The Drupe model

- uses concepts from kinetic gas theory to describe electrons that move around in a solid and scatter with, fixed ions
- one of the first microscopic models for solid (1900-... discovery of election only 1897)

- motion between collisions

$$
\stackrel{\rightharpoonup}{P}=\vec{F}_{L}=-e\left(\stackrel{\rightharpoonup}{E}+\frac{1}{c} \vec{P}_{m} \times \stackrel{\rightharpoonup}{B}\right)
$$

(Lorentz force)

- collision proputrlity in

$$
[t, t+d t]=\frac{d t}{\tau}
$$

τ relaxation time

- after collisions: electrons have equilibriu (Maxwell Boltzmann) distribution
$\leadsto \quad \frac{d \vec{p}}{d t}=-F_{L}-\vec{P}_{T}$ equation of motion for average vomentuca
\Rightarrow can be used to compute various transport properties, e.g. conductivity.

$$
\begin{array}{ll}
\vec{\jmath}=-e n \vec{P} / m & j: \text { current density } \\
& n: \text { density of electrons } \\
\vec{E}(\omega)=\vec{E}(\omega) e^{-i \omega t} & \leadsto j(\omega)=E(\omega) \sigma(\omega)
\end{array}
$$

with

$$
\sigma(\omega)=\frac{\sigma_{0}}{1-i \omega T} \quad \sigma_{0}=\frac{n e^{2} T^{4}}{u}
$$

this turns out to be very useful as a phenomeno logical description, but there are "severe" problems with microscopic foundations:
(1) Scattering rate cannot be related to Scattering with ions: $\sigma_{\text {de }}$ deceases $\downarrow 0$ in a perfect crystal (no defects) at $T \searrow 0$.
(also: teuperatuse-dependence of τ not captured) \leadsto electrons can move almost fee in a perfect periodic onystal \leadsto Bode thecsem. quasi-momentuce conservations
(2.) Kinetic gas theory makes some"cery wrong" predictions, big. specific heat $c_{v}=\frac{3}{2} n k_{s} \quad($ really $\quad(v \propto T)$
\leadsto elections in a crystal have to be described quantum medeanically (Fermi statistics instead of Maxwell Boltzmann statistics)

- rough argument cohen quautucu statistics should be used:

typical lutespartide distance

average de Broglie wavelength $t=\frac{2 \pi \hbar}{\langle\rho\rangle}$ for particle in ideal gas at temperature $T:\left\langle\frac{u_{2}}{2} v^{2}\right\rangle=$

$$
=\left\langle\frac{p^{2}}{2 a r}\right\rangle={ }_{2}^{3} k_{B} T
$$

quanticus

check: above estimate $r_{s} \leqslant\langle h\rangle$ up to constant equivalent to $E_{F} \gtrsim T$, where E_{F} is the Fermi energy of free electrons with density n : $E_{F}=\left(3 \pi^{2} n\right)^{2 / 3} \frac{\hbar^{2}}{2 m}$ typical value for metals:

$$
E_{F} \sim 1-20 \mathrm{eV} \gg k_{B} T \simeq 0.01 \mathrm{eV}
$$

Note $k_{B} T=1 e V \hat{=} 11604$ Kelvin
(1) In real materials; the ratio $\frac{e}{m}$ of the Druse model can take a whole range of values (as if there are many kinds of elections, even with positive charge!)

On the other hand, the success of the Dree model indicates that the picture of "something" scattering with "something else" is not so wrong. But ice the solid, "particles" are excitations of the ground state with given energy momenture relation, and those particles have often very different properties from original particles (n quasiparticles)

\rightarrow many diffesen ground states: Fenui liquid, super conductor, magmatic order, with differs excitations

Electrons in a periodic potential - band theory

- periodic structones-crystal symmutzis

$$
\left\{\vec{R}: \quad \vec{R}=\sum_{i=1}^{3} n_{i} \vec{a}_{i} \quad n_{i}=0, \pm 1, \pm 2, \ldots\right\}
$$

is called the Bravais Lattice $C=$
lattice with simplest possible, ire. sPherically symmetric, basis)

- Classification of lattice by symmetry (not in this lecture, see texts on cryptallograptry):

Point group: symmetry operations which leave one point fixed
Space group: full symmetry group

$$
\vec{r} \rightarrow D \overrightarrow{=}+\vec{a}: \frac{D}{a}: \begin{aligned}
& \text { point group } \\
& \text { translation }
\end{aligned}
$$

Example - Bravais lattices in $d=2$

$\begin{gathered} 0000 \\ 0 \bigcirc 0 \\ \substack{0 \\ \left\|a_{2}\right\| \neq \mid a_{2}, \varphi \neq 90^{\circ} \\ 1} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \end{aligned} 000$	$0_{\substack{0 \\ 0}}^{0} 0$

https://commons.wikimedia.org/wiki/File:2d-bravais.svg

Example - Honeycomb lattice: not a Bravais lattice

Basis: 2 atoms per unit cell

- In dimension $d=3$. Bravais lattice can have 7 point groups (oxustal systecus) and 14 space groups (Bravais ~1850) in dimension $d=2$: space groups \cong wallpaper groups (see e.g. wikipedia)
- Importance of symmetry for description of solids:
- quantum unveber (quasimomantum) \rightarrow rev below
- symmetries deter nines response coefficients of a solid. In general, physical observables must be invariant under crystal symmetries Example: conductivity, cubic symmetry general linear response relation:

$$
j_{\alpha}=\sum_{\alpha^{\prime}} \sigma_{\alpha \alpha^{\prime}} E_{\alpha^{\prime}} \quad \alpha, \alpha^{\prime}=x, y, z
$$

Invariance $D \sigma D^{-1} \stackrel{!}{=} \sigma$ for all point group operations

Rotations 180° around z -Axis.

$$
\left.\begin{array}{l}
D=\left(\begin{array}{lll}
-1 & & \\
& -1 & \\
& & +1
\end{array}\right) \\
D\left(\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right) D^{-1}=\left(\begin{array}{ll}
+\sigma_{11} & +\sigma_{12} \\
+\sigma_{21} & -\sigma_{13} \\
-\sigma_{22} & -\sigma_{23}
\end{array}\right) \stackrel{=}{=} \underline{\underline{\sigma}} \\
\Rightarrow \sigma_{32}+\sigma_{33}
\end{array}\right) \quad \begin{aligned}
13 & =\sigma_{23}=\sigma_{131}=\sigma_{32}=0
\end{aligned}
$$

similar rotations around $\hat{x}, \hat{y} \Rightarrow \sigma$ diagonal
rotations 120° around body diagonal \Rightarrow permutations of $x, y, z \Rightarrow \underline{\sigma}=\mathbb{1} \cdot \sigma$

Scattering waves off periodic shuctorses

- discrete Bragg reflexes with ware vector $\vec{k}^{\prime}, \vec{k}^{\prime \prime}, \ldots$
- condition for constructive interference of scattered wave in direction \vec{k}^{\prime} :

$$
\left(\vec{k}-\vec{k}^{\prime}\right) \cdot \vec{R}=2 \pi n \quad(n \in \mathbb{Z})
$$

for all \vec{R} in Lattice (vow Lace)
proof:
path difference of (1) and (2):

$$
\left(\frac{\vec{k}}{|k|}-\frac{\vec{k}^{\prime}}{\left|k^{\prime}\right|}\right) \cdot \vec{R} \stackrel{1}{=} \cdot \frac{\stackrel{\rightharpoonup}{k}}{\left|k^{\prime}\right|}
$$

with $|k|=\left|k^{\prime}\right|=2 \pi / K \quad$ (elastic scattering) one gets the won Laue condition.
the reciprocal lattice

For a lattice $c y=\{\vec{R}\}$, the reciprocal lattice is given by all vectors \vec{G} which Satisfy $\vec{G} \cdot \vec{R}=2 n \pi,(n \in \mathbb{Z})$ for all $\vec{R} \in G_{\text {, }}$, (i.e. $e^{i \vec{G} \vec{R}}=1 \quad \forall \vec{R} \in G$)

For a Bravais Lattice with primitive vectors $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$, the reciprocal Lattice is given by a Bravais Lattice with primitive vectors b_{i} that satisfy $\vec{b}_{i} \cdot \vec{a}_{j}=2 \pi \delta_{j}$.

$$
\vec{b}_{1}=2 \pi \frac{\vec{a}_{2} \times \dot{a}_{3}}{\left|a_{1} \cdot\left(\vec{a}_{2} \times \vec{a}_{3}\right)\right|} \quad 1,2,3 \text { cyclic }
$$

Example: sectaugular Lattice:

- reformulation of vo Lane condition : constructive interference if $\vec{k}-\vec{k}^{\prime}$ is a vector of reciprocal lattice
- technical remark. reziprocal Lattice also defines Fourier components of a function while is periodic one the lattice:

$$
\text { if } \quad \begin{array}{ll}
f(\vec{r}+\vec{R})=f(\vec{r}) \quad \forall \vec{R} \in G \\
f(\vec{r}) & =\sum_{G} f_{\vec{G}} e^{i \vec{G} \vec{r}} \\
& \therefore \quad \begin{array}{ll}
f_{G} \vec{G} & =\frac{1}{\text { Vol }} \int_{\text {unit }} d^{3} r e^{-i \vec{G} \vec{r}} \\
\text { all }
\end{array}
\end{array}
$$

Momentum conservation on the Lattice

The analysis of the scattering of plane waves shows that on a periodic structure momentum e \vec{k} is scattered only into \vec{k}^{\prime} with $\vec{k}^{\prime}-\vec{k}=\vec{G} \in \zeta^{*}$
\Rightarrow momentum conservation up to reziproccel Lattice vector

State $|\psi\rangle$ has "good quasimomentuce "द "
$\left.\Leftrightarrow \left\lvert\, \begin{array}{l}\| \\ \Leftrightarrow\end{array}\right.\right)$ superposition of states with momentace $\left.\vec{k}+\vec{G}, \vec{G} \in y\right)$

On a periodic lattice, quasimomentum is conserved.

BE
without loss of generality, \vec{k} caube taken from 1. Brillouin zone CWigner Seitz unit cell of the reziprocal Lattice.

Illustration: Umklapp scattering.

Scattering of election with quastmomenturer with something else (phonon, another $e^{-}, .$.) with quasimomentiver \vec{q}

Momentum conservation: algebraic formulation In a periodic crystal, \hat{H} commutes with all translation operators:

$$
\left[H_{1}, T_{R}\right]=0 \quad \forall \vec{R} \in \xi_{y}
$$

(translation operator $\left(T_{R} \psi\right)(\vec{r})=\psi(r-R)$)
\approx choose eigenfunction s of H to be simultaneous eigenfunction of all T_{R} :

$$
T_{R}|\psi\rangle=c(\vec{R})|\psi\rangle \quad \forall \vec{R}
$$

$$
\vec{R}=\sum_{i} n_{i} \hat{a}_{i} \quad \Rightarrow T_{\vec{R}}=\left(T_{\vec{a}_{i}}\right)^{n_{1}}\left(T a_{2}\right)^{n_{2}}\left(T_{a_{3}}\right)^{n_{s}}
$$

(because translation operators commute!)

$$
\Rightarrow T_{R}|\psi\rangle=c\left(a_{1}\right)^{n_{1}}\left(\left(a_{2}\right)^{n_{2}} c\left(a_{3}\right)^{n_{3}} \quad|\psi\rangle \quad \forall n_{i} \in \mathbb{Z}\right.
$$

because $\||\psi\rangle\|=\| T_{R}|\psi\rangle \| \Rightarrow|C(R)|=1$
\Rightarrow implicitly define \vec{k} suckle that $\quad C\left(a_{i}\right)=e^{i \vec{k}_{a}}$

$$
\Rightarrow c(R)=\exp \left(i \sum_{j} \vec{a}_{j} n_{j}\right)=e^{i \vec{k} \vec{R}}
$$

\vec{k} (quasimomentrum): Quantum number which charcaterizes how ware function behaves under translation:
| \rangle has quasimomantam $\vec{k} \Leftrightarrow T_{R}|\psi\rangle=e^{i \vec{k} R}|\psi\rangle$

- Note: apparently \vec{k} and $\vec{k}+\vec{b}$ with $\vec{h} \in Y^{*}$ are the same quasimomentucer
- compos: LL, ${ }^{2} L_{z}$: Quantum numbers while characterize transformation under rotations ... etc.
(2) Electrons in the periodic crystal

In this chapter, we solve the Schrodinger equation for electrons in the solid. Approximations.

