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Pump-probe spectroscopy (1887) 
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•  stroboscopic	inves5ga5ons	of	dynamic	phenomena	

Muybridge 1887



Max Planck Institute for the Structure and Dynamics of Matter 

Pump-probe spectroscopy (today) 
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•  stroboscopic	inves5ga5ons	of	dynamic	phenomena	

Image courtesy:
J. Sobota / F. Schmitt

TbTe3	CDW	metal	
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Non-Equilibrium Keldysh Formalism 
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…and	about	its	history	

ε(k)→ε(k,t)

Include the effects of driving 
field through time-
dependent electronic 
dispersion

System	knows	about	its	thermal	ini5al	
state…	
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been successfully used to describe the melting of a charge
density-wave state24 and the time evolution of electrons
in correlated metals25,26 via tr-ARPES and tr-reflectivity.
We connect the microscopic interaction parameters of
the electron-phonon interaction directly to the observed
timescales, and discuss the extension of the results ob-
tained here to more general models.

II. METHOD

We describe the time-evolution of the system via the
non-equilibrium Keldysh formalism. All Green’s func-
tions have two time arguments, where each time is lo-
cated on the Keldysh contour (see Fig. 1). The sys-
tems starts in equilibrium at a temperature T and time
t = tmin, and evolves until t = tfinal. The time-ordered,
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FIG. 1: Keldysh contour used in the description of the double-
time Green’s functions and self-energies.

anti-time-ordered, lesser and greater Green’s functions
are formed by selecting t and t⇥ on appropriate parts of
the contour (see Refs. 1–3,7,8).

The driving fields are included directly into the propa-
gators via the Peierls substitution in the standard double-
time formalism, which leads to the bare non-equilibrium
Green’s function

G0
k(t, t

⇥) =i [nF (�(k))� ⇥c(t, t
⇥)]

⇥ exp

⌥
�i

� t

t0
dt̄ � (k�A(t̄))

�

where nF is the Fermi function at temperature T :
nF (⌅) = 1/(exp(⌅/T ) + 1), t and t⇥ lie on the Keldysh
contour, ⇥c is the contour-ordered Heaviside function,
�(k) is the single-particle dispersion, which we choose
to be a square lattice tight-binding model with nearest-
neighbor and next-nearest-neighbor hoppings Vnn = 0.25
eV and Vnnn = 0.075 eV, and a chemical potential
µ = �0.255 eV.

�(k) = �2Vnn (cos kx + cos ky) + 4Vnnn cos kx cos ky � µ

A(t) is the vector potential at time t, which is related
to the electric field via A(t) = �

´
E(t)dt. Here, we use

the convention that h̄ = c = e = 1, and we work in the
Hamiltonian gauge, i.e. the scalar potential is set to zero.
Energies and frequencies are measured in units of eV.

To illustrate the momentum-dependent quasiparticle
relaxation rates we introduce coupling of electrons to a

non-dispersive optical phonon with energy ⇥. As our
starting point, we use the Holstein model which couples
a band of electrons to a single species of optical phonon:

H =
 

k

�(k)c†kck +
 

q

⇥

⇧
b†qbq +

1

2

⌃

+
 

k,q,i

c†k+qck
⇤
bq + b†�q

⌅

We include the electron-phonon interactions in the
Migdal limit, which is appropriate for weak coupling.
Furthermore, since we are primarily interested in the re-
sponse of the electronic system, we will limit the discus-
sion to just the e⇤ects of the phonons on the electrons,
and will neglect the feedback of the electronic system on
the phonons.
For a non-dispersive optical phonon, the electronic self-

energy is

�(t, t⇥) = ig2
 

k

D0(t, t⇥)G0
k(t, t

⇥)

where g is the electron-phonon coupling strength. The
bare phonon Green’s function D0(t, t⇥) is

D0(t, t⇥) =� i [nB(⇥) + ⇥c(t, t
⇥)] exp (i⇥(t� t⇥))

� i [nB(⇥) + 1� ⇥c(t, t
⇥)] exp (�i⇥(t� t⇥))

where nB(⇥) is the Bose function at temperature T :
nB(⌅) = 1/(exp(⌅/T )� 1). In the following, we will use
various values of the electron-phonon coupling strength
g and the optical phonon frequency ⇥.
With the self-energy above, we solve the Dyson equa-

tion

Gk(t, t
⇥) = G0

k(t, t
⇥) +

�
dt1dt2G

0
k(t, t1)�(t1, t2)Gk(t2, t

⇥)

This can be done by casting the Dyson equation as
a matrix equation. However, for the case of electron-
phonon coupling, better numerical stability can be ob-
tained by expanding the integral through Langreth rules
and solving the equations of motion for the retarded, real-
imaginary, and lesser Green’s functions.4,5 This leads to
a set of Volterra integrodi⇤erential equations that can be
solved via standard numerical integration.6 We find that
the solution of the Dyson equation by integrating the
Volterra equations leads to more stable and inherently
causal algorithms. Some details about number of time
points go here.
The pulse that is of direct interest to pump-probe ex-

periments is, by nature, a propagating light pulse; this
implies an oscillating field without a zero-frequency com-
ponent. We model the pump via an oscillating vector po-
tential along the (11) direction with a Gaussian profile,
where we assume that the field is slowly varying spatially
and thus neglect the spatial dependence:

A(t) = (x̂+ ŷ)
Fmax

⌅p
sin(⌅pt) exp

�
� (t� t0)2

2⇤2

⇥

Gk(!) = G0
k(!) +G0

k(!)⌃(!)Gk(!)
self-energy Σ:
electron-electron scattering
electron-phonon scattering
...

same problem as in equilibrium 
(but worse):
use your favorite self-energy 
approximation, e.g. perturbation 
theory, nonequilibrium DMFT, ...
	



