

Theory of ultrafast dynamics in superconductors How to enhance pairing with light

Michael A. Sentef lab.sentef.org

Max-Planck Institute for the Structure and Dynamics of Matter, Hamburg IMS 2017 Workshop, Dresden

Pump-probe spectroscopy (1887)

stroboscopic investigations of dynamic phenomena

Muybridge 1887

Pump-probe spectroscopy (today)

stroboscopic investigations of dynamic phenomena

TbTe3 CDW metal

0.4

0.2

0.0

-0.4

-0.4

-0.6

(Ifs)

Simulations of time-resolved ARPES: PRX 3, 041033 (2013)

Image courtesy:
J. Sobota / F. Schmitt

Simulation of time-resolved ARPES

PRX 3, 041033 (2013)

Ultrafast Materials Science today

Understanding the nature of quasiparticles

- Relaxation dynamics
- Control of couplings

 PRL 111, 077401 (2013)

 PRX 3, 041033 (2013)

 PRB 87, 235139 (2013)

 PRB 90, 075126 (2014)

PRB 95, 024304 (2017) PRB 95, 205111 (2017)

Understanding ordered phases

- Collective oscillations
- Competing orders PRB 92, 224517 (2015) PRB 93, 144506 (2016) PRL 118, 087002 (2017)

Creating new states of matter

Floquet topological states

Nature Commun. 6, 7047 (2015) Nature Commun. 8, 13940 (2017)

Image courtesy:
D. Basov

5

Outline

How to enhance pairing with light

Part I: Laser-controlled competing orders

Selective melting of a competing order enhances superconductivity *PRL 118, 087002 (2017)*

Part II: Light-enhanced electron-phonon coupling

Resonant excitation of IR phonon enhances electron-phonon coupling

PRB 95, 024304 (2017) - experiment PRB 95, 205111 (2017) - theory

I Theory of laser-controlled competing orders

Phys. Rev. Lett. 118, 087002 (2017)

Akiyuki Tokuno Antoine Georges Corinna Kollath Palaiseau/Paris/Geneva

University of Bonn

Nonequilibrium superconductivity

Why?

- understand ordering mechanisms
- control ordered states: ultrafast switching
- induce new states of matter

How to control?

laser near resonance with collective modes

Generic mechanism to control competing orders with light?

Recent theories on laser-controlled couplings and competing orders:

Akbari et al., EPL 101, 17003 (2013); Moor et al., PRB 90, 024511 (2014); Fu et al., PRB 90, 024506 (2014); Dzero et al., PRB 91, 214505 (2015); Tsuji&Aoki, PRB 92, 064508 (2015); Cea et al., PRB 93, 180507 (2016); Kemper et al., PRB 92, 224517 (2015); Sentef et al., PRB 93, 144506 (2016); Krull et al., Nat. Commun. 7, 11921 (2016); Patel&Eberlein, PRB 93, 195139 (2016); Knap et al., PRB 94, 214504 (2016); Komnik&Thorwart EPJB 89, 244 (2016); Coulthard et al., 1608.03964; Kennes et al., Nat. Physics (2017), doi:10.1038/nphys4024; Sentef, 1702.00952; Babadi et al. 1702.02531; Murakami et al.,1702.02942; Mazza&Georges, 1702.04675; Dehghani&Mitra, 1703.01621 ...

Experimental motivation: competing orders are everywhere

D. Fausti et al., Science, 331, 189 (2011)

X. Xi et al., Nat. Nanotechnol. 10, 765 (2015)

YBCO-LCMO heterostructure

A. Frano et al., Nat. Mater. 15, 831 (2016)

D. Nicoletti et al., PRB 90, 100503 (2014)

Competing orders

- attractive -U Hubbard model
- degeneracy of SC and CDW at particle-hole symmetry (SU(2))
- SO(4) symmetry (SC, CDW, eta pairing)

VOLUME 63, NUMBER 19

PHYSICAL REVIEW LETTERS

6 NOVEMBER 1989

 η Pairing and Off-Diagonal Long-Range Order in a Hubbard Model

Chen Ning Yang

S.-C. Zhang

Reprinted from Mod. Phys. Lett. B4 (1990) 759-766 © World Scientific Publishing Company

SO₄ SYMMETRY IN A HUBBARD MODEL

CHEN NING YANG

Institute for Theoretical Physics, State University of New York, Stony Brook, NY 11794-3840, USA

and

S. C. ZHANG

IBM Research Division, Almaden Research Center, San Jose, CA 95120-6099, USA

also see: Demler, Hanke, Zhang, SO(5) theory of antiferromagnetism and dSC, RMP 76, 909 (2004)

Driven SC/CDW: Gauge field coupling

CDW ~ A 1-photon resonance

... laser lifts SC/CDW degeneracy

... Goldstone-like collective mode?