- nuclear positions are kept fixed in space (Born-Oppenheimev approximation), valid for $m_{e} \ll m_{\text {Nuclei }}$ (see later)
- election-electron interaction is neglected
\leadsto goal: determine eigen value spectrum of $\quad H=\frac{\vec{p}^{2}}{2 m}+V(\vec{r}) \quad V(\vec{r})=V(\vec{r}+\vec{R})$ $\forall \vec{R} \in$ Bravaislatice G
Note: Why does © make sense at all ?
- "deep reason" elechous in solid can behave like weakly inter acting e^{-}with "renormalized" properties (different mass etc.) $(\rightarrow$ screening, Fermi liquid theory, see below)
- "practical reason": If electron-electron interaction is included in the simplest approximation (meau-field, Harte), $V(\vec{r})$ simply includes the time aveaged interaction with all other electrons. $V(\bar{v})$ is then an effective potential while is determined self-cousistently. Similar, a (more sophisticceted) effective single particle problece has to be solved in the more accurate density functional theory. The techniques to do so are the same e as presented in this chapter.

Bloch theorem

If commutes with all translations $\vec{T}, \vec{R} \in \bar{Y}$ \Rightarrow eigenstates of H have good quasimomertum

$$
\begin{align*}
& \left.T_{R} \mid \psi X_{r}\right)=\psi(\vec{r}+\vec{R}) \\
& e^{i \vec{k} \vec{R}} \psi(\vec{r}) \tag{2.1}\\
& \text { quasi-momentuce } \vec{k}
\end{align*}
$$

\Rightarrow The function $e^{-i \vec{k} \vec{r}} \psi(\vec{r}) \equiv u_{\vec{k}}(\vec{r})$ is periodic, $\quad u_{k}(\vec{r}+\vec{R})=u_{k}(\vec{v})$
\Rightarrow (Block) Eiguefunctions of H can be written as $\psi_{k}(\vec{r})=e^{i \vec{k} \vec{r}} U_{k}(\vec{r})$, where \vec{k} can be restricted to the first Brillouin zone, and $x_{k}(\vec{r}+\vec{R})=x_{k}(\vec{r}) \quad \forall \vec{R}$.

Note: An analogous theorem is used for the description of systems while are periodic in e time (Floquet, 1883). If

$$
i \partial_{t} \psi(t)=H(t) \psi(t) \text { with } H(t+T)=H(t)
$$

Then the solutions are of the form

$$
\psi(t)=e^{-i \in t} u(t)
$$

cal be restricted to $\left[0, \frac{2 \pi}{T}\right]$ "quasi- energy"
using Blode theorem, the Strro"dinger equation can be rewritten as an equation for u_{k} :

$$
\hat{p} \hat{\equiv}-i \hbar \vec{\nabla} \leadsto \hat{p} e^{i \vec{k} \vec{r}} f(\vec{r})=e^{i \vec{k} \vec{r}}(\hat{p}+\hbar \vec{k}) f(\vec{r})
$$

$$
\begin{gathered}
\Rightarrow\left[\frac{(\hat{p}+\hbar \vec{k})^{2}}{2 m}+V(\vec{r})\right] u_{k}(\vec{r})=\varepsilon_{k} u_{k}(\vec{\imath}),
\end{gathered}
$$

to be solved on one unit all (e.g. Wignovseite) with periodic boundary conditions.

This defines an eigenvalue problem on a finite Volume \Rightarrow discrete energy spectrum for cade \vec{k}, each level only finitely degenerate
\Rightarrow Energy bauds $E_{n}(\vec{k}) \quad n=1,2,3, \ldots$

- continuous as a function of \vec{k} (if not degenerate, ie. at band crossings)
- periodic over the Brillouin zone

$$
E_{n}(\vec{k}+\vec{G})=E_{n}(\vec{k}) \quad \vec{G} \in \zeta^{*}
$$

- The level spectrum is crucial for most properties of the solid: In an independent election approximation, all levels up to the Fermi-energy E_{F} are occupied. If E_{F} falls in a forbidden energy region (gap), electrons can only be excited with a minimum energy, and the system behaves as an insulator. In a metal, \vec{k} with $E_{n}(\vec{k})=E_{F}$ form a The Fermi surface. It can be a multiply connected surface that his in several bauds. Its topology is important for many properties of the solid (transport, instabilities to certain kiceds of order...)

insulator, Seneiconductor

Band structure for the square lattice in 2 dimensions

lattice: $\mathcal{G}=\left\{a\binom{n_{x}}{n_{y}}, \quad n_{x}, n_{y} \in \mathbb{Z}\right\}$
reziprokal lattice: $\mathcal{G}^{*}=\left\{\frac{2 \pi}{a}\binom{n_{x}}{n_{y}}, \quad n_{x}, n_{y} \in \mathbb{Z}\right\}$

$$
\text { unit } a \equiv 1
$$

periodic potential: $\quad V(x, y)=-V_{0}\left[\cos \left(\frac{2 \pi x}{a}\right)+\cos \left(\frac{2 \pi y}{a}\right)\right]-V_{1} \cos \left(\frac{2 \pi(x+y)}{a}\right)$

e.g., good approximation for optical lattice for cold atoms, see, e.g., I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

Schrödinger equation in reziprocal space:

Ansatz: $\quad u_{\vec{k}}(\vec{r})=\sum_{\vec{G} \in \mathcal{G}^{*}} u_{\vec{k}, \vec{G}} e^{i \vec{G} \vec{r}}$

$$
\begin{aligned}
& \psi_{\vec{k}}(\vec{r})=\sum_{\vec{G} \in \mathcal{G}^{*}}^{\vec{G} \in \mathcal{G}^{*}} u_{\vec{k}, \vec{G}} e^{i(\vec{G}+\vec{k}) \vec{r}} \\
& \text { ch wave at } \vec{k}:
\end{aligned}
$$

superposition of plane waves with momentum $\vec{k}+\vec{G}, \vec{G} \in \mathcal{G}$

Matrix equation:

$$
\frac{\hbar^{2}(\vec{k}-\vec{G})^{2}}{2 m} u_{\vec{k}, \vec{G}}+\sum_{\vec{G}^{\prime}} V_{\vec{G}^{\prime}-\vec{G}} u_{\vec{k},-\vec{G}^{\prime}}=E_{\vec{k}} u_{\vec{k}, \vec{G}}
$$

energy unit in the following: \hbar^{2} $\overline{2 m a^{2}}$

Here

$$
\begin{aligned}
& V_{(\pi, 0)}=V_{(-\pi, 0)}=V_{(0, \pi)}=V_{(0,-\pi)}=-V_{0} / 2 \\
& V_{(\pi, \pi)}=V_{(-\pi, \pi)}=V_{(\pi,-\pi)}=V_{(-\pi,-\pi)}=-V_{1} / 2
\end{aligned}
$$

- one-dimensioncel case

weak potential: perturbative analysis clos to degenerate point: $\quad k \cong G / 2$
\leadsto take into account two plane waves:

$$
\begin{aligned}
& u_{k}(\bar{r})=\sum_{\bar{G}} c_{G_{1}}^{(k)} e^{i \bar{G} \bar{\gamma}} \\
& \text { only } c_{0}, c_{G} \neq 0 \quad \Rightarrow
\end{aligned}
$$

Schrodinger equation becomes 2×2 Eigenvalue problem

$$
\begin{aligned}
& \left(\begin{array}{cc}
\varepsilon_{k} & V_{a} \\
V_{G}^{*} & \varepsilon_{k-G}
\end{array}\right)\binom{C_{0}}{C_{G}}=E_{k}\binom{C_{0}}{C_{G}} \\
& E_{k}^{ \pm}=\frac{1}{2}\left(\left(G_{k}+G_{k-G}\right) \pm \sqrt{\left(G_{k}-E_{k-a}\right)^{2}+4\left|V_{G}\right|^{2}}\right)
\end{aligned}
$$

with $V(x)=2 V_{0} \cos \left(G_{x}\right)$

$$
G=\frac{2 \pi}{a}
$$

$$
\text { at }=k \simeq c / 2 \quad\left(\epsilon_{k}=\epsilon_{k-a}=\varepsilon_{0}\right)
$$

$$
\left(\begin{array}{ll}
\varepsilon_{0} & V_{0} \\
V_{0} & \varepsilon_{0}
\end{array}\right)\binom{C_{0}}{C_{C_{T}}}=E\binom{C_{0}}{C_{Q}}
$$

Solutions:

$$
\begin{aligned}
& -\binom{c_{0}}{c_{i}}=\binom{1}{1} / \sqrt{2} \quad \Rightarrow E^{(t)}=\epsilon_{0}+V_{0} \\
& |u(x)|^{2} \sim\left|1+e^{i G x}\right|^{2} \\
& \sim \cos \left(\frac{G_{x}}{2}\right)^{2} \\
& \text { - }\binom{C_{0}}{C_{1}}=\binom{1}{-1} \sqrt{2} \quad \approx E^{1-1}=\epsilon_{0}-V_{0} \\
& |u(x)|^{2} \sim\left|1-e^{i a_{x} x}\right|^{2} \sim \sin \left(\frac{a x}{2}\right)^{2}
\end{aligned}
$$

$V(r)=0$: Backfolding of plane waves:

Band-structure along path through Ist BZ:

Pointsize: degeneracy $(1,2,4)$
Label: Plane wave label G (line \leftrightarrow plane wave at $k+G$)

Now: Numerical solution with finitely many plane waves: (please try !)
$\vec{G} \in\left\{\frac{2 \pi}{a}\binom{n_{x}}{n_{y}}, \quad n_{x}, n_{y}=-N \ldots N\right\}$
$V_{0}=4, V_{1}=0$
Black: free dispersion

Weak potential: System still metallic
Fermi-surface for two electrons per unit cell: hole pockets in Ist band, electron pockets in 2nd band

$$
V_{0}=10, V_{1}=2
$$

Degeneracies lifted in Ist order perturbation theory in $\mathrm{V}^{\text {if }} \mathrm{V}_{\mathrm{G}} \neq 0$

$$
V_{0}=20, V_{1}=2
$$

Strong-potential: Lowest band becomes flat tight-binding limit (see below)

Convergence of the result with N (number of plane waves)

$$
V_{0}=20, V_{1}=2
$$

black: plane waves red: $\mathrm{N}=\mathrm{I}$
green: $\mathrm{N}=2$
blue: $\mathrm{N}=3$

Relatively fast convergence because potential is smooth and not too strong
tight - binding description
starting point for the description of solids: well localized "atomic" orbitals:

$\langle r \mid \vec{R}\rangle_{a t}=\varphi_{a t}(T-R) \quad \varphi_{a t}$ atomic abilals

- assume that description can be restricted on only limited set of orbitals (l ecause others are far off in energy) Here: for simplicity of notation: only one orbital ($\cong H$-copal.)
\approx to find band-structuse, diagonalize Hamiltonian $\quad H=-\frac{\hbar^{2}}{2 m} \bar{V}^{2}+V(\bar{v})$ in subset $\left\{|R\rangle_{\text {at }}\right\}$
"Probem:" atomic orbitals at different sites not orthogonal : $\left.\operatorname{di} / R / R R^{\prime}\right\rangle_{d t} \neq \delta_{R R^{\prime}}$
©D somehow construct (by linear combinations) $|R\rangle \equiv \sum_{R^{\prime}} U_{R R^{\prime}}\left|R^{\prime}\right\rangle$ at with suitable choice of U) another basis which is mutually orthogonal: $\quad\left\langle R \mid R^{\prime}\right\rangle=\delta R R^{\prime}$

Suckle a real-space basis is called a Wanner basis

When atomic orbitals are well localized. (so that $\left\langle R \mid R^{\prime}\right\rangle \sim e^{-(\bar{R}-\bar{R}) / 5}$ falls off exponentially, abs WF will be localizes

H onl NN:

$$
\begin{aligned}
& \text { 来 } t_{R n} \equiv\left\{\begin{array}{l}
\varepsilon \\
t
\end{array}\right. \\
& H=\text { 惰 }
\end{aligned}
$$

solet. $\left|\psi_{k}\right\rangle=\frac{1}{\sqrt{L}} \sum_{k}|R\rangle e^{i k R}$

$$
\begin{aligned}
\langle k| H|k\rangle & =\frac{1}{i} \sum_{R R^{\prime}}\langle R| H\left|R^{\prime}\right\rangle e^{i k\left(R-R^{\prime}\right)} \\
& =\sum_{R}\langle R| H|0\rangle e^{i k R} \equiv \varepsilon_{k}
\end{aligned}
$$

- Representation of Haultonian:

$$
\begin{aligned}
& H=-\frac{\hbar^{2}}{2 m} \bar{\nabla}^{2}+V(r) \\
& H=\sum_{R R^{\prime}}|R\rangle \underbrace{\langle R| H\left|R^{\prime}\right\rangle}_{h \bar{R}-\bar{R}^{\prime}}\left\langle R^{\prime}\right|
\end{aligned}
$$

Matix ellment for tunveling between wannier orbitals.

