

Theory of pump-probe spectroscopy: Ultrafast laser engineering of ordered phases and microscopic couplings

Michael A. Sentef lab.sentef.org

Max-Planck Institute for the Structure and Dynamics of Matter, Hamburg DPG Meeting Berlin, March 2018

Funded through Deutsche Forschungsgemeinschaft Emmy Noether Programme (SE 2558/2-1) Max Planck Institute for the Structure and Dynamics of Matter

Pump-probe spectroscopy (1887)

stroboscopic investigations of dynamic phenomena

Muybridge 1887

Pump-probe spectroscopy (today)

- stroboscopic investigations of dynamic phenomena

Simulations of time-resolved ARPES: PRX 3, 041033 (2013), PRB 90, 075126 (2014), PRB 92, 224517 (2015), Nature Commun. 7, 13761 (2016)

Image courtesy: J. Sobota / F. Schmitt

Ultrafast Materials Science today

Understanding the nature of quasiparticles

- Relaxation dynamics
- Control of couplings

PRL 111, 077401 (2013)PRB 95, 024304 (2017)PRX 3, 041033 (2013)PRB 95, 205111 (2017)PRB 87, 235139 (2013)arXiv:1712.01067PRB 90, 075126 (2014)arXiv:1802.09437Nature Commun. 7, 13761 (2016)

Understanding or

- Collective oscillat
- Competing order *PRB 92, 224517 (2015 <i>PRB 93, 144506 (2016) PRL 118, 087002 (2017)*

Creating new states of matter

Floquet topological states

Nature Commun. 6, 7047 (2015) Nature Commun. 8, 13940 (2017)

Image courtesy: D. Basov

Outline

Outline

How to modify couplings with light

- Part I: Light-enhanced electron-phonon coupling Resonant excitation of IR phonon enhances electron-phonon coupling E: Pomarico et al., PRB 95, 024304 (2017) – experiment (bilayer graphene) M. A. Sentef, PRB 95, 205111 (2017) – theory
- Part II: Light-reduced Hubbard U

Nonresonant laser driving reduces Hubbard U in NiO

N. Tancogne-Dejean et al., 1712.01067

I Resonant excitation of crystal lattice

M. Först et al., Nature Physics 7, 854 (2011)

Classical nonlinear phononics

Simplest model: classical dynamics

$$\ddot{Q}_{\rm RS} + \Omega_{\rm RS}^2 Q_{\rm RS} = A Q_{\rm IR}^2$$

$$\ddot{Q}_{\rm IR} + \Omega_{\rm IR}^2 Q_{\rm IR} = \frac{e^* E_0}{\sqrt{M}_{\rm IR}} \sin(\Omega_{\rm IR} t) F(t)$$

"nonlinear phononics"

$$H = AQ_{IR}^2 Q_{RS}$$

M. Först et al., Nature Physics 7, 854 (2011)

Classical nonlinear phononics

Explains a number of observed effects, e.g.,

- structurally induced metal-insulator transitions Rini et al., Nature 449, 72 (2007)
- phononic rectification in YBCO

Mankowsky et al., Nature 516, 71 (2014)

• ferroelectric switching in LiNbO₃

Subedi et al., Phys. Rev. B 89, 220301 (2014)

Mankowsky et al., Phys. Rev. Lett. 118, 197601 (2017)

Classical mechanistic phonon dynamics does not explain all effects in IR-driven materials. examples: - light-induced superconductivity - light-enhanced el-ph coupling ... quantum nature of phonons important? Light-induced superconductivity?

M. Mitrano et al., Nature 530, 461 (2016)

Lattice control of reflectivity in K_3C_{60}

¹⁰ Not (easily) explained by classical nonlinear phononics

Hard problem!

Kennes, Millis, Knap, Demler, Murakami, Eckstein,

Werner, Thorwart, Mazza, Georges, Fabrizio, Galitskii, Sentef, Kollath, ... 0.0

Simpler question: what happens to electron-phonon coupling under IR driving in a metal?

Dynamically enhanced coupling

Enhanced electron-phonon coupling in graphene with periodically distorted lattice

E. Pomarico, M. Mitrano, H. Bromberger, M. A. Sentef, A. Al-Temimy, C. Coletti, A. Stöhr, S. Link, U. Starke, C. Cacho, R. Chapman, E. Springate, A. Cavalleri, and I. Gierz Phys. Rev. B **95**, 024304 – Published 13 January 2017

PRB 95, 024304 (2017) enhanced electron-phonon for pump on resonance with IR phonon

Dynamically enhanced coupling PRB 95, 024304 (2017)

Quantum nonlinear phononics

PRB 95, 205111 (2017)

2-site toy model, solve dynamics exactly

$$\begin{split} \hat{H}(t) &= -J \sum_{\sigma} (c_{1,\sigma}^{\dagger} c_{2,\sigma} + c_{2,\sigma}^{\dagger} c_{1,\sigma}) \\ &+ g_2 \sum_{\sigma,l=1,2}^{\sigma} \hat{n}_{l,\sigma} (b_l + b_l^{\dagger}) \\ &+ \Omega \sum_{l=1,2} b_l^{\dagger} b_l + F(t) \sum_{l=1,2} (b_l + b_l^{\dagger}) \end{split}$$

also cf. Kennes et al., Nature Physics 13, 479 (2017)

electron-occupation dependent squeezing of phonon;