Max Planck Institute for the Structure and Dynamics of Matter 

Electron-boson coupling 

Weak	pump	 Strong	pump	

5me	unit	=	0.66	fs	

nonlinear	response	for	strong	pump	

boson	window	effect	for	fast	versus	slow	relaxa5on	

5	

PRX	3,	041033	(2013)	
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Ultrafast Materials Science today 
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Image	courtesy:	
D.	Basov	

Understanding	ordered	phases	
§  Collec5ve	oscilla5ons	
§  Compe5ng	order	parameters	

Understanding	the	nature	of	quasiparHcles	
§  Relaxa5on	dynamics	
§  Control	of		couplings	

PRL	111,	077401	(2013)	
PRX	3,	041033	(2013)	
PRB	87,	235139	(2013)	
PRB	90,	075126	(2014)	
Nature	Commun.	7,	13761	(2016)	
PRB	95,	024304	(2017)	
arXiv:1702.00952	
	
	

PRB	92,	224517	(2015)	
PRB	93,	144506	(2016)	
PRL	118,	087002	(2017)	

CreaHng	new	states	of	maRer	
§  Photo-induced	phase	transi5ons	
§  Floquet	topological	states	

Nature	Commun.	6,	7047	(2015)	
Nature	Commun.	8,	13940	(2017)	
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Outline 
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•  Part	I:	Floquet	engineering	of	topological	solids	
–  Floquet	Chern	insulator	in	graphene	
	
–  Floquet-Weyl	semimetal	in	Na3Bi	

Nature	Commun.	6,	7047	(2015)		

Nature	Commun.	8,	13940	(2017)		

•  Part	II:	Light-enhanced	electron-phonon	coupling	

•  Part	III:	Laser-controlled	compe5ng	orders	

PRL	118,	087002	(2017)			

PRB	95,	024304	(2017)	
arXiv:1702.00952	

„as	5me	permits“	
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I. Floquet engineering in solids 

8	



Max Planck Institute for the Structure and Dynamics of Matter 

Driven is different 

youtube.com/watch?v=tP88f-SwO_E 
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Kapitza pendulum 

dynamical stabilization of a metastable state 
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Driven is interesting 

ω  ->	infinity	
Kapitza	class,	dynamical	stabiliza1on	

ω  ->	finite	but	largest	scale	
Floquet	engineering	

ω  ->	resonances	
sidebands,	huge	effects,	detuning	

ω  ->	smallest	
dc	physics,	adiaba1c	evolu1on	

Bukov,	d‘Alessio,	Polkovnikov,	Adv.	Phys.	64,	139-226	(2015)	
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Floquet topological states 
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Haldane model (PRL 61, 2015 (1988))

Local	flux	φ
Staggered	field	m	
Fic55ous	fields!	

Graphene + circularly polarized light (breaks trs)

breaks trs

br
ea

ks
 in

v

? pump

Duncan	Haldane	
@APS	2017	
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Floquet engineering in a nutshell 
time periodic system	

 ~ absorption of m “photons”	

ε:  Floquet quasi-energy	

Floquet Hamiltonian (static eigenvalue problem)	

“Floquet mapping” 
= Bloch state in time	

12	

slides	courtesy	of	Takashi	Oka	
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Dirac fermion + circularly polarized laser 
  

18	

Oka and Aoki,
PRB 79, 081406 (2009)	

Mass term = energy gap = 
synthetic field stemming from a real time-
dependent field A(t)	

Floquet	engineering	

Kapitza	
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Bi2Se3	
Science	342,	453	(2013)	

Binding	energy	

Bi
nd

in
g	
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momentum	
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Floquet-Bloch states in graphene 

Tight-binding model + nonequilibrium Keldysh formalism: 
Time-resolved ARPES during 1.5 eV circularly polarized laser pulse 
Turning graphene into a Chern insulator 

binding	energy	in	eV	

momentum	

20	

Floquet	engineering	

Resonances,	sidebands	

M.	A.	Sentef,	M.	Claassen,	A.	F.	Kemper,	B.	Moritz,	T.	Oka,	J.	K.	Freericks,	and	T.	P.	Devereaux,	
Nature	Commun.	6,	7047	(2015)		
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Floquet-Weyl semimetal 
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Hannes Hübener Umberto de Giovannini Alexander Kemper 

(NC State) 
Angel Rubio 

Nature	Commun.	8,	13940	(2017)		

Ab initio: TDDFT + Floquet theory 
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Summary I 
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-  Floquet engineering: tuning effective parameters and 
changing materials properties by laser driving 

Nature	Commun.	6,	7047	(2015)		
Nature	Commun.	8,	13940	(2017)		
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II Dynamically enhanced coupling 
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PRB	95,	024304	(2017)	
enhanced	electron-phonon	for	pump	on	resonance	with	IR	
phonon	
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Dynamically enhanced coupling? 

24	

transient	reduc5on	of	Drude	weight	 enhanced	tr-ARPES	relaxa5on	

3-fold	enhancement	of	effec5ve	λel-ph!	Why?	