- If Wanuier orbitals ase well localizel $h \bar{R}-\bar{R}$ falls off exponentially. Simplest opproximation:

$$
h_{\bar{R}-K^{\prime}}=\left\{\begin{array}{cl}
\varepsilon & \bar{R}=\bar{R}^{\prime} \\
-J & \bar{R}, \bar{R} \text { neasest weiz bors } \\
0 & \text { other wise zero }
\end{array}\right.
$$

- Band structurre:

Blocle state $|R\rangle=\frac{1}{\sqrt{L}} \sum_{R}|R\rangle e^{i \vec{k} \vec{R}}$
chach $\quad U_{n}(\nu)=e^{i h v}\left\{\frac{1}{\sqrt{2}} \sum_{n} \omega(v-R) e^{i h(R-N)}\right\}$
\hat{H} is diagonalized by the Blade functions (Band index

$$
\begin{aligned}
& \left|\psi_{R}\right\rangle=\frac{1}{\sqrt{N}} \sum_{\vec{k}} e^{+i \vec{k} \vec{R}}|\vec{R}\rangle \\
& \text { omitted, ore } \\
& \text { band only) } \\
& \text { shift of summation } \\
& \dot{H}\left|\psi_{k}\right\rangle=\frac{1}{\sqrt{N}} \sum_{\vec{R}} e^{i \vec{k} \vec{R}}\left\{\begin{array}{l}
\varepsilon_{0}|\vec{R}\rangle-t\left|\vec{R}+\vec{a}_{1}\right\rangle-t\left|\vec{R}-\vec{a}_{1}\right\rangle
\end{array}\right. \\
& \left.-t\left|\vec{R}+\vec{a}_{2}\right\rangle-t\left|\vec{R}-\vec{a}_{c}\right\rangle\right\} \\
& =\frac{1}{\sqrt{N}} \sum_{R} e^{i \stackrel{\rightharpoonup}{k} \stackrel{R}{n}}|R\rangle\left\{\varepsilon_{0} \pm t e^{-i \vec{k} \vec{a}_{1}}-t e^{i \dot{k} \bar{a}_{1}}-t e^{-i \bar{k} \bar{a}_{2}}\right. \\
& \left.-t e^{i \bar{k}_{a_{2}}}\right\} \\
& H\left|\psi_{k}\right\rangle=\underbrace{\left.\varepsilon_{0}-2 t \cos \left(k_{x} a\right)-2 t \cos \left(k_{g} a\right)\right]}_{\varepsilon_{k}}\left|\psi_{k}\right\rangle
\end{aligned}
$$

BI]

- Dynamics of Bloch electrons

Semiclassical equations of motion:
electron with momentum \boldsymbol{k} and \boldsymbol{r}, in external fields $\boldsymbol{E}(\boldsymbol{r}), \boldsymbol{B}(\boldsymbol{r})$
wave packet $\Delta r, \Delta k$:
$\Delta k \ll$ size of 1st BZ $\Leftrightarrow \Delta r \gg$ lattice spacing
still variation of $E(r)$ and $B(r)$ on scales larger than Δr

> equations of motion: $\begin{aligned} & \dot{\vec{r}}=\vec{v}_{n}(\vec{r}, \vec{k})=\frac{1}{\hbar} \frac{\partial E_{n}(\vec{k})}{\partial \vec{k}} \\ & \hbar \dot{\vec{k}}=-e \vec{E}(\vec{r})-\frac{e}{c} \vec{v}_{n}(\vec{k}) \times \vec{B}(\vec{r}) \\ & \text { band index } n \text { conserved } \\ & \vec{k} \equiv \vec{k}+\vec{G} \quad \text { equivalent, i.e., } \mathrm{k} \text { in } 1 . \mathrm{BZ}\end{aligned}$
(no further derivation here)

Example: acceleration in external field E:

$$
\begin{array}{r}
\frac{d}{d t} v_{\alpha}=\frac{d}{d t} \frac{1}{\hbar} \frac{\partial E_{n}(\vec{k})}{\partial k_{\alpha}}=\sum_{\beta} \frac{1}{\hbar} \frac{\partial^{2} E_{n}(\vec{k})}{\partial k_{\beta} \partial k_{\alpha}} \dot{k}_{\beta} \quad \alpha, \beta=x, y, z \\
-e E_{\beta}
\end{array}
$$

c.f. acceleration of free electrons:

$$
\dot{\vec{v}}=-\frac{e}{m} \vec{E}(\vec{r}) \quad \quad \text { mass tensor: } \quad\left(\frac{1}{m}\right)_{\alpha \beta}=\frac{1}{\hbar^{2}} \frac{\partial^{2} E_{n}(\vec{k})}{\partial k_{\beta} \partial k_{\alpha}}
$$

e.g. diagonal tensor $\quad \underline{m}=\left(\begin{array}{ccc}m_{*} & 0 & 0 \\ 0 & m_{*} & 0 \\ 0 & 0 & m_{*}\end{array}\right) \Leftrightarrow \quad \dot{\vec{v}}=-\frac{e}{m_{*}} \dot{\vec{E}}$
(symmetry)
band electrons behave like particles with a different effective mass
good metals: m^{*} same order of magnitude

Bloch-oscillations

consider one-dimensional band $\epsilon(k)=-2 t_{0} \cos (k a)$

$$
\begin{array}{rlrl}
\hbar \dot{k} & =-e E & v(t) & =\frac{1}{\hbar} \frac{\partial \epsilon(k)}{\partial k}=\frac{2 t_{0} a}{\hbar} \sin (k(t) a) \\
k(t) & =-\frac{e E t}{\hbar} & & =\frac{2 t_{0} a}{\hbar} \sin \left(\frac{E a e}{\hbar} t\right)
\end{array}
$$

periodic motion with Bloch frequency $\quad \Omega=\frac{E a e}{\hbar}$

$$
x(t)=\text { const. }-\frac{2 t_{0}}{E e} \cos \left(\frac{E a e}{\hbar} t\right)
$$

Motion in more than one dimension

large field: $\frac{1 k V}{c m} \quad a=1 \AA \quad \Omega=\frac{E e a}{\hbar}=\frac{10^{-5} e V}{\hbar}$
$\Rightarrow \frac{2 \pi}{\Omega} \gg$ time between incoherent scattering events

$$
\Delta x=\frac{2 t_{0}}{e E a} a=\frac{1 e V}{10^{-5} e V} a=10^{5} a
$$

$$
\frac{\hbar}{e V}=0.66 f s
$$

Bloch oscillations usually destroyed by scattering

AC field: $\quad E(t)=E_{0} \cos (\Omega t) \quad$ (switch on at $t=0$)

$$
\begin{aligned}
& \Rightarrow \quad k(t)=k(0)-\frac{E_{0} e}{\hbar \Omega} \sin (\Omega t) \\
& \Rightarrow \quad \text { current: } \\
&\langle j(t)\rangle=\sum_{|k(0)|<k_{F}} v(k(t)) \\
&=\int_{-k_{F}}^{k_{F}} \frac{d k}{2 \pi} 2 t_{0} a \sin \left(k a-\frac{E_{0} e a}{\hbar \Omega} \sin (\Omega t)\right) \\
&=-\sin \left(\frac{E_{0} e a}{\hbar \Omega} \sin (\Omega t)\right) \int_{-k_{F}}^{k_{F}} \frac{d k}{2 \pi} 2 t_{0} a \cos (k a)
\end{aligned}
$$

all odd harmonics present!

nature	
photonics	LETTERS

Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations

GaSe

O. Schubert ${ }^{1}$, M. Hohenleutner ${ }^{1}$, F. Langer ${ }^{1}$, B. Urbanek ${ }^{1}$, C. Lange ${ }^{1}$, U. Huttner ${ }^{2}$, D. Golde ${ }^{2}$, T. Meier ${ }^{3}$, M. Kira², S. W. Koch ${ }^{2}$ and R. Huber ${ }^{1 \star}$

also even harmonics (band effects)

Screening - dielectric response of solids

In solids (in particular in e metals) the long-range Coulomb interaction is strongly modified (and becomes short range) because the collective response of all mobile charges induces a counter charge on a cory fast timescale.
(+
$\phi(r)=q / \pi$
"bore charge"

Motivation:

- relation to dielectric response ∞ optical conductivity
- understand effective interactions between (quasi) particles in the solid (e.g. attractive interactions which lead to superconductivity)
- response functions $\approx \approx$ excitation spectrum, collective excitations
- Macroscopic description

Maxwell: (cos)
$\overline{\bar{\nabla}} \cdot \bar{E}=4 \pi \rho$
$\bar{\nabla} \times \bar{B}=\frac{4 \pi}{c} \vec{\jmath}+\frac{1}{c} \frac{\partial \bar{E}}{\partial t} \quad\left\{\begin{array}{l}\rho ; \vec{\jmath}: \text { micros co pic } \\ \text { charges: "External +induced" }\end{array}\right.$ $\bar{\nabla} \times \bar{E}=-\frac{1}{c} \frac{\partial \bar{B}}{\partial t}$
$\bar{\nabla} \cdot \bar{B}=0$
$\stackrel{\Delta}{\Delta}$ macroscopic Maxcuell-qequation:

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{D}=4 \pi \text { ext } \\
& \bar{\nabla} \times \bar{H}=\frac{4 \pi}{c} j_{\text {ext }}+\frac{1}{C} \frac{\partial \vec{D}}{\partial t}
\end{aligned} \quad\left\{\begin{array}{l}
\text { Sext, jext: } \\
\text { external charges }
\end{array}\right.
$$

+ linear response $\bar{D}=\varepsilon \bar{E} \quad \bar{B}=\mu \bar{H}$
Note: Cinear-response relations in general non-local in e space and time
causal relation! retarded response
\approx Fornix transformation: $\quad D(\pi, t)=\int d d^{3} q \int d \omega e^{i q q-i \omega t} D_{q / \omega}$

$$
D(q, \omega)=\varepsilon(q, \omega) E(q, \omega)
$$

- Interpretation of dielectric function ε
consider some "bare" potential due to "external" charge density:

$$
\begin{aligned}
-\bar{\nabla}^{2} \phi_{\text {ext }}= & 4 \pi \rho_{\text {ext }} \\
& \bar{\nabla}^{\prime \prime} \cdot \bar{D}=\bar{\nabla}(\varepsilon E)=\varepsilon D E=-\varepsilon \bar{\nabla}^{2} \phi
\end{aligned}
$$ trausl.invariance

玉) $\phi_{q, \omega}=\frac{\phi_{e x t}(q, \omega)}{\varepsilon(q, \omega)}$
*D phenomenologically, E describes screening, ie. reduction of feee-space potential dost due to induced charge.