SC ~ A²
2-photon resonance
Tsuji&Aoki, PRB 92, 064508 (2015)
Cea et al., PRB 93, 180507 (2016)

Model

$$H = \sum_{k\sigma} \epsilon(k) n_{k\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} = H_J + H_U,$$

$$\epsilon(k) = -2J(\cos(k_x) + \cos(k_y)),$$

2D square lattice + attractive U + mean-field decoupling

$$\Delta_{SC} = U \sum_{k} f_{k}, \qquad f_{k} \equiv \langle c_{-k\downarrow} c_{k\uparrow} \rangle \qquad \text{(SC)},$$

$$\Delta_{CDW} = U \sum_{k} g_{k}, \qquad g_{k} \equiv \frac{1}{2} \sum_{\sigma} \langle c_{k\sigma}^{\dagger} c_{k+Q\sigma} \rangle \qquad \text{(CDW)},$$

$$\Delta_{\eta} = U \sum_{k} \eta_{k}. \qquad \eta_{k} \equiv \langle c_{-(k+Q)\downarrow} c_{k\uparrow} \rangle \qquad (\eta \text{ pairing}).$$

Mean-field equations

Equations of motion for electronic driving:

$$\begin{split} &i\partial_t n_k = -\Delta_{SC}(f_k - f_k^*) + \Delta_{CDW}(g_k - g_k^*) - \Delta_\eta^* \eta_k + \Delta_\eta \eta_k^*, \quad \text{ eta pairing provides coupling} \\ &i\partial_t f_k = \Delta_{SC}(1 - (n_k + n_{-k})) + (\epsilon(k - A) + \epsilon(k + A))f_k + \Delta_{CDW}(\eta_k + \eta_{k+Q}) - \Delta_\eta (g_k^* + g_{-k}^*), \\ &i\partial_t g_k = \Delta_{CDW}(n_k - n_{k+Q}) - 2\epsilon(k - A)g_k + \Delta_{SC}(\eta_k^* - \eta_{k+Q}) + \Delta_\eta f_k^* - \Delta_\eta^* f_{k+Q}, \\ &i\partial_t \eta_k = \eta_k (\epsilon(k - A) - \epsilon(k + A)) + \Delta_{CDW}(f_k + f_{k+Q}) - \Delta_{SC}(g_{-k} + g_k^*) - \Delta_\eta (n_k + n_{-(k+Q)} - 1). \end{split}$$

nonlinear equations: self-consistency in real time

Periodic driving field:
$$A(t) = A_{max} \sin(\omega t) (e_x + e_y)$$

 $A_{max} = 5 \times 10^{-5}$, $E_{max} \sim 10-100 \text{ V/cm} - \text{weak fields!}$

$$\Delta_{SC} = U \sum_{k} f_{k},$$

$$\Delta_{CDW} = U \sum_{k} g_{k},$$

$$\Delta_{\eta} = U \sum_{k} \eta_{k}.$$

Gap resonance – coexisting initial state

Below resonance: SC down, CDW up

 ω = 19 meV, below resonance

Gap resonance – coexisting initial state

Above resonance: SC up, CDW down

 ω = 21 meV, above resonance

Gap resonance – coexisting initial state

"Floquet time crystal" without manybody localization??

 ω = 21 meV, above resonance

Gap resonance

collective mode frequency set by light-induced eta pairing amplitude, which gives "mass" to collective mode

resonance at photon frequency $\omega = 2\Delta = \text{single-particle gap}$

Gap resonance – why?

$$\operatorname{Im} \eta_{\vec{k},2}(t) = 2A_{\vec{k},0} \int_0^t \eta_{\vec{k},1}(t') \sin(\omega t') dt'$$

$$= \frac{2A_{\vec{k},0}^2 \Delta_0 g_{\vec{k},0} t}{4E_{\vec{k}}^2 - \omega^2} + \eta_{\vec{k},2,\operatorname{osc}}(t),$$

short time expansion: leading contribution resonant for light-induced eta pairing – sign change when crossing $\omega = 2\Delta$

-> this triggers the dynamics between SC and CDW

generic mechanism for coexisting, non-commuting orders!

Inducing superconductivity

99% CDW initial state
Drive slightly above gap

SC comes alive!
Irregular behavior for stronger driving

Summary I

Tight-binding model + time-dependent mean-field theory:

- laser-controlled switching between SC/CDW
- path to understanding of light-induced superconductivity and light-induced CDW in systems with competing orders?

Phys. Rev. Lett. 118, 087002 (2017)

Akiyuki Tokuno Antoine Georges Corinna Kollath Palaiseau/Paris/Geneva

University of Bonn

Resonant excitation of crystal lattice

M. Först et al., Nature Physics 7, 854 (2011)

Classical nonlinear phononics

Simplest model: classical dynamics

$$\ddot{Q}_{\rm RS} + \Omega_{\rm RS}^2 Q_{\rm RS} = A Q_{\rm IR}^2$$

$$\ddot{Q}_{\rm IR} + \Omega_{\rm IR}^2 Q_{\rm IR} = \frac{e^* E_0}{\sqrt{M}_{\rm IR}} \sin(\Omega_{\rm IR} t) F(t)$$

"nonlinear phononics"

$$H = AQ_{IR}^2Q_{RS}$$

M. Först et al., Nature Physics 7, 854 (2011)

Light-induced superconductivity?