PRB	95,	024304	(2017)	
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2-site model with nonlinear coupling 

25	

2

coherent state in Ref. 36,

Ĥ(t) = �J
X

�

(c†1,�c2,� + c†2,�c1,�)

+ g2
X

�,l=1,2

n̂l,�(bl + b†l )
2

+ ⌦
X

l=1,2

b†l bl + F (t)
X

l=1,2

(bl + b†l ), (1)

where J is the electronic hopping matrix element be-

tween sites l = 1, 2, c(†)l,� annihilates (creates) an electron
of spin � =", # on site l with electron number operator
n̂l,� ⌘ c†l,�cl,�, g2 is the nonlinear electron-phonon cou-
pling with bosonic phonon annihilation (creation) opera-

tors b(†)l on site l, ⌦ is the phonon frequency, and F (t) is
a driving field coupling to the phononic position (dipole)
operator x̂l ⌘ bl + b†l . In a generic lattice with inversion
symmetry, the phonon modes to which F (t) couples are
ungerade and thus infrared active, which does not allow
for a linear term and makes the g2 term the lowest order
allowed interaction term for infrared phonons. By multi-
plying out the (bl+b†l )

2 term, one finds that the nonlinear
interaction renormalizes the phonon frequency locally on
site l to ⌦e↵ ⌘ ⌦+2g2hn̂li, where hn̂li ⌘ hn̂l,"+ n̂l,#i = 1
is the average local electronic occupation with electron
number operator n̂l,� ⌘ c†l,�cl,�. The system is driven
out of equilibrium by a time-dependent periodic field

F (t) = F sin(!t), (2)

with laser frequency !.
The time-evolved wave function of the system is com-

puted by starting in the ground state | 0i at time t = 0
and propagating forward in time,

| (t)i = T e�i
´ t
0 H(t0)dt0 | 0i. (3)

In practice we use the commutator-free fourth order
scheme introduced in Ref. 37 to compute the time-
ordered (T ) exponentials, which allows us to use a rel-
atively coarse time step of �t = 0.5 without time dis-
cretization issues. Convergence in the time step size was
checked. The phononic Hilbert space is truncated us-
ing up to 20 phonons per site, and convergence checked.
Signatures of electron-phonon coupling in the electronic
single-particle spectrum are extracted by computing the
time-resolved electronic spectrum38 for site 1 and spin "
with spectral intensity

I(!, t0) = Re

ˆ
dt1 dt2 ei!(t1�t2)st1,t2,⌧ (t0)

⇥
h
h (t2)|c†1,"T e�i

´ t2
t1

H(t)dtc1,"| (t1)i+

+ h (t1)|c1,"T e�i
´ t1
t2

H(t)dtc†1,"| (t2)i
i
, (4)

using the retarded Green’s function. The second and
third lines in Eq. (4) are the lesser and greater Green’s

functions, which contain information about the occupied
and unoccupied spectral intensities, respectively. We em-
ploy a Gaussian probe pulse shape function

st1,t2,�(t0) ⌘
1

2⇡�
e�

(t1�t0)2

2�2 e�
(t2�t0)2

2�2 (5)

centered around probe time t0 with probe duration �.
The duration of the probe pulse plays the role of the
time scale of an e↵ective degree of freedom that “sees”
signatures of e↵ective couplings out of equilibrium.
We set J = 0.15, ⌦ = 0.5, and g2 = �0.05 and prop-

agate the wavefunction from t = 0 to t = 50. For the
given parameters the renormalized phonon frequency is
⌦e↵ = 0.40. We note that this choice of negative g2 is not
mandatory, and the light-induced spectral weight trans-
fer discussed in the following can be observed for positive
g2 as well. However, the present case is particularly in-
teresting, as the phonon is softened by the coupling to
the electrons, and in principle strong driving could also
lead to a dynamical lattice instability in this case. The
probe duration is taken to be � = 8 with center time
t0 = 25.

III. RESULTS

A. Spectral weight transfer
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FIG. 1. Light-induced spectral weight transfer. Single-
particle spectrum for g2 = �0.05 and di↵erent field strengths
F , as indicated. Spectra are shifted vertically for clarity. The
dashed vertical line indicates the peak position of the bonding
state in the undriven case. For the lowest curve, the coherent
part of the spectrum that emerges from the main peaks at
weak driving field is indicated by the grey-shaded area.

Fig. 1 shows the spectral intensity during laser irradi-
ation with slightly o↵-resonant field frequency ! = 0.55

Idea:	Drive	nonlinearly	coupled	phonon	and	look	at	electronic	response	

2

coherent state in Ref. 36,

Ĥ(t) = �J
X

�

(c†1,�c2,� + c†2,�c1,�)

+ g2
X

�,l=1,2

n̂l,�(bl + b†l )
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+ ⌦
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(bl + b†l ), (1)

where J is the electronic hopping matrix element be-

tween sites l = 1, 2, c(†)l,� annihilates (creates) an electron
of spin � =", # on site l with electron number operator
n̂l,� ⌘ c†l,�cl,�, g2 is the nonlinear electron-phonon cou-
pling with bosonic phonon annihilation (creation) opera-

tors b(†)l on site l, ⌦ is the phonon frequency, and F (t) is
a driving field coupling to the phononic position (dipole)
operator x̂l ⌘ bl + b†l . In a generic lattice with inversion
symmetry, the phonon modes to which F (t) couples are
ungerade and thus infrared active, which does not allow
for a linear term and makes the g2 term the lowest order
allowed interaction term for infrared phonons. By multi-
plying out the (bl+b†l )

2 term, one finds that the nonlinear
interaction renormalizes the phonon frequency locally on
site l to ⌦e↵ ⌘ ⌦+2g2hn̂li, where hn̂li ⌘ hn̂l,"+ n̂l,#i = 1
is the average local electronic occupation with electron
number operator n̂l,� ⌘ c†l,�cl,�. The system is driven
out of equilibrium by a time-dependent periodic field

F (t) = F sin(!t), (2)

with laser frequency !.
The time-evolved wave function of the system is com-

puted by starting in the ground state | 0i at time t = 0
and propagating forward in time,

| (t)i = T e�i
´ t
0 H(t0)dt0 | 0i. (3)

In practice we use the commutator-free fourth order
scheme introduced in Ref. 37 to compute the time-
ordered (T ) exponentials, which allows us to use a rel-
atively coarse time step of �t = 0.5 without time dis-
cretization issues. Convergence in the time step size was
checked. The phononic Hilbert space is truncated us-
ing up to 20 phonons per site, and convergence checked.
Signatures of electron-phonon coupling in the electronic
single-particle spectrum are extracted by computing the
time-resolved electronic spectrum38 for site 1 and spin "
with spectral intensity