- Relation to conductivity.

$$
\begin{aligned}
\nabla \times B & =\frac{4 \pi}{c} j_{\text {ext }}+\frac{1}{c} \frac{\partial D}{\partial t} \\
\nabla \times B & =-\frac{i \omega}{c} D \\
& =-\frac{i \omega \epsilon}{c} E
\end{aligned}
$$

$$
\left.\nabla \times B=-\frac{i \omega}{c} D \quad \text { (Fonsir } \partial_{t} \rightarrow-i \omega\right)
$$

microscopic equation $\quad(j=i r e d u c e d ~ c u r r e n t)$

$$
\begin{aligned}
\bar{\nabla} \times \bar{B}= & \underbrace{\frac{4 \pi}{c} j}_{\sigma E}-\frac{i \omega}{c} E \\
& \leftarrow \underline{d e f i n i t i o n ~ o f ~ c o n d u c t i n i l y ~} \\
= & -\frac{i \omega}{c}\left(1+i \frac{4 \pi \sigma(\omega)}{\omega}\right) E
\end{aligned}
$$

compare with :

$$
\varepsilon(\omega)=1+i \frac{4 \pi \sigma(\omega)}{\omega}
$$

optical response measurement at $q \rightarrow 0$ ($\alpha \gg$ atomic spacing)

- Relation to charge response function
define $\delta n=x \delta$ ext
response of density δ_{n} to external potential energy $\left(p=-e \delta n \quad V=-e^{\prime} \phi\right)$

$$
\frac{1}{\varepsilon(q, \omega}=1+\frac{4 \pi e^{2}}{q^{2}} x(q, \omega)
$$

useful for calculation of $2, x$, bat usually difficult to calculate $x=\frac{8 n}{\delta V a c t}$ for interacting many partide system.

Often (and exclusively in this lecture!) we use a mean-fied approximation Calso random phase approximation RPA):

$$
\delta n=x \delta V_{\text {ext }} \simeq x_{\text {pee }}\left(\delta V_{\text {ext }}+\delta V_{\text {ind }}\right)
$$

response of interacting electrons to external potential \approx response $X_{\text {free }}$ of non-iukracting electrons to full potential (externaltinduced)
with $\quad \delta V_{\text {ind }}=-e \phi_{\text {ind }} \stackrel{\text { Poisson }}{\downarrow}=\frac{4 \pi e^{2}}{q^{2}} \delta n$

$$
\begin{aligned}
& \Rightarrow \quad S_{n}=\psi_{\text {gree }}\left(\delta V_{\text {ert }}+\frac{4 \pi e^{2}}{9^{2}} \delta n\right) \\
& \Rightarrow \quad \delta_{n}=x \delta V_{\text {ext }} \text { with }
\end{aligned}
$$

$$
X(q, \omega)=\frac{X_{\text {gree }}(q, \omega)}{1-\frac{4 \pi e^{2}}{q^{2}} X_{\text {free }}(q, \omega)}
$$

RPA meanfield susceptibility

Implications of denominator (nee below)

- pole at $\omega>0$: collective excitation
- pole at $\omega \rightarrow 0$: Instability, clearge density wave $\operatorname{Cat} q=0$) etc...

Static screening: Thomas Fermi model
Simplest model for $X_{\text {pee }}$
Density $n\left(\vec{r}_{0}\right)$ at given point $\vec{r}_{0} \cong$ Density of homogeneeres election gas in potential $V \equiv V\left(\dot{r}_{0}\right) \quad$ ("local deusity_approximation")
homogeneres election gas: $\quad C_{F}(x)=\frac{1}{e^{x / k_{D}^{\top}}+1}$ Fernuin function)

$$
n(V)=\int \frac{d^{3} k}{(2 \pi)^{3}} n_{F}\left(\frac{\hbar^{2} b^{2}}{2 m}+V-\mu\right)
$$

$\approx D \quad x_{\text {fee }} \cong-\frac{\partial n}{\partial \mu}$ Thomas Fermi

- dielectirc function:

$$
\begin{aligned}
& \text { dielectric function: } x=\frac{x_{\text {pree }}}{1-\frac{4 \pi e^{2}}{q^{2}} x_{\text {pee }}} \\
& \varepsilon
\end{aligned}
$$

Ferws
defina Thomas-Ievini wave vector

$$
k_{T F}^{2}=4 \pi e^{2} \frac{\partial n}{\partial \mu} \approx \varepsilon=1+\frac{k_{T F}^{2}}{q^{2}}
$$

- at temperature $T=0$:

$$
n(y \mu)=\int_{|k|<k_{F}} d^{3} k(2 \pi)^{3} \quad \text { with } t^{2} k_{F}^{2} / 2 a u=\mu
$$

$$
\approx \cdots \quad k_{T F}{ }^{2}=\frac{4 m e^{2}}{\pi \hbar^{2}} k_{F} \sim \frac{1}{k_{T F}}=O(\text { Sew } \AA)
$$

for typical densitas in unetals.

- saicened potential of an extra poirt chavge (impurity atem / defect in arystal,..)

$$
\phi(\vec{q})=\frac{4 \pi Q}{\frac{\frac{q^{2}}{\phi_{e x t}}}{\varepsilon(\vec{q})}}=\frac{1}{\uparrow_{\text {Thowes. } F .}}=\frac{4 \pi Q}{k_{T F}^{2}+q^{2}}
$$

Fonder transformation: w

$$
\phi(\bar{\tau})=\frac{Q}{r} e^{-\tau \cdot k_{T F}}
$$

Yukawa potential.
screening length $1 / R_{T J}$.

- more accurate $\chi_{\text {pee }}(\hat{q})$ exact. vponze of homogeneen election gas: Lindhavd theory.

$$
\begin{aligned}
& X_{\text {see }}(\stackrel{\rightharpoonup}{q}, \omega=0) \stackrel{d=3}{=}-\frac{2 m}{\hbar^{2}} \frac{k_{F}}{2 \pi^{2}}\left\{1-\frac{s}{4}\left(1-\frac{4}{s^{2}}\right) \operatorname{lu}\left|\frac{s+2}{s-2}\right|\right\} \\
& X_{\text {per }}(q, \omega=0) \stackrel{d=2}{=}-\frac{2 m}{\hbar^{2}} \frac{1}{2 \pi}\left\{1-\left(1-\frac{4}{s^{2}}\right) \theta(s-2)\right\} \\
& X_{\text {pe }}(q, \omega=0) \stackrel{d=1}{=}-\frac{2 m}{\hbar^{2}} \frac{1}{2 \pi q}\left\{\ln \left|\frac{s+2}{s-2}\right|\right\} \quad s=\frac{q}{k_{F}}
\end{aligned}
$$

more and more singular at $|q|=2 k_{\mathrm{F}}$ for cower dimension (n mstablity for qr $d=1$)
\approx Interference effects
(fidel oscillation)

$$
\text { in } \frac{d=3}{=0}: \phi(r)=c \frac{\cos \left(2 k_{F} r\right)}{r^{3}}
$$

Dynamic (frequency-depondent) screening

- Some general properties of response functions
linear response $H=H_{0}+\hat{A} f(t)$ $\uparrow \quad \hat{i}$
(e.g. $\hat{A}=e \hat{n}$ density, $f \equiv \phi_{\text {ort }}$)

$$
\langle A(t)\rangle=\int_{-\infty}^{t} d t^{\prime} x\left(t-t^{\prime}\right) \cdot f\left(t^{\prime}\right)
$$

1) Founder transform.
$x(t)$ causal (ie. $x(t)=0$ for $t<0$)
\approx FT defined for frequencies z withe $m \mathrm{~m} z>0$

$$
x(\omega) \equiv x(\omega+i \delta)=\int_{0}^{\infty} d t x(t) e^{i(\omega+i \delta) t} \delta \downarrow 0
$$

Meaning: X(w+if) $\delta 10 \hat{=}$ response to perturbation

$$
f(t)=f_{\omega} e^{-i \omega t} e^{\delta t} \hat{=} \text { adiabatic saitcle on of. }
$$

foeld
2) analytic properties $(x(z)$ analytic for $m z>0$, $x(z) \rightarrow 0$ for $|z| \rightarrow \infty$) icerply relation between real and imaginary part: $\quad x=X^{\prime}+i X^{\prime \prime}$

$$
\left.\begin{aligned}
& x^{\prime}\left(\omega+i 0^{+}\right)=\frac{1}{\pi} f d \omega^{\prime} \frac{x^{\prime \prime}\left(\omega^{\prime}+i 0^{+}\right)}{\omega^{\prime}-\omega} \\
& x^{\prime \prime}\left(\omega+i 0^{+}\right)=-\frac{1}{\pi} f d \omega^{\prime} \\
& \frac{x^{\prime}\left(\omega^{\prime}+i 0^{+}\right)}{\omega^{\prime}-\omega}
\end{aligned} \right\rvert\, \frac{\text { Kramer }}{\text { Ironing }} \frac{\text { Relation }}{}
$$

example: check for $x=\frac{1}{\omega+i 0^{+}} \approx\left\{\begin{array}{l}x^{\prime \prime}=-\pi \delta(\omega) \\ x^{\prime}=\frac{1}{\omega}\end{array}\right.$
3) $\ln x \Leftrightarrow$ energy alsiontion
consider $f(t)=e^{\delta t}\left(f_{\omega} e^{-i \omega t}+f_{\omega}^{*} e^{i \omega t}\right)$

$$
E(t)=\left\langle H_{0}+\hat{A} f(t)\right\rangle
$$

$$
\frac{d E}{d t} \stackrel{\oplus \Vdash}{=}\left\langle\frac{d H}{d t}\right\rangle=\frac{d f}{d t} \underbrace{\langle A(t)\rangle}_{\mathcal{X}_{f}}
$$

... insert $x, f \ldots$ average over one period:

$$
\frac{d E}{d t} \equiv \frac{1}{T} \int_{0}^{T} d t \frac{d E}{d t}=-2 \omega X_{\omega}^{\prime \prime}\left|f_{\omega}\right|^{2}
$$

Note: proof of © : analogoes to Hellсаапи Feynman theosen:
$\overbrace{\overbrace{\text { 猉 }\langle\psi| H}^{=0}}^{=0}$

$$
\begin{aligned}
\frac{d}{d t}\langle\psi(t)| H(t)|\psi(t)\rangle & =\overbrace{\frac{d\langle\psi}{d t}}|H| \psi\rangle+\langle\psi| H \left\lvert\, \frac{d \psi\rangle}{d t}\right. \\
& +\langle\psi| \frac{d H}{d t}|\psi\rangle
\end{aligned}
$$

4) Absorbtion \Leftrightarrow excitation spectroun

Fermi-goldan rule: e.g. systeur at $T=0 \quad \omega>0$:

$$
\begin{array}{r}
\frac{d E}{d t}=\sum_{\hat{S}_{n}} \overbrace{W_{0 \rightarrow n}}^{\text {trausition rate }}\left(E_{f}-E_{0}\right) \quad \begin{array}{l}
|\eta\rangle \text { final states } \\
\text { all possitle many parbile } \\
\text { eigustates }
\end{array} \\
\left.\frac{2 \pi}{\hbar}|\langle\hat{A}| \hat{A}| 0\right\rangle\left.\right|^{2} \delta\left(\omega+E_{0}-E_{n}\right) \quad(\hbar=1)
\end{array}
$$

compare cwitle absorbtion ... also for $\omega<0 \ldots$

$$
\begin{aligned}
\left.X^{\prime \prime}(\omega+i 0)=-\pi \sum_{n}|\langle n| \hat{A}| 0\right\rangle\left.\right|^{2} & {\left[\delta\left(\omega+E_{0}-E_{n}\right)\right.} \\
& \left.-\delta\left(\omega+E_{n}-E_{0}\right)\right]
\end{aligned}
$$

T>0: $\left.\quad X_{\omega}^{\prime \prime}=-\pi \sum_{n m} \frac{e^{-\beta E_{n}}-e^{-\beta E_{m}}}{z}|\langle u| A| m\right\rangle\left.\right|^{2} \delta\left(\omega+E_{n}-E_{m}\right)$