M. Mitrano et al., Nature 530, 461 (2016)

Lattice control of reflectivity in K₃C₆₀

Electron-boson coupling (bilinear)

Holstein model (minimal version):

$$H = \sum_{\pmb{k}} \pmb{\epsilon}(\pmb{k}) c_{\pmb{k}}^{\dagger} c_{\pmb{k}} + \Omega \sum_{i} b_{i}^{\dagger} b_{i} - g \sum_{i} c_{i}^{\dagger} c_{i} (b_{i} + b_{i}^{\dagger})$$
Electrons
(Fermi gas/liquid)
(e.g., Einstein phonon)
coupling

Migdal-Eliashberg theory boson-mediated pairing

II Dynamically enhanced coupling

Enhanced electron-phonon coupling in graphene with periodically distorted lattice

E. Pomarico, M. Mitrano, H. Bromberger, M. A. Sentef, A. Al-Temimy, C. Coletti, A. Stöhr, S. Link, U. Starke, C. Cacho, R. Chapman, E. Springate, A. Cavalleri, and I. Gierz Phys. Rev. B 95, 024304 – Published 13 January 2017

PRB 95, 024304 (2017)
enhanced electron-phonon for pump on resonance with IR
phonon

Dynamically enhanced coupling?

Enhanced electron-phonon coupling in graphene with periodically distorted lattice PRB 95, 024304 (2017)

Quantum nonlinear phononics

PRB 95, 205111 (2017)

$$\begin{split} \hat{H}(t) &= -J \sum_{\sigma} (c_{1,\sigma}^{\dagger} c_{2,\sigma} + c_{2,\sigma}^{\dagger} c_{1,\sigma}) \\ &+ g_2 \sum_{\sigma,l=1,2} \hat{n}_{l,\sigma} (b_l + b_l^{\dagger})^2 \\ &+ \Omega \sum_{l=1,2} b_l^{\dagger} b_l + F(t) \sum_{l=1,2} (b_l + b_l^{\dagger}), \end{split}$$

also cf. Kennes et al., Nature Physics 13, 479 (2017), 1609.03802

electron-occupation dependent squeezing of the phonon; g_2 can be positive or negative in materials -> mode hardening or softening

Idea: Drive nonlinearly coupled phonon and look at electronic response

Drive:
$$F(t) = F \sin(\omega t),$$
 Response:
$$I(\omega,t_0) = \operatorname{Re} \int dt_1 \ dt_2 \ e^{i\omega(t_1-t_2)} s_{t_1,t_2,\tau}(t_0)$$
 time-resolved spectral function
$$\times \left[\langle \psi(t_2) | c_{1,\uparrow}^\dagger \mathcal{T} e^{-i\int_{t_1}^{t_2} H(t) dt} c_{1,\uparrow} | \psi(t_1) \rangle + \langle \psi(t_1) | c_{1,\uparrow} \mathcal{T} e^{-i\int_{t_2}^{t_1} H(t) dt} c_{1,\uparrow}^\dagger | \psi(t_2) \rangle \right],$$

Time-resolved electronic spectrum PRB 95, 205111 (2017) mpsd

Here: g2=-0.05 < 0

Does not matter for light-enhanced coupling

2-phonon shakeoff

Reduced coherence peaks with stronger driving

Looks like enhanced el-ph coupling

light-induced polaron formation

Scaling of coherent spectral weight loss: proportional to field intensity F^2 consistent with experiments

Quantum nonlinear phononics

Forced coherent oscillation $\langle \hat{x}_l(t) \rangle \propto F \sin(\omega t)$

Coupling term in "mean-field": $g_2\hat{n}_l(b_l\langle b_l(t)\rangle + b_l^\dagger\langle b_l^\dagger(t)\rangle)$ ~F

Migdal-Eliashberg theory

$$\Sigma(t,t') = ig(t)g^*(t')G(t,t')D(t,t')$$

effectively time-dependent vertex, g^2 ~ F^2 => light-induced coupling, effective lambda scales ~ F^2

Enhanced double occupancy: attraction?

Coherent phonon oscillation

Enhanced double occupancy (above "random" value)

Contribution from "disorder" term (localization)

$$g_2\hat{n}_l 2b_l^\dagger b_l$$

subtracting disorder contribution: effective attraction when drive is not too strong

Summary II

 enhanced electron-phonon coupling in phononically driven bilayer graphene

PRB 95, 024304 (2017)

E. Pomarico

I. Gierz

A. Cavalleri

Exact solution of electron-phonon model system:

 theoretical proposal: nonlinear el-ph coupling as mechanism behind this enhancement

PRB 95, 205111 (2017)