*g*₂ can be positive or negative in materials -> mode hardening or softening

Idea: Drive nonlinearly coupled IR-phonon, analyze electronic response

$$\begin{array}{ll} \text{Drive:} & F(t) = F \sin(\omega t), \\ \text{Response:} & I(\omega, t_0) = \operatorname{Re} \int dt_1 \ dt_2 \ e^{i\omega(t_1 - t_2)} s_{t_1, t_2, \tau}(t_0) \\ \text{time-resolved} \\ \text{spectral function} & \times \left[\langle \psi(t_2) | c_{1,\uparrow}^{\dagger} \mathcal{T} e^{-i \int_{t_1}^{t_2} H(t) dt} c_{1,\uparrow} | \psi(t_1) \rangle + \\ & + \langle \psi(t_1) | c_{1,\uparrow} \mathcal{T} e^{-i \int_{t_2}^{t_1} H(t) dt} c_{1,\uparrow}^{\dagger} | \psi(t_2) \rangle \right], \end{array}$$

IR-driven nonlinear el-ph system

Driving IR phonon with sinusoidal F(t): coherent phonon oscillation

enhancement of local electronic double occupancy

-> induced el-el attraction

Time-resolved electronic spectrum PRB 95, 205111 (2017) mpsd

Field scaling

PRB 95, 205111 (2017)

Coherence peak weight loss: proportional to field intensity F^2 consistent with experiments

Forced coherent oscillation $\langle \hat{x}_l(t) \rangle \propto F \sin(\omega t)$

q(t)

 $\Sigma =$

Migdal-Eliashberg diagram

effective induced linear coupling

 $\Sigma(t,t') = ig(t)g^*(t')G(t,t')D(t,t')$

time-dependent vertex, amplitude g^2 ~ F^2
=> light-induced coupling, lambda scales ~ F^2

 enhanced electron-phonon coupling in phononically driven bilayer graphene

PRB 95, 024304 (2017)

E. Pomarico

I. Gierz

A. Cavalleri

Exact solution of electron-phonon model system:

 theoretical proposal: nonlinear el-ph coupling as mechanism behind this enhancement PRB 95, 205111 (2017)

Cavity QED superconductivity arXiv:1802.09437

Materials engineering in nanocavities through coupling to quantum light

M. Ruggenthaler A. Rubio

II Dynamical modification of Hubbard U

Can we drive a charge-transfer insulator towards a Mott insulator?

Zaanen-Sawatzky-Allen phase diagram

Max Planck Institute for the Structure and Dynamics of Matter

NiO as prototypical charge-transfer insulator mpsd

NiO:

Antiferromagnetic type 2

Band gap: ~4 eV (exp.)

Néel temperature: 523K

DFT with ab initio and self-consistent Hubbard U (Hybrid functional)

$$E_{\text{DFT+U}}[n, \{n_{mm'}^{I,\sigma}\}] = E_{\text{DFT}}[n] + E_{ee}[\{n_{mm'}^{I,\sigma}\}] - E_{dc}[\{n_{mm'}^{I,\sigma}\}]$$
Electron-electron interaction Double counting
$$E_{ee} \approx \frac{\bar{U}}{2} \sum_{\{m\},\sigma} N_m^{\sigma} N_{m'}^{-\sigma} + \frac{\bar{U} - \bar{J}}{2} \sum_{m \neq m',\sigma} N_m^{\sigma} N_{m'}^{\sigma}.$$
Usual expression in DFT+U
$$E_{ee} \approx \frac{\bar{U}}{2} \sum_{\{m\},\sigma} N_m^{\sigma} N_{m'}^{-\sigma} + \frac{\bar{U} - \bar{J}}{2} \sum_{m \neq m',\sigma} N_m^{\sigma} N_{m'}^{\sigma}.$$

$$E_{ee} \approx \frac{1}{2} \sum_{\{m\}} \sum_{\alpha,\beta} \frac{\bar{P}_{mm'}^{\alpha} \bar{P}_{m''m''}^{\beta} (mm'|m''m'')}{-\frac{1}{2} \sum_{\{m\}}} \sum_{\alpha,\beta} \frac{\bar{P}_{mm'}^{\alpha} \bar{P}_{m''m''}^{\beta} (mm''|m''m'')}{\bar{P}_{mm'}^{\alpha} \bar{P}_{m''m''}^{\alpha} (mm''|m''m'')}$$

$$ACBNO \text{ functional PRX 5,011006 (2015)}$$

alternative to constrained RPA

- numerically efficient
- direct extension to time-dependent case (adiabatic approximation)

Typical intensities in strong field physics in solids

U measures the Coulomb interaction screened by itinerant electrons

- Polarization of itinerant electrons increases
- Enhanced screening
- Decrease of U

Summary II

- Ultrafast reduction of Hubbard U in NiO via induced extra screening
- Towards light-induced Mott insulators?
- N. Tancogne-Dejean et al., 1712.01067

N. Tancogne-Dejean

A. Rubio

Laser-controlled competing orders Phys. Rev. Lett. 118, 087002 (2017)

Controlling competing orders by driving near gap resonance

Nonthermal magnetic Weyl semimetal

Nonthermal pathway to magnetic Weyl semimetal in pyrochlore iridates

Acknowledgments

... and many more

A. Kemper

E. Pomarico

I. Gierz

A. Cavalleri

mpsc

lab.sentef.org Funded through Deutsche Forschungsgemeinschaft Emmy Noether Programme (SE 2558/2-1) Max Planck Institute for the Structure and Dynamics of Matter

Summary