Note: this result is equivalent to the
Bubo formula:

$$
x(t-\bar{t})=-i \theta(t-\bar{t}) \operatorname{Tr}\left(e^{-\beta H_{0}}[A(t), A(\bar{f})]\right) / Z
$$

while is derived from standard time-dependent perturbation theory.
5) Fluctuations \leftrightarrow response I dissipation auto corelation function:

$$
\begin{aligned}
& \left\langle(A(t)-\langle A\rangle)\left(A\left(t^{\prime}\right)-\langle A\rangle\right\rangle=\left\langle A(t) A\left(t^{\prime}\right)\right\rangle-\langle A\rangle^{2}\right. \\
& C(t)=\langle A(t) A(0)+A(0) A(t)\rangle \\
& C(\omega)=-2 X^{\prime \prime}(\omega) \operatorname{coth}\left(\frac{\beta \omega}{2}\right) \quad \text { Fluctuation - } \\
& \text { dissipation thenem }
\end{aligned}
$$

Collect, egg., expand C(a) in eigenstates and compare with result cebove)
example: resistor noize

Noize power density.

$$
\begin{aligned}
& |I(\omega)|^{2}+|I(-\omega)|^{2}=\frac{1}{T} \int_{0}^{T} d t d t^{\prime} e^{-i \omega\left(t-t^{\prime} \mid\right.} \times \\
& \\
& \quad *\left\langle I(t) I\left(t^{\prime}\right)+I\left(t^{\prime}\right) I(t)\right\rangle=C(\omega) \\
& (l \omega)=2 \sigma(\omega) \omega \operatorname{coth} \frac{\beta \omega}{2}=\frac{4 k_{B} T}{R} \\
& \omega \ll T
\end{aligned}
$$

Universal ratio between fluctuations and response $(\rightarrow$ "thermometry")

Back to density response $x=\delta n / \delta V_{\text {ext }}$

Example 1: oscillator model
density no of oscillators

density: $\quad \delta n / n_{0}=-\vec{\nabla} \cdot \vec{x}=$
in Founder space: $\quad \frac{\delta n}{n_{0}}=i \stackrel{i}{q} \cdot \vec{x}$

$$
\vec{x}=-\frac{1}{\omega_{1}\left(\omega_{0}^{2}-w^{2}\right)} \text { i } \stackrel{\rightharpoonup}{q} V_{\text {xt }}
$$

$$
\delta_{n}=q^{2} \frac{n_{0} / m}{\omega^{2}-\omega_{0}^{2}} V_{\text {ext }}
$$

$X_{\text {seer "See: no coulomb }}$ interaction between the oscillators. at least ok for low density

$$
x_{\text {pee }}=\frac{q^{2} n_{0}}{m}\left(\frac{1}{\omega-\omega_{0}}-\frac{1}{\omega+\omega_{0}}\right) \frac{1}{2 \omega_{0}}
$$

(really: $X_{\text {fee }}\left(\omega+i 0^{+}\right)=\frac{q^{2} n_{0}}{m}\left(\frac{1}{\omega+i 0^{+}-\omega_{0}}-\frac{1}{\omega+i 0^{+}+\omega_{0}}\right)$ $\operatorname{lm} x_{\text {gee }}\left(\omega+10^{+}\right)=-\pi \frac{q^{2} n_{0}}{2 \omega_{0} \omega_{0}}\left[\delta\left(\omega-\omega_{0}\right)-\delta\left(\omega+\omega_{0}\right)\right]$
$\approx \frac{\text { excitation spectrum: excitation of oscillator }}{n}$ "quantum" $\hbar \omega$.

$$
\frac{1}{\varepsilon(q, w)}=1+\frac{4 \pi e^{2}}{q^{2}} x^{x=x_{\text {fee }}}=1+\frac{4 \pi e^{2} n_{0} / m}{\omega^{2}-\omega_{0}^{2}}
$$

$4 \pi e^{2} n_{0} / m$ has unit $\left[\frac{1}{t i m e^{2}}\right]$
$4 \pi e^{2} n_{0} / u=\omega_{p}{ }^{2} \quad \omega_{p}$ plasma pequency

dielectric loss for $\omega=\omega$.

Real material:

"unbound" particles $\omega_{0}=0$
Cog. elections in metal

$$
X_{\text {gree }}=q^{2} \frac{n_{0} / m}{\omega^{2}} \Rightarrow \text { Absorbtion only at } \omega=0 \text { ? }
$$

with interactions between particles:

$$
\begin{aligned}
x & =\frac{X_{\text {free }}}{1-\frac{4 \pi c^{2}}{q^{2}} \chi_{\text {free }}}=\frac{q^{2} n_{0} / m}{\omega^{2}\left(1-\frac{4 \pi e^{2} n_{0} / m}{\omega^{2}}\right)} \\
& =\frac{q^{2} n_{0} / m}{\omega^{2}-\omega_{p}^{2}} \\
\omega_{p}^{2} & =4 \pi e^{2} n_{0} / m
\end{aligned}
$$

\Rightarrow new "collective excitation" in the system, present only due to interaction

- corresponds to long-lived oscillation of mobile negative charges in front of positively charged background

- check. $\frac{1}{\varepsilon}=\frac{\omega^{2}}{\omega^{2}-\omega_{p}^{2}}$

"completely" screened
long range interaction for $\omega \ll \omega_{p}$
- Excitation specham of electrons $\varepsilon_{2}=\frac{\hbar^{2} k^{2}}{2 \omega}$

Fermi golden rule:

$$
X_{\text {free }}^{\prime \prime}(\omega, \xi^{\prime} \sim{ }^{\omega>0}-\pi \sum_{f} \underbrace{\left.\langle f| \hat{n}_{q}|0\rangle\right|^{2}} \delta\left(\omega+E_{0}-E_{f}\right)
$$

transition matix element ground state \rightarrow excited state de to density modulation (momentum transfer \vec{q})
$10\rangle$

Fermi zee
excitation with momentum transfer 9

particle -hole
excitation
$k+q$ must be empty $\left|k_{2}+9\right|>k_{F}$
k must be occupied $|R|<\left|b_{0}\right|$
＂excitation map＂for cokicle q，w are excitations possible：
－minimum energy trans for for given $|\vec{q}|$ ：

$$
\begin{gathered}
-|q|>2 k_{F} \Rightarrow \\
w_{\text {min }}=\frac{\hbar^{2}}{2 m}\left(q-k_{F}\right)^{2}
\end{gathered}
$$

$$
\left|q_{1}\right|<2 k_{p} \Rightarrow \quad \omega_{\operatorname{mii}}=0
$$

－maximum energy transfer for given｜q｜：

$$
\omega_{\max }=\frac{\hbar^{2}}{2 m}\left(q+k_{F}\right)^{2}
$$

sum rule for
excitations $\quad \int_{0}^{\infty} d \omega \omega \operatorname{tm} x(\omega)=-\pi \frac{n_{0} / m e q^{2}}{2}$
for $q \rightarrow 0$ like for classical particles
\approx same collective excitation $\Leftrightarrow \Rightarrow$ pole in $x=\frac{x_{\text {ger }}}{1-\frac{4 \pi e^{2}}{g^{2}} x_{\text {see }}}$
for density of good metals $\Rightarrow \omega_{p} \sim$ several eN
\approx mort range interaction on fer low energy process.

Note: Form of collective excitation crucilly depends on interaction.
What changes if interaction between particles is short range?
e.g. $\phi(v)=e^{-r / h} \frac{1}{r} \Leftrightarrow \Leftrightarrow \phi(q)=\frac{4 \pi}{q^{2}+1 / \pi^{2}} \equiv 4 \pi$
back to mean field formula pase 40 :

$$
\delta_{n}=x \delta V_{\text {ext }} \cong X_{\text {pee }}\left(\delta V_{\text {ext }}+\delta V_{\text {iud }}\right)
$$

now: \quad Vinduced $=\frac{4 \pi e^{2}}{q^{2}+1 / 2} \delta n$ poisson with extra sure my

$$
\begin{aligned}
x & =\frac{x_{\text {see }}}{1-\frac{4 \pi e^{2} R^{2}}{(q \alpha)^{2}+1} x_{\text {see }}} \xrightarrow{q \rightarrow 0} \frac{x_{\text {sour }}}{1-\frac{4 \pi e^{2} R^{2} q^{2} n_{0} / e m}{\omega^{2}}} \\
& =\frac{q^{-n \text { nolu }}}{\omega^{2}-4 \pi e^{2} \alpha^{2} n_{0} / m \cdot q^{2}}
\end{aligned}
$$

\Rightarrow now there is a pole at

$$
\begin{aligned}
& \omega=c_{0}|q| \\
& c_{0}=\sqrt{4 \pi e^{2} n_{0} / m \ell^{2}}=\omega_{p} \alpha
\end{aligned}
$$

$\Rightarrow \quad$ sound -like dispersion

Phonons

Phonons: $\hat{=}$ elementary excitations of the lattice distortion. From the atomistic point of . New, phonon correspond to $3 N-3$ normal modes of the expstal of N atoms. On the macroscopic scale, phonon become manifest in the propagation of (transverse or longitudinal) sound waves, so ike this chapter we start from this macroscopic picture:
"Quantum description of soured in solids" sound waves:

Congitudinal
"compression wave"

Shear wave:

- dynamics of sound waves in the solid:
for simplicity, we consider only Longitudinal waves in isotropic medium. trausvene waves analogores (see below)
$\sum^{\text {compressibility }}$
- elastic energy: $E_{e e}=\frac{K}{2} \int d^{3} r \underbrace{\left(\frac{\delta n}{n}\right)^{2}}$
relative compression
$\frac{\delta n}{n} \#-\vec{\nabla} \cdot \vec{u}(\vec{r})$ (e.g. from gauss thessen, or see picture above)

density
\Rightarrow equation of motion: $\quad \rho_{0} \frac{\partial^{2} u}{\partial t^{2}}=\lambda \vec{\nabla}(\vec{\nabla}-\vec{u})$ from $L[u, \dot{u}]=E_{\text {kin }}-E_{p u t}$
\Rightarrow plane wave solution

$$
u(\vec{r}, t)=u_{k} e^{i \bar{k} \bar{r}}
$$

in equation of motion:

$$
\text { po } \ddot{u}_{k}=-k \stackrel{\rightharpoonup}{k} \cdot\left(\stackrel{\rightharpoonup}{k} \cdot \dot{u}_{k}\right)
$$

non trivial solutions for
$\vec{k} \| \vec{u}_{k}$ (longitudinal), oharwine $\vec{k} \cdot \vec{u}_{k}=0$

$$
\ddot{u}_{k}=-c^{2} k^{2} u_{k} \quad c=\sqrt{\frac{\lambda}{\rho_{0}}}
$$

- set of independent harmonic oscillator modes with frequency $\omega_{k}=c|k|$ (linear dispersion \rightarrow sound)
- Cade mode comesponds to plane wave

$$
u(r, t)=u_{k}^{(0)} e^{i\left(\stackrel{\rightharpoonup}{k} \vec{r}-\omega_{k} t\right)}
$$

- quantization of normal modes

$$
\begin{aligned}
& m \ddot{x}=-m \omega_{0}^{2} x \quad \underset{\sim}{\sim} \quad \text { quantare } \quad \text { edgy spectrum } \\
& \text { harmonic } \\
& E_{n}|u\rangle=H|u\rangle \\
& E_{n}=\hbar \omega_{0}\left(n+\frac{1}{2}\right) \\
& h=0,1,2, \ldots \\
& \hat{=} H=\hbar \omega_{0}\left(a^{+} a+\frac{1}{2}\right) \\
& \uparrow \zeta
\end{aligned}
$$

create I anmilulate oscillater quantum

$$
x=\sqrt{\frac{\hbar}{2 m \omega_{0}}}\left(a^{+}+a\right)
$$

- Normal modes in solid: \Rightarrow

$$
\begin{aligned}
& H=\sum_{k} \hbar \omega_{k}\left(b_{k}^{+} b_{k}+\frac{1}{2}\right) \\
& \bar{u}(\bar{\gamma})=\sqrt{\frac{1}{\text { Vol }}} \sum_{k} \sum_{\substack{\hat{\varepsilon}_{k} \\
\text { polarization } \\
\text { vector } \sim \hat{k}}} \sqrt{\frac{\hbar}{2 p_{0} \omega_{k}}}\left(b_{k} e^{i \bar{k} \bar{v}}+b_{k}^{+} e^{-i \bar{k} \bar{v}}\right)
\end{aligned}
$$

