye.

as a function of the pump field intensity F 2 for two different
driving frequencies. This spectral weight loss is proportional
to the coherent quasiparticle weight (Z) that is renormalized
from its value Z0 at F = 0. The loss Z0 − Z is proportional
to λ − λ0 at weak coupling, which implies an enhancement
of the dimensionless electron-phonon coupling λ. Apparently
Fig. 2 suggests

λ − λ0 ∝ F 2, (7)

where λ0 is the dimensionless electron-phonon coupling at
zero field. Only at the strongest fields considered do we
observe a saturation effect deviating from linear behavior,
which is expected since the maximal spectral weight loss
is bounded (for two electrons, 2Z ∈ [0,2]) and the linear
behavior of the spectral weight loss with effective λ only holds
at small λ. Keeping in mind the uncertainty that comes with
the fitting of quasiparticle spectral weight, the linear scaling
at not too strong fields leads us to predict a linear scaling of
light-enhanced electron-phonon coupling with the driving field
intensity or, equivalently, the pump fluence in a pump-probe
experiment. One can also see in Fig. 2 that the effect is stronger
as the driving frequency ω moves closer to the resonance
frequency #eff = 0.40.

We now seek a minimal explanation for the observed scaling
behavior. To this end, we first notice that a driven mode is
expected to approach a coherent state with a well-defined
phonon coordinate exhibiting quasiclassical forced oscilla-
tions ⟨x̂l(t)⟩ ∝ F sin(ωt), described by boson coherent states.
A mean-field decoupling yields #eff = # + 2g2⟨n̂l⟩ and an
interaction term g2n̂l(bl⟨bl(t)⟩ + b

†
l ⟨b

†
l (t)⟩), with oscillating

mean fields ⟨bl(t)⟩ and ⟨b†l (t)⟩ such that ⟨bl(t) + b
†
l (t)⟩ ∝

F sin(ωt). In the mean-field picture, the interaction resembles
a linear interaction with a time-dependent interaction vertex
that scales linearly in g2, and via the coherent-phonon mean
fields also linearly in F .

In many-body perturbation theory, the lowest-order time-
nonlocal self-energy contribution is the first Born approxima-
tion, or Migdal diagram,

$(t,t ′) = ig(t)g∗(t ′)G(t,t ′)D(t,t ′), (8)

where we have dropped site and spin indices and introduced the
local electronic Green’s function G(t,t ′) ≡ −i⟨TCc(t)c†(t ′)⟩
and phonon Green’s function D(t,t ′) ≡ −i⟨TC x̂(t)x̂(t ′)⟩ on
the three-branch Kadanoff-Baym-Keldysh contour C with
contour-time ordering TC . From this Migdal diagram one can
see that the above F 2 scaling is indeed explained via the F 2

scaling of the pair of time-dependent vertices g(t)g∗(t ′). We
notice that this interpretation of enhanced electron-phonon
coupling via a time-nonlocal self-energy is quite natural, but
somewhat different from the time-local interpretation in Ref.
[37] using a unitary squeezing transformation. Here, we have
shown that this self-energy provides a consistent picture for a
quantitative understanding of the light-induced spectral weight
transfer.

C. Effective attraction

Having established an increased λ, we now demonstrate that
this also leads to an enhancement of double occupancy, mim-
icking the effect of light-induced electron-electron attraction.

205111-3

~F	 ~F	

effec5vely	5me-dependent	vertex,	g^2	~	F^2	
=>	light-induced	coupling,	effec5ve	lambda	scales	~	F^2	
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4

pair of time-dependent vertices g(t)g⇤(t0). We notice
that this interpretation of enhanced electron-phonon cou-
pling via a time-nonlocal self-energy is quite natural, but
somewhat di↵erent from the time-local interpretation in
Ref. 36 using a unitary squeezing transformation. Here
we have shown that this self-energy provides a consis-
tent picture for a quantitative understanding of the light-
induced spectral weight transfer.