I(!, t0) = Re

ˆ
dt1 dt2 ei!(t1�t2)st1,t2,⌧ (t0)
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+ h (t1)|c1,"T e�i
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H(t)dtc†1,"| (t2)i
i
, (4)

using the retarded Green’s function. The second and
third lines in Eq. (4) are the lesser and greater Green’s

functions, which contain information about the occupied
and unoccupied spectral intensities, respectively. We em-
ploy a Gaussian probe pulse shape function
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centered around probe time t0 with probe duration �.
The duration of the probe pulse plays the role of the
time scale of an e↵ective degree of freedom that “sees”
signatures of e↵ective couplings out of equilibrium.
We set J = 0.15, ⌦ = 0.5, and g2 = �0.05 and prop-

agate the wavefunction from t = 0 to t = 50. For the
given parameters the renormalized phonon frequency is
⌦e↵ = 0.40. We note that this choice of negative g2 is not
mandatory, and the light-induced spectral weight trans-
fer discussed in the following can be observed for positive
g2 as well. However, the present case is particularly in-
teresting, as the phonon is softened by the coupling to
the electrons, and in principle strong driving could also
lead to a dynamical lattice instability in this case. The
probe duration is taken to be � = 8 with center time
t0 = 25.

III. RESULTS
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FIG. 1. Light-induced spectral weight transfer. Single-
particle spectrum for g2 = �0.05 and di↵erent field strengths
F , as indicated. Spectra are shifted vertically for clarity. The
dashed vertical line indicates the peak position of the bonding
state in the undriven case. For the lowest curve, the coherent
part of the spectrum that emerges from the main peaks at
weak driving field is indicated by the grey-shaded area.

Fig. 1 shows the spectral intensity during laser irradi-
ation with slightly o↵-resonant field frequency ! = 0.55

Drive:	
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coherent state in Ref. 36,

Ĥ(t) = �J
X
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(c†1,�c2,� + c†2,�c1,�)

+ g2
X
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n̂l,�(bl + b†l )
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+ ⌦
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l=1,2

b†l bl + F (t)
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l=1,2

(bl + b†l ), (1)

where J is the electronic hopping matrix element be-

tween sites l = 1, 2, c(†)l,� annihilates (creates) an electron
of spin � =", # on site l with electron number operator
n̂l,� ⌘ c†l,�cl,�, g2 is the nonlinear electron-phonon cou-
pling with bosonic phonon annihilation (creation) opera-

tors b(†)l on site l, ⌦ is the phonon frequency, and F (t) is
a driving field coupling to the phononic position (dipole)
operator x̂l ⌘ bl + b†l . In a generic lattice with inversion
symmetry, the phonon modes to which F (t) couples are
ungerade and thus infrared active, which does not allow
for a linear term and makes the g2 term the lowest order
allowed interaction term for infrared phonons. By multi-
plying out the (bl+b†l )

2 term, one finds that the nonlinear
interaction renormalizes the phonon frequency locally on
site l to ⌦e↵ ⌘ ⌦+2g2hn̂li, where hn̂li ⌘ hn̂l,"+ n̂l,#i = 1
is the average local electronic occupation with electron
number operator n̂l,� ⌘ c†l,�cl,�. The system is driven
out of equilibrium by a time-dependent periodic field

F (t) = F sin(!t), (2)

with laser frequency !.
The time-evolved wave function of the system is com-

puted by starting in the ground state | 0i at time t = 0
and propagating forward in time,

| (t)i = T e�i
´ t
0 H(t0)dt0 | 0i. (3)

In practice we use the commutator-free fourth order
scheme introduced in Ref. 37 to compute the time-
ordered (T ) exponentials, which allows us to use a rel-
atively coarse time step of �t = 0.5 without time dis-
cretization issues. Convergence in the time step size was
checked. The phononic Hilbert space is truncated us-
ing up to 20 phonons per site, and convergence checked.
Signatures of electron-phonon coupling in the electronic
single-particle spectrum are extracted by computing the
time-resolved electronic spectrum38 for site 1 and spin "
with spectral intensity
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, (4)

using the retarded Green’s function. The second and
third lines in Eq. (4) are the lesser and greater Green’s

functions, which contain information about the occupied
and unoccupied spectral intensities, respectively. We em-
ploy a Gaussian probe pulse shape function
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1
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2�2 (5)

centered around probe time t0 with probe duration �.
The duration of the probe pulse plays the role of the
time scale of an e↵ective degree of freedom that “sees”
signatures of e↵ective couplings out of equilibrium.
We set J = 0.15, ⌦ = 0.5, and g2 = �0.05 and prop-

agate the wavefunction from t = 0 to t = 50. For the
given parameters the renormalized phonon frequency is
⌦e↵ = 0.40. We note that this choice of negative g2 is not
mandatory, and the light-induced spectral weight trans-
fer discussed in the following can be observed for positive
g2 as well. However, the present case is particularly in-
teresting, as the phonon is softened by the coupling to
the electrons, and in principle strong driving could also
lead to a dynamical lattice instability in this case. The
probe duration is taken to be � = 8 with center time
t0 = 25.
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FIG. 1. Light-induced spectral weight transfer. Single-
particle spectrum for g2 = �0.05 and di↵erent field strengths
F , as indicated. Spectra are shifted vertically for clarity. The
dashed vertical line indicates the peak position of the bonding
state in the undriven case. For the lowest curve, the coherent
part of the spectrum that emerges from the main peaks at
weak driving field is indicated by the grey-shaded area.