(for information, more formal derivation wet page)
Shear waves: analogoses, with polarization vector $\hat{\varepsilon}_{k} \perp \hat{h}$ total

$$
H=\sum_{k s} \hbar \omega_{k s}\left(b_{k s}^{+} b_{k s}+\frac{1}{2}\right) \quad s: \text { mode }
$$

\Rightarrow better representation in normal coordinates and momenta of these oscillators:

$$
\begin{aligned}
& H=\frac{1}{2} \sum_{k}\left(p_{k}^{2}+\omega_{k}^{2} Q_{k}^{2}\right) \\
& Q_{k}=\sqrt{\rho_{0}}\left(q_{k}+q_{k}^{*}\right) \\
& p_{k}=\sqrt{\rho_{0}} i \omega_{k}\left(q_{k}-i q_{k}^{*}\right) \\
& u(r)=\frac{1}{\sqrt{\operatorname{Vol}}} \sum_{k}\left(q_{k}(t) e^{i k r}+q_{k}(t)^{*} e^{-i k r}\right)=\overrightarrow{\theta_{k}} \vec{\epsilon}_{k}
\end{aligned}
$$

$$
\binom{\text { check that Hamilton-equations }}{\text { give correct equations of motion }}
$$ polarisation $\vec{\epsilon}_{k}=\hat{k}$

- Quantum theory of sound-wares:

$$
\left.\begin{array}{l}
P_{k} \rightarrow \hat{P}_{k} \\
Q_{k} \rightarrow \hat{Q}_{k}
\end{array} \quad\left[Q_{k}, P_{k}\right]=i \hbar \quad H=\sum_{k} \hat{P}_{k}^{2}+\hat{Q}_{k}^{2} \omega_{k}^{2}\right) / 2
$$

or: $\quad b_{k}=\frac{1}{\sqrt{2 \hbar \omega_{k}}}\left(\omega_{k} \hat{Q}_{k}+i \hat{P}_{k}\right)$

$$
\begin{aligned}
& \dot{b}_{k}^{+}=\frac{1}{\sqrt{2 \hbar \omega_{k}}}\left(\omega_{k} \hat{Q}_{k}-i \hat{P}_{k}\right) \\
& {\left[b_{k}, b_{k}^{+}\right]=\delta_{k k^{\prime}}, \quad H=\sum_{k} \hbar \omega_{k}\left(b_{k}^{+} b_{k}+\frac{1}{2}\right)}
\end{aligned}
$$

\Rightarrow independent, bosonic, quasiparticles with linear dispersion $\quad \omega_{k}=c|k|$:
"longitudinal acoustical phonons"

- Do we need a quantum description?
- Many procenes in which one can "see" single phonons, like neutron scattering (see below)
- Most prominent manifestation: Specific heat total energy of classical oscillators:

$$
\left.\begin{array}{l}
U=k_{B} T \times N_{\text {modes }} \quad 2 \\
C_{V}=\frac{\partial U}{\partial T}=k_{B} N_{\text {modes }}
\end{array} \quad \begin{array}{l}
\text { equipartitiou) } \\
\text { theorem }
\end{array}\right)
$$

T-iudependent: valid only for very large T.
total energy of quantum phonons:

$$
\begin{aligned}
& U=\sum_{k} U_{k}, U_{k}=\frac{\sum_{n=0}^{\infty} e^{-\beta E_{n}}\left(E_{n}\right)^{\infty} E_{n}=n \hbar \omega_{k}+\frac{1}{2}}{\sum_{n=0}^{\infty} e^{-\beta E_{n}}} \\
& \Rightarrow U=\sum_{k} \frac{\hbar \omega_{k}}{-1+e^{+\beta \hbar \omega_{k}}} \frac{1}{e^{\beta x}-1}
\end{aligned}
$$

－simple estimak：
longitudinal on＇s

$$
\begin{aligned}
& \sum_{k} \rightarrow \sum_{|k|<k_{0}} \\
& \text { with } \sum_{|k|<k_{D}}=N_{\text {modes }}=N_{\text {comes }} \equiv N \\
& \sum_{k} \rightarrow\left(\frac{L}{2 \pi}\right)^{3} \int d^{3} k \quad \Rightarrow \quad N=\frac{L^{3}}{(2 \pi)^{3}} \frac{4 \pi}{3} k_{D}^{3} \\
& k_{D}=\left(\frac{N}{L^{3}} G \pi^{2}\right)^{1 / 3} \\
& \text { "upper cutoff" } \\
& \text { Deloye wave vector }
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\downarrow}{=} \frac{L^{3}}{2 \pi^{2}} \frac{T^{4}}{(\hbar c)^{3}} \int_{0}^{\beta \hbar c k_{D}} \frac{d x x^{3}}{e^{x}-1} \\
& =3 N \frac{T^{4}}{\left(\hbar c k_{0}\right)^{3}} \underbrace{\int_{0}^{\beta \hbar c k_{0}} \frac{d x x^{3}}{e^{x}-1}}_{\rightarrow \text { count for } \beta \rightarrow \infty,} \xrightarrow{T \rightarrow \infty} N T r \\
& \text { 鲉. sure that } U \propto T^{4} \\
& c_{c}=\frac{\partial U}{\partial T}=\cdots=3 \frac{N}{L^{3}}\left(\frac{T}{\theta_{D}}\right)^{3} \int_{0}^{T / \theta_{D}} d x \frac{x^{4} e^{x}}{e^{x}-1} \quad \theta_{D}=\hbar c k_{D}
\end{aligned}
$$

Debye form of specific heat
$\int_{C_{v} \propto T^{3} \text { for } T \rightarrow 0}^{\theta_{D}}$

- Remark: analogy to blach-body relation:

- independent oscillator modes $\omega_{k}=k c$
c: Light velocity
- 2 (transverse) modes per k
here: no apparent upper cutoff for number of modes \Rightarrow Classical $c_{r}, U=\infty$, because all modes occupied.
\rightarrow Planck: use quantum mechanics $\Rightarrow U \propto T^{4} \quad$ (Stefan-Boltimann Law) ct....
- how large is the average displacement

$$
\overline{\Delta u}=\frac{1}{\text { vol } \int d^{3} r\left\langle u(r)^{2}\right\rangle ? ~ ? ~ ? ~}
$$

... for the experts: use expression for - $\vec{U}(v)$ in terms of b_{k} on page 62 . and $b_{k}^{+} b_{k^{\prime}} \cong \delta_{k k^{\prime}} \ldots$
easier: : modes fer diffesunt k are crllogonal \Rightarrow sum contribution to ΔU from all modes K

- contribution frons one mode:

$$
\begin{aligned}
& \frac{1}{\operatorname{Vol}} \int d^{3} r u_{k}(r)^{2}=\frac{1}{\operatorname{Vol}} \int d^{3} r \underbrace{\frac{1}{k^{2}}\left(\nabla u_{k}\right)^{2}} \\
& =\frac{1}{v e r k^{2} h} \underbrace{E_{p o t}}_{\frac{h}{2} \int d_{r}(\nabla u)^{2}}=(\#) \\
& \text { because } \nabla u_{k} \sim k u_{k} \\
& \text { K: compressibility, } \\
& \text { wabore! }
\end{aligned}
$$

for harmonic oscillator, $\left\langle E_{\text {pot }}\right\rangle=\left\langle E_{\text {bin }}\right\rangle=$

$$
=\frac{1}{2}\langle E\rangle=\frac{1}{2} \frac{\hbar \omega_{k}}{e^{\beta \hbar \omega_{k}}-1}
$$

$$
\begin{aligned}
& \approx \#=\frac{\hbar c}{h} \frac{1}{k} \frac{1}{e^{\beta \hbar c k}-1} \\
& \overline{\Delta u}=\frac{1}{v_{\text {ot }}} \sum_{k}{ }^{\beta}
\end{aligned}
$$

$$
\sim \int \frac{d^{d} k}{(2 \pi)^{\alpha}} \frac{1}{k} \frac{1}{e^{\beta \hbar c k}-1}
$$

d: spacial dimension
most interesting for low - dimen sional systme.

$$
\begin{aligned}
d=2 \quad \overline{\Delta u} & \sim \underbrace{\int \pi \int_{0}^{\infty} k d k} \frac{1}{|k|} \frac{1}{e^{\beta \hbar k} k}-1 \\
& \sim \int_{0}^{k_{D}} \frac{d k}{e^{\beta+c k}-1} \quad \text { because in } \\
& \quad l \sim 1 / k f 0
\end{aligned}
$$

in $d=2$ dimensions:
sound waves destroy (melt) the solid at arbitrary low temperature (just not at $T=0) \approx$ special case of general statement no breaking of continuous symmetry in $d \leqslant 2$ dimensions.

Microscopic description: quantized lattice vibrations

- Potential energy:
$E_{\text {pot }}\left(\left\{v_{R, n}\right\}\right)$
depends on all atomic positions
$E_{\text {pot }}=$ ionic electrostatic energy + electronic contribution (binding energy)

Born-Oppenherimer approximation:
electrons follow atoms instemtaneonly
= electronic gond state energy fer fixed ion courbbutions $r_{R n}$

- harmonic approximation equilibrium

$$
\begin{aligned}
& E_{\text {pot }}=E_{\text {pot }}\left(\left\{\tau_{R, M}^{(0)}\right\}\right) \\
& +\left.\frac{1}{2} \sum_{\substack{R R^{\prime} \\
n n^{\prime} \\
\alpha, \alpha^{\prime}=x, y, z}} u_{R_{R, n}}^{\alpha} \underbrace{\frac{\partial^{2} E}{\partial r_{R, n}^{\alpha} \partial r_{R, w^{\prime}} \alpha^{\prime}}}_{\uparrow}\right|_{n=\gamma^{(o)}} u_{R^{\alpha^{\prime}}}^{\alpha^{\prime}}+\ldots
\end{aligned}
$$

trauslationally invariant:

$$
\begin{gathered}
\frac{\partial^{2} E}{\partial r_{R, \mu}^{\alpha} \partial \gamma_{R^{\prime} \alpha^{\prime}}^{\alpha \prime}} \equiv D_{h \alpha, \eta^{\prime} \alpha^{\prime}}\left(\vec{R}-\vec{R}^{\prime}\right) \\
E_{\text {kin }}=\frac{1}{2} \sum_{R_{1 \mu_{1} \alpha}}\left(\dot{u}_{R_{, \mu}}^{\alpha}\right)^{2} M_{m}
\end{gathered}
$$

Eq. of motion:

$$
M_{m} \ddot{u}_{R_{m}}^{\alpha}=\sum_{R_{m \prime}^{\prime} \alpha^{\prime}} D_{m \alpha, m^{\prime} \alpha^{\prime}}\left(R-R^{\prime}\right) u_{R^{\prime} u^{\prime}}^{\alpha^{\prime}}
$$

Now: $F T$ on lattice $\Rightarrow k \in 1$. Brilluoun zone.

$$
\begin{gathered}
u_{R, m \alpha}=\frac{1}{\Omega} \int_{1 \cdot B Z} d^{3} k \\
e^{-i k R} u_{k m \alpha}, u_{k}=\sum_{R} u_{R} e^{-i k R} \\
\Rightarrow M_{m} \ddot{u}_{k m \alpha}=\sum_{m^{\prime} \alpha^{\prime}} D(k)_{\text {ma, mid' }} u_{k m^{\prime} \alpha^{\prime}} \\
\underline{D}(k)=\sum_{R} e^{-i \vec{k} \vec{R}} D(R)
\end{gathered}
$$

- coupled equations \Rightarrow diagonalize D:

$$
\begin{aligned}
& \widetilde{D}_{u_{\alpha} \mid m^{\prime} \alpha^{\prime}}=\frac{D_{m \alpha \mid m^{\prime} \alpha}}{\sqrt{M_{m k} M_{m k^{\prime}}}} \quad\left(\tilde{U}_{m \alpha}=\sqrt{M_{m}} u\right) \\
& \widetilde{D}_{m a, u^{\prime} \alpha^{\prime}}=P_{m \alpha \mid s} \quad \omega_{k s}^{2} P_{\operatorname{slm} \alpha}
\end{aligned}
$$

$\Rightarrow 3 N_{b}$ independent harmonic oscillator modes for each $k \in 1 . B Z$.