C. E↵ective attraction
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FIG. 3. Light-enhanced double occupancy. (a) Time
evolution of the local phonon coordinate hx̂1(t)i = hx̂2(t)i
for di↵erent field strengths, see legend in (b). The grey curve
shows the driving field for the case of F = 0.30. (b) Time evo-
lution of double occupancy

P
l=1,2hn̂l,"(t)n̂l,#(t)i for di↵erent

field strengths as indicated. Vertical lines show correspond-
ing equilibrium values for g2 = �0.05 and attractive U as
indicated. (c) The double occupancy subtracting an e↵ective
disorder contribution from the g2n̂l2b

†
l bl term, as explained

in the main text.

Having established an increased �, we now demon-
strate that this also leads to an enhancement of double
occupancy, mimicking the e↵ect of light-induced electron-
electron attraction. In Fig. 3(a) the time-dependent
driving field is shown together with the time evolution
of the local phonon coordinate. Clearly, as discussed
above, after a few cycles the phonon shows forced oscil-
lations following the external field, justifying the coher-
ent phonon mean-field picture used above to explain the
light-enhanced electron-phonon coupling e↵ect. Then in
Fig. 3(b) we show the double occupancy as a function
of time for di↵erent field strengths. For noninteracting
electrons, the bare value of the double occupancy for the
two-site model is 0.5, and it is bounded between 0 and
1. In the undriven case, this value is slightly enhanced
since g2 = �0.05 already leads to a slight e↵ective attrac-
tion. This e↵ective attraction is clearly enhanced in the
driven system, and values in excess of 0.8 are achieved
for the driving field intensities used here. Some part of
this doublon production may be due to the indirect ex-
citation of the electronic subsystem via electron-phonon
coupling, but one has to bear in mind that a random elec-
tronic configuration has a value of 0.5 on average, which
is also the high-temperature limiting value in a thermal
ensemble. Therefore double occupancies far in excess of
0.5 indicate that the system is correlated with e↵ective
negative U rather than simply excited.

At this point, however, one should mention that the
role of the g2 terms in the Hamiltonian is twofold, as
pointed out first in Ref. 36: (i) there are phonon ab-
sorption and emission terms that lead to incoherence
and electron-phonon coupling e↵ects; (ii) the local term
g2n̂l2b

†
l bl acts like an e↵ective “disorder” contribution

that localizes the electrons. This can be understood
by envisioning the phonons not in a number eigenstate
of b†l bl on all sites, but rather in a coherent state, as
is apparently the case (Fig. 3(a)). Then the electrons
“see” di↵erent onsite potentials on di↵erent sites from
the phonon number fluctuations, hence a disorder-like
potential. The ensuing localization e↵ect also leads to
an enhanced double occupancy, as does the e↵ective at-
traction stemming from the phonon emission and absorp-
tion terms. In order to separate the e↵ects, computa-
tions were performed without the emission and absorp-
tion terms in the Hamiltonian, retaining only the disor-
der term. The light-induced double occupancy contribu-
tion from this disorder contribution was subtracted from
the data in Fig. 3(b), and the resulting net double oc-
cupancy from the e↵ective attraction term is shown in
Fig. 3(c). Clearly, there is a net enhancement of the dou-
ble occupancy that first increases with stronger fields,
but then decreases and eventually even drops below the
initial value for longer times (black curve). This implies
that the light-induced e↵ective attraction e↵ect is eventu-
ally suppressed and light-induced localization takes over.
This result is consistent with the findings by Kennes et
al.36.

Overall, the enhancement of double occupancy for
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•  enhanced	electron-phonon	coupling	in	
phononically	driven	bilayer	graphene		
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•  theore5cal	proposal:	nonlinear	el-ph	coupling	
as	mechanism	behind	this	enhancement	

Exact solution of electron-phonon model system: 