Fig. 1 shows the spectral intensity during laser irradi-
ation with slightly o↵-resonant field frequency ! = 0.55
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Kennes	et	al.,	
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2

coherent state in Ref. 36,

Ĥ(t) = �J
X

�

(c†1,�c2,� + c†2,�c1,�)

+ g2
X

�,l=1,2

n̂l,�(bl + b†l )
2

+ ⌦
X

l=1,2

b†l bl + F (t)
X

l=1,2

(bl + b†l ), (1)

where J is the electronic hopping matrix element be-

tween sites l = 1, 2, c(†)l,� annihilates (creates) an electron
of spin � =", # on site l with electron number operator
n̂l,� ⌘ c†l,�cl,�, g2 is the nonlinear electron-phonon cou-
pling with bosonic phonon annihilation (creation) opera-

tors b(†)l on site l, ⌦ is the phonon frequency, and F (t) is
a driving field coupling to the phononic position (dipole)
operator x̂l ⌘ bl + b†l . In a generic lattice with inversion
symmetry, the phonon modes to which F (t) couples are
ungerade and thus infrared active, which does not allow
for a linear term and makes the g2 term the lowest order
allowed interaction term for infrared phonons. By multi-
plying out the (bl+b†l )

2 term, one finds that the nonlinear
interaction renormalizes the phonon frequency locally on
site l to ⌦e↵ ⌘ ⌦+2g2hn̂li, where hn̂li ⌘ hn̂l,"+ n̂l,#i = 1
is the average local electronic occupation with electron
number operator n̂l,� ⌘ c†l,�cl,�. The system is driven
out of equilibrium by a time-dependent periodic field

F (t) = F sin(!t), (2)

with laser frequency !.
The time-evolved wave function of the system is com-

puted by starting in the ground state | 0i at time t = 0
and propagating forward in time,

| (t)i = T e�i
´ t
0 H(t0)dt0 | 0i. (3)

In practice we use the commutator-free fourth order
scheme introduced in Ref. 37 to compute the time-
ordered (T ) exponentials, which allows us to use a rel-
atively coarse time step of �t = 0.5 without time dis-
cretization issues. Convergence in the time step size was
checked. The phononic Hilbert space is truncated us-
ing up to 20 phonons per site, and convergence checked.
Signatures of electron-phonon coupling in the electronic
single-particle spectrum are extracted by computing the
time-resolved electronic spectrum38 for site 1 and spin "
with spectral intensity

I(!, t0) = Re

ˆ
dt1 dt2 ei!(t1�t2)st1,t2,⌧ (t0)

⇥
h
h (t2)|c†1,"T e�i

´ t2
t1

H(t)dtc1,"| (t1)i+

+ h (t1)|c1,"T e�i
´ t1
t2

H(t)dtc†1,"| (t2)i
i
, (4)

using the retarded Green’s function. The second and
third lines in Eq. (4) are the lesser and greater Green’s

functions, which contain information about the occupied
and unoccupied spectral intensities, respectively. We em-
ploy a Gaussian probe pulse shape function

st1,t2,�(t0) ⌘
1

2⇡�
e�

(t1�t0)2

2�2 e�
(t2�t0)2

2�2 (5)

centered around probe time t0 with probe duration �.
The duration of the probe pulse plays the role of the
time scale of an e↵ective degree of freedom that “sees”
signatures of e↵ective couplings out of equilibrium.
We set J = 0.15, ⌦ = 0.5, and g2 = �0.05 and prop-

agate the wavefunction from t = 0 to t = 50. For the
given parameters the renormalized phonon frequency is
⌦e↵ = 0.40. We note that this choice of negative g2 is not
mandatory, and the light-induced spectral weight trans-
fer discussed in the following can be observed for positive
g2 as well. However, the present case is particularly in-
teresting, as the phonon is softened by the coupling to
the electrons, and in principle strong driving could also
lead to a dynamical lattice instability in this case. The
probe duration is taken to be � = 8 with center time
t0 = 25.

III. RESULTS

A. Spectral weight transfer
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FIG. 1. Light-induced spectral weight transfer. Single-
particle spectrum for g2 = �0.05 and di↵erent field strengths
F , as indicated. Spectra are shifted vertically for clarity. The
dashed vertical line indicates the peak position of the bonding
state in the undriven case. For the lowest curve, the coherent
part of the spectrum that emerges from the main peaks at
weak driving field is indicated by the grey-shaded area.

Fig. 1 shows the spectral intensity during laser irradi-
ation with slightly o↵-resonant field frequency ! = 0.55

Reduced	coherence	peaks	
with	stronger	driving	
	
Looks	like	enhanced	el-ph	
coupling	

arXiv:1702.00952	

light-induced	polaron	forma5on	
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Scaling	of	coherent	spectral	weight	loss:	propor5onal	to	
field	intensity	consistent	with	experiments	

3

and field strengths F = 0.00 . . . 0.30 as indicated. In the
undriven case (top), there are dominant spectral lines
corresponding to the bonding and antibonding states,
with energy position of the bonding state indicated by
the vertical dashed line. One can also see faint two-
phonon sidepeaks roughly 2⌦e↵ = 0.80 below and above
the main peaks, respectively. As the field is turned on,
the main peaks broaden and lose spectral weight. At the
same time they also shift down in energy. This line shift
stems mainly from the local electronic energy contribu-
tion g2n̂lh2b†l bl + 1i < 0 (for g2 < 0), which increases in
magnitude approximately linearly with F , as more en-
ergy is pumped into the phonons when F increases. For
the strongest drivings, one clearly sees the emergence of
incoherent spectral weight and strongly reduced coherent
peaks, indicating dynamical polaron formation via spec-
tral weight transfer. By varying the driving frequency,
we have checked that the additional peaks in the inco-
herent part of the spectrum are not Floquet sidepeaks30

but really incoherent spectral weight related to electron-
phonon coupling. We also note that spectral redistri-
bution in pump-probe experiments was investigated in
Refs. 39 and 40 for electronically driven systems. In
stark contrast to the present work, it was found that elec-
tronically driven systems usually look “less correlated”
rather than “more correlated” compared to thermal equi-
librium.