- Also fer thin case, it is convenrent to choose normal coordinates:

$$
H=\frac{1}{2} \sum_{k s}\left(Q_{k s}^{2} \omega_{k s}^{2}+P_{k s}^{2}\right)
$$

$$
u_{m \alpha}(R)=\sum_{k s} \ldots
$$

- in the csystal, we have $3 N_{b}$ modes, where N_{b} is the number of dour per unit cell. For $k \rightarrow 0$, three modes must reduce to the three acoustical phonon modes (sound waves). The others are called optical phonous.

Example: (might be useful for exercise) M

$\longleftrightarrow \quad$ spring $K^{\prime} \quad K \neq K^{\prime}$

1)

optical phonon \approx molecular vibratiousof © MM,
 in phase
sound!

- specific heat:

$$
E_{\text {tot }}=\sum_{k s} \frac{\hbar \omega_{s k}}{-1+e^{\beta \hbar \omega_{h s}}}
$$

depends on details of the phonon band structure
"interpolation formula":
all branches $\Rightarrow 3$ acoustical branches with

State counting:
\#stater up to $k_{D} \geqslant$ - maximum $k_{2}=k_{p}$ such that

$$
=\left(\frac{L}{2 \pi}\right)^{3} \int_{k \leq k_{0}}^{1} d^{3}=\frac{1}{6 \pi^{2}} k_{D}^{3}!N_{\text {atoms }} \# \text { modes }=\# \text { atoms } \times 3
$$

resulting equation is then the same as for sound waver.
Useful scales: k_{D} Dense vector $\omega_{D}=c k_{D}$ Debye Sequency

$$
\theta_{D}=\frac{\hbar \omega_{D}}{k_{B}} \text { Debye tampciatse }
$$

then: $c_{V}=9 n h_{B}\left(T / \theta_{D}\right)^{3} \int_{0}^{\theta_{D} / T} \frac{x^{4} e^{x} d x}{\left(e^{x}-1\right)^{2}}$

Peierls transition

Usually, a lattice distortion increases the energy. For some situations, the election-pkonon interaction can renormalize the phonon frequency to be "negative", i.e., the system becomes unstable towards spontaneores formation of a charge density wave:

§ energetically favovalle??

We discuss, this phenomenon in the continucem limit, Jor Carge election fillings. the nestable wave vector Q is close to $\frac{7}{a}$, but the argument is quite similar. in this case.

- potential energy.

$$
E_{\text {pot }}=\underbrace{E_{\text {electron }}}_{\Theta 1}
$$

(2): assume distortion $u(x)=\left|u_{0}\right| \cos (Q x+\varphi)$

$$
\begin{aligned}
& \equiv \frac{1}{2}\left(u_{0} e^{i Q x}+h . c\right) \\
& u_{0}=\left|u_{0}\right| e^{i \varphi} \\
& \text { elcestic energy }=\frac{1}{2} \int d x\left(\frac{d u}{d x}\right)^{2}=\left|u_{0}\right|^{2} L \frac{L Q^{2}}{4}
\end{aligned}
$$

Note: the dismssion is for a one-dimensional system, because instablity is most prominent for $d=1$ (sue below)
(1) for electomic energy, use Born-Opper keimer approximation: (e^{-}react instantaneously to positions of ions, Eencton \cong ground state energy of electrons in static potential $V(x)$ due to ions.

- $V(x)$ is also of periodic form charge density of ions: $\frac{\delta n}{n_{0}}=\frac{d u}{d x}$ No: equilibrium density
+ Poisson equation

$$
\begin{aligned}
\Delta_{q} & =\underbrace{\frac{q^{2}}{q_{q}}}_{v_{q}} \rho_{q}=v_{q} n_{0} u_{q} \\
\Rightarrow V(x) & =u_{Q} e^{i Q x}+h \cdot c \\
& =\Delta_{Q} e^{i Q x}+h \cdot c \\
\Delta_{Q} & =\alpha u_{Q} \quad \alpha=i v_{Q} n_{0} Q
\end{aligned}
$$

\Rightarrow the periodic potential opens a gap at $k=$ Q12 (compare discussion of baud-shucture of almost free electrons)

\Rightarrow if filling is such that $k_{F}<\frac{Q}{2} \Rightarrow D$ electronic energy is lowered maximum gain for $Q=2 k_{F}$
we thus in restigate instability at this wave vector \rightarrow can energy gain overcome energy cost $\left.\mu_{0}\right|^{2} L \frac{\Lambda Q^{2}}{4}$?
for mall wo, calculate shift perterbatively, taking into accoment two states $k, k-Q$ which become degenerate for $k=k_{F}$ (for $k<0$, take $k, k+\beta$)

Schrodinger equation \Rightarrow diagonalize matrix

$$
\begin{aligned}
& \left(\begin{array}{ll}
\epsilon_{k} & \Delta_{Q} \\
\Delta_{Q}^{*} & \varepsilon_{k-Q}
\end{array}\right) \quad \begin{array}{l}
\varepsilon_{k}=\frac{\hbar^{2} k^{2}}{2 m} \\
\Delta=u_{0} \frac{n_{0} V_{Q} Q}{\alpha} \equiv \alpha u_{0} \\
\varepsilon_{k}^{ \pm}=\frac{1}{2}\left[\left(\epsilon_{k-Q}-\epsilon_{k}\right) \pm \sqrt{\left(\epsilon_{k-Q}-\epsilon_{k}\right)^{2}+4|\Delta|^{2}}\right]
\end{array}
\end{aligned}
$$

$$
E\left(n_{0}\right)=2 \sum_{|k|<k_{F}} \epsilon_{k}^{-}+\frac{L\left\langle Q^{2}\right.}{4}\left(u_{0}\right)^{2}
$$

energy of
occupied states energy decrease.
\Leftrightarrow find usinimum $\frac{d E}{d u_{0}}=0$
with $\sum_{\mid k \ll k_{F}} \equiv \frac{L}{2 \pi} \int_{-k_{F}}^{k_{F}} d k$
and $\frac{d \varepsilon_{k}^{-}}{d\left|u_{0}\right|}=\frac{2|\alpha|^{2}\left|u_{0}\right|}{\sqrt{\left(\varepsilon_{k-Q}-\varepsilon_{k}\right)^{2}+4\left|\Delta_{Q}\right|^{2}}}$
the integral can be evaluated, which is a bit lengthy, but quite straightforward...

$$
\frac{1}{L} \frac{d E_{0}}{d\left|u_{0}\right|}=-\left|u_{0}\right| \frac{8 \alpha^{2} w}{\hbar^{2} Q \pi} \operatorname{arsinh}\left(\frac{\hbar^{2} 2 Q^{2}}{\omega^{2}\left|\Delta_{Q}\right|}\right)+\frac{\alpha Q^{2}}{2}\left|u_{0}\right|^{2}
$$

limit $\left|u_{0}\right| \rightarrow 0 \quad(\operatorname{arsich}(x) \simeq \ln (2 x)$ for $x \rightarrow \infty)$

$$
|\Delta Q|=\left|\alpha U_{0}\right|=4 E_{F} e^{-\frac{1}{N\left(q_{F}\right) \cdot g}} \quad g=\frac{4|\alpha|^{2}}{\lambda Q^{2}}
$$

$N\left(\varepsilon_{F}\right)$: Density of states at the Fermi surface
\Rightarrow for arbitrary mall interaction α, a gap is opened at the Fermi surface
$\Rightarrow \quad$ instability occurs for "half-filled" system.

- Real materials axe not one-dimensional?

stack of weakly coupled 1-dchairs
tight bindis
$\varepsilon_{k}=\varepsilon\left(k_{x}, k_{y}\right)=-2 t \cos k_{x} a-2 t^{\prime} \cos k_{y} g$ almost one-d for $t^{\prime} \ll t$

(2-dimensioual)

$$
\Rightarrow q=\binom{\pi / a}{0} \text { can only }
$$

connect single points on FS.
But: Nesting at (pi,pi), ie. cheque-board ordering (!) This is special for nearest neighbour hopping, otherwise there is no perfect nesting.

- gap opened at whole Fermi surface \Rightarrow iustablitity

Fermi surface is nested by nesting vector q

Ts almost nested
\Rightarrow instability can occur when t^{\prime} is small enong. (\rightarrow see slides)
realistic: $t \gg t^{\prime} \neq 0$

Final seamark: The same "Fermi' surface nesting instability" underlies other phenomena, e.g. Spin-densily wave formation.
transition at finite temperatons. $E \Rightarrow$ free emerges

$$
\begin{aligned}
& F\left[u_{0}\right]=\alpha\left|u_{0}\right|^{2}+F_{\text {election }}\left[u_{0}\right] \\
& F_{\text {electron }}=E-T S \\
& E=\frac{1}{2 \pi} \int_{-Q / 2}^{Q / 2} d k \sum_{S= \pm} \frac{\epsilon_{k}^{ \pm}}{\rho^{\beta \varepsilon_{k}^{ \pm}}+1}
\end{aligned}
$$

$$
k_{B} T \gg \Delta_{T=0} \quad(\text { gap at } T=0) \Rightarrow
$$

energy gain due to opening a gap becomes mall compared to energy cost for deformation.

$\hat{=} \operatorname{minimumer} U_{0}(T)$

Ginsburg. Landau theory.

- phenomenological theory for phase transitions with spontaneous symmetry breaking
- formulated for SC: 1950. relation to BCS theory clarified by Gorkov 1960

The order parameter
The order parameter O is a macroscopic quantity. which is nonzero below the transition temperature $\left(T<T_{c}\right)$ and zero for $T>T_{c}$.

Examples:

- Ferromagnet $\theta=\hat{=}$ (magnetization density) $\left(\stackrel{y}{n}\right.$ vector in \mathbb{R}^{3})

(paramagnet)

$T<1040 \mathrm{~K}$
- Peierls transition
$T>T_{c}$

$O \triangleq$ Fourier component of density A_{Q}

Note 1) The order parameter can in general be a function of position. Example: magnetic domains

Note 2) Nonzero order parameter is related to spontaneous symmetry breaking, ie.
the symmetry of the state is lower than the symmetry of the underlying (microscopic) description.

- Example Ferromagnet.
- microscopic Spin model : invariant under all rotations
- state below T_{c} : only invariant under rotations around magnetization axis
" "Classical example". (of course, not a thermal transition!)

- general phenomenological description of second order phase transitions in terms of order parcanter: Landau ~ 1930
- Ginzbarg \& Landon (i950): observed effects is SC (Meissher effect) dessibed if one assotiates the SC phase with an order parameter which is a complex number $\psi(\vec{r}) \leftrightarrow \frac{\text { macroscopic, classical }}{\text { lied }}$ field
- In the Landau theory, the order parameter σ is determined by minimization of a free energy function $F[O(x), T]$
$\mp[O]$ is unknown in general, but many general features of the phase transition follow from very few assumptions on the functional form of F :

1) $\theta=0$ must be minimus of F in the high symmetry phase $\left(T>T_{c}\right)$
2) $\mp[0]$ must bo invariant under all symmetry operations of high-symmetry phase
3) For $T \rightarrow T_{c}, \theta$ vanishes continuously (Ind order transition) and we can expand $\mp[O]$ in e powers of O.
"Recipe": get most geneal forme of F and see what theory predicts.