B. Field scaling
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FIG. 2. Field intensity scaling. Spectral weight loss in
the coherent peaks, extracted by fitting a sum of Gaussians
to the corresponding peaks, as a function of field intensity
F

2 at fixed g2 = �0.05 and two di↵erent driving frequencies
! = 0.55 and ! = 0.50, respectively. The straight lines are
guides to the eye.

Having demonstrated that a driven nonlinearly cou-
pled phonon leads to coherence-incoherence phenomena

in the time-resolved electronic spectra, we now investi-
gate quantitative aspects of the laser-induced spectral
redistribution. To this end, we fit a pair of Gaussians
to the coherent part of the spectrum, as shown in one
example in Fig. 1 for the lowest curve. We subtract the
fitted spectral weight from the one at F = 0 and obtain
the spectral weight loss shown in Fig. 2 as a function of
the pump field intensity F 2 for two di↵erent driving fre-
quencies. This spectral weight loss is proportional to the
coherent quasiparticle weight (Z) that is renormalized
from its value Z0 at F = 0. Using that the loss Z0 � Z
is proportional to � � �0, the enhancement of e↵ective
dimensionless electron-phonon coupling �, a proportion-
ality that holds at weak coupling. Apparently Fig. 2
suggests

�� �0 / F 2, (6)

where �0 is the dimensionless electron-phonon coupling
at zero field. Only at the strongest fields considered, we
observe a saturation e↵ect deviating from linear behavior,
which is expected since the maximal spectral weight loss
is bounded (for two electrons, 2Z 2 [0, 2]) and the linear
behavior of the spectral weight loss with e↵ective � only
holds at small �. Keeping in mind the uncertainty that
comes with the fitting of quasiparticle spectral weight,
the linear scaling at not too strong fields leads us to pre-
dict a linear scaling of light-enhanced electron-phonon
coupling with the driving field intensity or, equivalently,
the pump fluence in a pump-probe experiment. One can
also see in Fig. 2 that the e↵ect is stronger as the driv-
ing frequency ! moves closer to the resonance frequency
⌦e↵ = 0.40.

We now seek a minimal explanation for the observed
scaling behavior. To this end, we first notice that a
driven mode is expected to approach coherent state with
well-defined phonon coordinate exhibiting quasi-classical
forced oscillations hx̂l(t)i / F sin(!t), described by bo-
son coherent states. A mean-field decoupling yields
⌦e↵ = ⌦+2g2hn̂li and an interaction term g2n̂l(blhbl(t)i+
b†l hb

†
l (t)i, with oscillating mean fields hbl(t)i and hb†l (t)i

such that hbl(t) + b†l (t)i / F sin(!t). In the mean-field
picture, the interaction looks like a linear interaction with
a time-dependent interaction vertex that scales linearly in
g2, and via the coherent-phonon mean fields also linearly
in F .

In many-body perturbation theory, the lowest-order
time-nonlocal self-energy contribution is the first Born
approximation, or Migdal diagram,

⌃(t, t0) = ig(t)g⇤(t0)G(t, t0)D(t, t0), (7)

where we have dropped site and spin indices and in-
troduced the local electronic Green’s function G(t, t0) ⌘
�ihTCc(t)c†(t0)i and phonon Green’s function D(t, t0) ⌘
�ihTCx̂(t)x̂(t0)i on the three-branch Kadano↵-Baym-
Keldysh contour C with contour-time ordering TC . From
this Migdal diagram one can see that the above F 2

scaling is indeed explained via the F 2 scaling of the

Theory	 Data	by	E.	Pomarico,	
unpublished	
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•  enhanced	electron-phonon	coupling	in	
phononically	driven	bilayer	graphene		
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PRB	95,	024304	(2017)	

E.	Pomarico 						I.	Gierz	 	A.	Cavalleri	
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•  theore5cal	proposal:	nonlinear	el-ph	coupling	
as	mechanism	behind	this	enhancement	

Exact solution of (small) electron-phonon model system: 
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Summary 

•  theore5cal	simula5ons	enable	us	to	reveal	
mechanisms	behind	ultrafast	dynamics	in	
solids	
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THANK	YOU!	

From models to materials: 
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Why?	
-  understand	ordering	mechanisms		
-  control	ordered	states:	ultrafast	switching	
-  induce	new	states	of	ma=er		

How?		
-  laser	near	resonance	with	collec5ve	modes	

Generic	mechanism	to	control	compe1ng	orders	with	light?	
Recent	theories	on	laser-controlled	couplings	and	compe1ng	orders:	
Akbari	et	al.,	EPL	101,	17003	(2013);	Moor	et	al.,	PRB	90,	024511	(2014);	Fu	et	al.,	PRB	90,	
024506	(2014);	Dzero	et	al.,	PRB	91,	214505	(2015);	Tsuji&Aoki,	PRB	92,	064508	(2015);	
Cea	et	al.,	PRB	93,	180507	(2016);	Kemper	et	al.,	PRB	92,	224517	(2015);	Sentef	et	al.,	PRB	
93,	144506	(2016);	Krull	et	al.,	Nat.	Commun.	7,	11921	(2016);	Patel&Eberlein,	PRB	93,	
195139	(2016);	Knap	et	al.,	PRB	94,	214504	(2016);	Komnik&Thorwart	EPJB	89,	244	(2016);	
Coulthard	et	al.,	1608.03964;	Kennes	et	al.,	Nat.	Physics	(2017),	doi:10.1038/nphys4024;	
Sentef,	1702.00952;	Babadi	et	al.	1702.02531;	Murakami	et	al.,1702.02942;	
Mazza&Georges,	1702.04675;	Dehghani&Mitra,	1703.01621	
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Figure 2 | Tomographic view of a 50-nm-thick YBCO layer in a
YBCO–LCMO SL. Electronic phases as a function of depth and temperature,
including antiferromagnetic insulating (AFI), spin density wave (SDW),
superconducting (SC) and charge-density-wave (CDW) states. FM denotes
the ferromagnetic state in the LCMO layers. The bottom panel is an
estimate of the corresponding charge carrier concentration p. Detailed
models of the charge carrier profile will have to consider the work function
di�erence between YBCO and LCMO, the interfacial structure, and
chemical intermixing (see Supplementary Methods).

intensity with thickness, and its large intensity for the D= 50 nm
sample, demonstrate that most (if not all) of the YBCO volume in
this SL is a�ected by CDW formation. Rather than being pinned
to the interfaces, as expected for an ordinary proximity e�ect, these
data imply that robust CDW order is present over a large fraction of
the 50-nm-thick layer with hpi=0.15.

Having established the presence of robust CDW order in the
50-nm-thick YBCO layer with hpi = 0.15, we now turn to its
temperature and magnetic field dependence. The temperature
dependence of the RXS intensity (Fig. 3) is indicative of a second-
order phase transition with a critical temperature of 110K. This
is in stark contrast to the gradual onset of CDW correlations with
decreasing temperature in bulk cuprates (shown for comparison in
Fig. 3), which has been attributed to the competition between CDW
and superconductivity and/or pinning of CDW domains to random
defects10,11. The RXS intensity in the SLs evolves smoothly through
the superconducting transition, with no sign of the sharp suppres-
sion belowTc seen in bulkYBCO.Moreover, Fig. 4 shows that amag-
netic field of 6 T does not a�ect the CDWcorrelations, again in con-
trast to the behaviour of bulk underdoped YBCO, where the CDW
is markedly enhanced by magnetic fields of this magnitude3,6,17.

These observations indicate that the CDW state in YBCO–
LCMO superlattices is much closer to a genuine thermodynamic
phase than it is in bulk YBCO. This provides a natural explanation
for modifications of the electron–phonon interactions32 and the
thermoelectric properties33 over a similar spatial range. Di�erent
mechanisms may contribute to the stabilization of the CDW over
a range of tens of nanometres. In particular, we note that the graded
charge carrier concentration profile (Fig. 2) includes regions close
to the interface where p is optimal for the formation of the CDW17.
These regions can act e�ectively as coherent nucleation centres of
CDWdomains in optimally doped regions further inside the YBCO
layers. In contrast, pinning of incommensurate CDW fluctuations
by randomly disordered defects in bulk YBCO11,12 is presumably
much less e�ective.

We now discuss the proximity-induced monotonic evolution
of the CDW order parameter below Tc. The strong, systematic
increase of both the CDW peak intensity and the superconducting
Tc with YBCO layer thickness implies that CDW order and
superconductivity coexist deep inside the YBCO layers. We
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Figure 3 | Temperature dependence of the RXS intensity for a SL with
50-nm-thick YBCO. The data for the SL are shown as blue circles and
compared to equivalent data on a single crystal of YBCO6.6 (ref. 17), shown
as open squares. Lines are guides to the eye.
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Figure 4 | Magnetic field dependence of the RXS intensity for a SL with
50-nm-thick YBCO. The main panel shows background-subtracted RXS
scans with applied magnetic field nearly along the c-axis, taken at T =4 K.
The inset shows the magnetic field dependence of the RXS intensity,
extracted from the RXS profiles by fitting to Lorentzians. The error bars were
determined by the fitting procedure. The shaded line is a guide to the eye.

therefore consider possible scenarios for laterally modulated
structures comprising both superconducting and CDW order at
optimum doping. The first scenario involves mesoscopic patches of
non-superconducting CDWorder that coexist laterally with patches
of superconducting order. The order in the CDW patches is then
closely related to the CDWstate realized in bulk YBCO7 inmagnetic
fields of the order of 100 T, where superconductivity is obliterated
by orbital depairing14–16. The superconducting patches, on the other
hand, are CDW-free, as they are in bulk optimally doped YBCO.
Due to the mesoscopic phase separation, the interaction between
the two order parameters is strongly reduced, thus explaining
the lack of suppression of the CDW order parameter below Tc
(Fig. 3). However, there is no direct evidence for such mesoscopic
phase separation, and the mechanisms that might give rise to such
behaviour remain unclear.

Second, superconductivity and CDW order may be microscop-
ically ‘intertwined’. Since CDW order is strengthened by proximity
to the interfaces, and is fully established at the superconducting
Tc, the superconducting order parameter has to adjust to the pre-
existing CDW order, perhaps by forming a modulated state akin
to the ‘Fulde–Ferrell–Larkin–Ovchinnikov’ state in ferromagnetic

NATUREMATERIALS | VOL 15 | AUGUST 2016 | www.nature.com/naturematerials
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YBCO-LCMO	heterostructure	

A.	Frano	et	al.,	
Nat.	Mater.	15,	831	(2016)	D.	FausH	et	al.,		

Science,	331,	189	(2011)	
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CDW	

Stripe-ordered	LESCO	

D.	Nicole^		et	al.,		
PRB	90,	100503	(2014)	

10 
 

 
 

Figure 1. (a) Temperature-doping phase diagram of LBCO, as determined in Ref. 7. Tc, 

TCO, TSO, and TLT indicate the superconducting, charge-order, spin-order, and 

structural transition temperatures, respectively. Colored circles indicate the different 

dopings and temperatures for which data are reported here. (b) Periodic stacking of 

CuO2 planes in the stripe phase. The stripe orientation rotates by 90° between layers. 

(c) Equilibrium c-axis optical properties of LBCO. Left panel: THz reflectivity of the 

three samples at T = 5 K. The region investigated in this experiment is shaded in gray. 

Right panel and inset: broadband c-axis reflectivity and optical conductivity of LBCO 

from Ref. 27. Red arrows indicate the pump photon energy. 
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CDW ~ A 
1-photon resonance 

2ΔΩ

...	laser	lirs	SC/CDW	degeneracy	

...	Goldstone-like	collec5ve	mode?	

SC	

CDW	

2Δ
Ω

Ω

SC ~ A2 

2-photon resonance 
Tsuji&Aoki,	PRB	92,	064508	(2015)	
Cea	et	al.,	PRB	93,	180507	(2016)	
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- attractive -U Hubbard model 
- degeneracy of SC and CDW at 
perfect nesting 
- SO(4) symmetry (SC, CDW, eta 
pairing) 
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rl Pairing and Off-Diagonal Long-Range Order in a Hubbard Model

Chen Ning Yang
State University ofNew York, Stony Brook, New York l 1794-3840

and Chinese University ofHong KongH, ong Kong
(Received 22 August 1989)

It is shown in a simple Hubbard model that through a mechanism called g pairing one can construct
many eigenstates of the Hamiltonian possessing OA-diagonal iong-range order. The intrapair distance is
small. It is shown that these eigenstates are metastable and possess an energy gap.

PACS numbers: 74.20.—z, 05.30.Fk

Since the discovery of high-temperature superconduc-
tivity' in 1986-1987 there have been many proposals
for the theoretical mechanism for such phenomena.
None has been generally accepted. Most proposals con-
cern some kind of Hubbard model, which unfortunately
is difFicult to solve except in one dimension.
In this paper we show that for the simplest Hubbard

model in three dimensions (also in one or two dimen-
sions), many eigenfunctions of the Hamiltonian can be
explicitly written down. Of particular interest is the fact
that these eigenfunctions possess off-diagonal long-range
order (ODLRO), the property of a dynamical system
that is essential for the phenomena of superconductivity
and superAuidity. This is a rather subtle long-range or-
der, especially for fermions, and no previous models of
fermions in dimensions higher than one has been proven
to have eigenstates with ODLRO. The usual BCS wave
function does have ODLRO via the mechanism of
Cooper pairs, but it is not an eigenstate of a Hamiltoni-
an system with a local potential energy.
The mechanism essential for the eigenfunctions of the

present paper is a g-pairing mechanism which seems to
be peculiar to lattice models, and is absent in any contin-
uum model.
For the attractive case these eigenfunctions are shown

to be metastable at low temperatures. They possess
ODLRO, and thus are superconducting.
(I) ri pairing Consid. e—r a three-dimensional Hub-

bard model on a periodic L xL x L lattice where L is even
(e) 0):
H=T+ V,

given by

ay=(L) 'l'ga, exp( —ik r), (4)

where

k =2tr/L (three-dimensional integer) (mod2n) . (5)
We choose the fermion operators so that

[al„alt]p =b(k —k'), etc. ,
but

[al„bl, ] = [al„bl, ] =O. (6)
The kinetic energy T of Eq. (2) is trivially diff'erent

from the kinetic energy in the usual Hubbard model in
the appearance of the term 6, which is inserted here to
make T a positive operator. This insertion makes it pos-
sible to compare with such concepts in the continuum
problem as particles, collisions, bound states, etc. No
physical conclusion is altered by this insertion.
We shall show that many eigenstates of the Hamil-

tonian H can be explicitly written down with the aid of
an operator g defined as

ri=gat, b -1„ =tr( , tr, tr)tr.
k

(7)

Notice that this definition is only meaningful when L is
even, because otherwise k and x—k would not be simul-
taneously possible k values. Using (4), we also have
ri=ge "'a,b, .

T=eg (6—2cosk„—2 cosks —2 cosk, ) It is easy to prove
qtT —Tg~ =—12eg~, (9)

X (al, ay+ bltbg),
V=2W+a ta,b tb

(2)
(3)

where a, and b, are coordinate-space annihilation opera-
tors for spin-up and spin-down electrons, respectively,
and r is a three-dimensional integral coordinate variable
that designates the L x L xL lattices sites. The annihila-
tion operators a~ and bg are momentum-space operators

by going into the representation where all ai, ap and all
be~bi, are simultaneously diagonal. The basic kets in this
representation will be denoted by I n) Now ta. ke
(n'I

I n) of both sides of (9). Since T is diagonal in this
representation, (9) becomes
&n'

I ri In&[&n I T I n&
—&n'

I T I
n'&]

12e(n I
Gt

I n) . (9 )

2144 l989 The American Physical Society
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2D	square	lauce	+	a=rac5ve	U	+	mean-field	decoupling	
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nonlinear equations: 
self-consistency in real time 
 
 
  

eta	pairing	provides	coupling	

Equations of motion for electronic driving:  

Nonequilibrium:	
Periodic	driving	field:	A(t)	=	Amax	sin(ωt)	(ex	+	ey)	
Amax	=	5	x	10-5,	Emax	~	10-100	V/cm	–	weak	fields!	
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Below	resonance:	
SC	down,	CDW	up	
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SC	

CDW	

Above	resonance:	
SC	up,	CDW	down	
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„Floquet	1me	crystal“??	
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oscilla5on	frequency	set	by	light-induced	eta	pairing	
amplitude,	which	gives	„mass“	to	collec5ve	mode	
	
resonant	behavior	at	Ω=2Δ =	single-par5cle	gap	
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99%	CDW	ini5al	state	
Drive	slightly	above	gap	
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-  laser-controlled switching between SC/CDW 
-  path to understanding of light-induced superconductivity in 

systems with competing orders? 
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Tight-binding model + time-dependent mean-field theory: 