Example:

$$
F(X, T)=\underbrace{F_{n}(T)}_{\text {normal phase }}+\underbrace{a(T) X^{2}+\frac{b(T)}{2} X^{4}+\ldots}_{\text {expansion around } X=0,}
$$

no odd terms because of inversion symmetry

\leadsto phase transition $\Leftrightarrow a=0 \Rightarrow a\left(T_{c}\right)=0$
\leadsto expand $a(T) \simeq \underbrace{\dot{a}}_{>0}\left(T-T_{c}\right)$
as $X(T)=\sqrt{\frac{\dot{a}}{T_{\sim}}\left(T_{c}\right)} \sqrt{T_{c}-T_{e}}$

- More advanced example

Vector order parameter (e.g. Polarization) in cubic enviroument.

egg. pray molecules in cubic crystal

Order parameter \cong macroscopic polarization \vec{p} (microscopically, $\vec{P}=\frac{1}{N} \sum_{i} \vec{p}_{i} \hat{\cong}$ average over all \vec{p}_{i}
$\mp[\vec{P}]$: must be invariant under all point group operations of cubic symmetry most general form of Taylor expansion F[P]:

$$
F[\vec{P}]=\alpha \vec{P}^{2}+\beta \vec{P}^{4}+\underbrace{\gamma\left(P_{x}^{4}+P_{y}^{4}+P_{z}^{4}\right)}+\ldots
$$

thisterm would not be possible in isotropic medimen: not invariant under all rotations.
\leadsto additional phenomenological parameter γ (\wedge arstallive anisotropy)
\rightarrow depending on β or γ, the transition can occur only in two passible ways:

1) \vec{P} along oxepital axis
2) $\stackrel{P}{P}$ along body diagonal (see free-energy plots on next page) this is a rather nontrivial prediction from the GL Theory, which is based only on symmetry considerations

Remarks. Here we have an example in which a discrete symmetry is broken. As a consequence. there is no "continuores degeneracy" of the minimum e in $\mp[\vec{p}]$, and no zero energy excitations (no "Goldstone modes")

GL Free energy : vector order parameter in cubic environment
$F=a|M|^{2}+b|M|^{4}+c\left(M_{x}^{4}+M_{y}^{4}+M_{z}^{4}\right)$
just two possible orientations with respect to the lattice, depending on values of b and c

M II body diagonal

M II x or y axis

Note: No breaking of continuous symmetry : no Goldstone modes

- coherence length
spacially dependent order parameter $\theta(\vec{v})$ (egg. domains)
=D Free energy (for scalar, for simplicity)

$$
F[0]=\int d^{3} r\{a|O|^{2}+\frac{b}{2}|O|^{4}+\underbrace{\xi_{0}^{2}|\vec{\nabla} O|^{2}}\}
$$

most simple, symmetry allowed nun-local term $\hat{\approx}$ free energy cost for deformation

Consequence: order parameter cannot vary afpraptly. but only on a certain healing or conflation egg. surface

minimization of $*(\widehat{=} \mp[0+\delta 0])$...term linear ic 80 vanishes $)$ $\xlongequal{\text { differential equation } \quad \xi_{0}^{2} \bar{\nabla}^{2} \theta=a \theta+b|\theta|^{2} \theta}$
asymptotic Behavior:

$$
\begin{aligned}
& Q(x)=\underbrace{\theta_{\infty}}_{\sqrt{-\frac{a}{b}}}+\text { const. } e^{-x / \xi} \\
& \xi(T)=\frac{\xi_{0}}{\sqrt{-2 a(T)}} \overbrace{T}^{a=a\left(T-T_{c}\right)}
\end{aligned}
$$

order parameter changes only on socue healing F correlation length, which diverges at the transition.

Note: GiL theny makes many qualitatively cmect predictions close to the phase transition. Main drawback: missing treatonent of Huchuatous. As a comequence, it predicts long range order aho for low dimensions, where fluctuations diverge (see discussion of phenoms), and the precise scaling of consolations functions

- Magnetism: definitions, phenomenology

Interaction of matter with magnetic fields:

Paramagnets: induced magnetisation parallel to external field, fields increased inside material

Diamagnets: induced magnetisation antiparallel to external field, fields decreased inside material

Macroscopic description:

$$
\begin{array}{ll}
\vec{\nabla} \vec{B}=0 & M(H): \text { material relations } \\
\vec{\nabla} \times \vec{H}=\frac{4 \pi}{C} \vec{J}_{\text {ext }} & \frac{\partial H}{\partial H}>0: \text { paramagnet } \\
B=H+4 \pi M & \frac{\partial M}{\partial H}<0: \text { diamagnet. } \\
& \\
& \text { magnetization, due to } \\
\text { induced currents }
\end{array}
$$

Magnetic order:

Ferromagnets: permanent magnetization
"spontaneous alignment of microscopic magnetic moments"

magnetic compass
(11th century, China)?

Antiferromagnets:"spontaneous anti-parallel alignment of neighbouring microscopic magnetic moments"

Ferrimagnets:"spontaneous anti-parallel alignment of neighbouring microscopic magnetic moments"

- spontaneous magnetic order occurs at rather high temperatesses (egg. \bar{F} becomes ferromggratic for $T<T_{C} \simeq 1033 \mathrm{~K}$, Co $\left.T_{c} \cong 1400 \mathrm{~K} \quad \mathrm{Ni}_{\mathrm{i}} \simeq 630 \mathrm{~K} \ldots\right)$. Yet all magnetic response of matter is in principle a purely quantum mechanical effect. In a classical physics dessiptiou, the fire energy of a material is simply. independent of any external freed \vec{B} (Bohr \& van Lencven 1911)

In short: classical partition fumetron

$$
\begin{aligned}
\overline{\mathcal{Z}} \sim \int d^{3 N} \gamma d^{3 N} p e^{-\beta \not \operatorname{Le}(p, r)} & \\
& \sum_{i=1}^{N} \frac{\left(\bar{p}_{i}-\frac{0}{c} \bar{A}_{i},\right)^{2}}{2 m}+V=\bar{\nabla} \times \bar{A} \\
& V\left(\gamma_{1}, \ldots, \gamma_{N}\right)
\end{aligned}
$$

shift of variables $p \rightarrow \tilde{p}-\frac{e}{C} \bar{A}\left(\bar{v}_{i}\right)=\tilde{p}$

$$
d^{3 N} p=d^{3 N} \tilde{p}
$$

$\Rightarrow 7$ does nol depend on \vec{B}
magnetic moment of isolated atoms

Classical picture

Energy in external field:

$$
E=-\vec{\mu} \cdot \stackrel{\rightharpoonup}{B} \quad \vec{\mu}=\frac{1}{2} \int d^{3} r \vec{r} \times \vec{\jmath}
$$

$\vec{\mu}$: magnetic moment
\Leftrightarrow thermodynamic description:

$$
\text { magnetization } M=-\frac{\partial F}{\partial B} F \text { i see energy }
$$

- quartan mechanical desosiption: atone (or any object) in state n

$$
\mu_{n}=-\frac{\partial E_{n}}{\partial B}
$$

2 by Dirac then
single electron: Zeeman energy $H=-\mu_{B} g \stackrel{\rightharpoonup}{S} / \hbar \cdot \stackrel{\rightharpoonup}{B}$

$$
\vec{\mu}=2 \mu_{B} \vec{S} / \hbar \quad \mu_{B}=\left.\frac{e \hbar}{2 a c} \simeq 10^{-4} \frac{\mathrm{eV}}{\tau}\right|^{\uparrow} \text { 个 spin }
$$

value of μ_{B} alrecedy shows that magnetic energies are often small compared to other typical energies in the solid at typical laboratory fields.

Note in all cases, magnetic moment is liuked to angular momentum \vec{J}

$$
\vec{\mu}=\gamma^{\vec{J}}
$$

γ : gyromagnetic ratio
\rightarrow Einstein de Haas effect:
conversion of spin angular momentum
(magnetization) to lattice angular momentum

moment of isolated atoms:

$$
\mu=-\frac{\partial E_{0}}{\partial B}
$$

$$
\Delta E_{0}=-\vec{B} \cdot \vec{\mu}+\underbrace{O\left(B^{2}\right)}
$$

induced moments, in particular diagnaguetic response
nonzero if ground
state has nonzero angular momentum.

- What determines $\stackrel{\rightharpoonup}{L}, \vec{S}, \vec{J}$ in ground state? egg. electrons in $3 d$ orbitals of magnetic ion \Rightarrow many possible states $\binom{e}{10}=\frac{10!(0 \cdot e)!}{e!}$
lifting of degeneracy:
- Conlaub interaction + Pauli prinaple $(=$ intra-atomic exchange interaction)
- spin-orbit coupling

玉D Hand's rules
for weak so coupling when have

1) maximum \vec{S}
2) $\max \vec{L}$ forgiven \vec{J}

$$
\cong\left\{\begin{array}{l}
\text { ferromagnetic } \\
\text { intro atomic } \\
\text { exchange, see below }
\end{array}\right.
$$

- paramagnetic response of isolated atoms
ions align in external field:

for simplicity. consider $J=\frac{1}{2} \quad \vec{\mu}=\gamma \vec{J}$:
average magnetization:

$$
\begin{aligned}
M & =n\langle\vec{\mu}\rangle \quad n: \text { density } \\
\langle\vec{\mu}\rangle & =\frac{\sum_{n=-J}^{J} \mu_{B} \gamma^{\prime} m e^{\beta \mu_{B} \gamma m B}}{\sum_{m=-J}^{2} e^{\beta \mu_{B} \gamma \omega_{B} B}} \\
& =\mu_{B} \gamma / 2 \tanh \left(\frac{\left.\beta \mu_{B} \gamma \cdot B\right)}{2}\right.
\end{aligned}
$$

for $x \gg 1$, i.e. either $T \rightarrow 0$ or B large: saturation

$$
\langle\mu\rangle \sim \mu_{B} \gamma / 2
$$

$$
\langle\mu\rangle \sim \frac{\mu_{B}^{2} \gamma^{2}}{4 k_{B} T} B
$$

\Rightarrow susceptibility of isolated magnetic moments

$$
\left.X=\frac{\partial M}{\partial B}=\frac{M_{B}^{2} \gamma^{2}}{4} \frac{1}{k_{B} T}\right] \text { Guns law }
$$

 isolated moments

Behavior of interacting momenst?

* physical origin:
see bela.
interaction

$$
H=-\sum_{i j}^{\sum_{i} \vec{S}_{i} \cdot \vec{S}_{j} J_{i j}}
$$

exchange interaction e ${ }^{*}, 1 J 1>0$ favors parallel aligumant of spins

- mare füld description of response

$$
\begin{array}{ll}
X=\frac{\partial M}{\partial B} & M=\sum_{j}\left\langle S_{j}\right\rangle \begin{array}{c}
\text { average } \\
\text { moment }
\end{array} \\
\delta M \underset{\uparrow}{\approx} X_{\text {free }}\left(B+B_{i n c h u c e d}\right)
\end{array}
$$

mean fold T response of free moments $\sim 1 / T$

$$
\begin{aligned}
& \text { Bindured } \\
& \text { (at ion \#i) }
\end{aligned}=\sum_{j} J_{i j}\left\langle S_{j}\right\rangle=\underbrace{J_{0}}_{\sum_{j}\left\langle S_{j}\right\rangle} \delta M
$$

$$
\begin{aligned}
& {\left[x=\frac{X_{\text {free }}}{1-J_{0} X_{\text {tue }}} \underset{\sim}{\sim} \begin{array}{c}
\frac{1}{T-T_{c}} \\
\end{array}\right.} \\
& \text { ope }{ }^{\sim}
\end{aligned}
$$

where $T_{c} \sim J_{0}$
instability_of the system for $T \leqslant T_{c}$: ordering of moments for infinitesimally small field! Ferromagnetic transition

fervomugnetic
state, long-range order,

Exchange interaction
general principle:
Pauli principle $\Rightarrow n$-election wave function symmetric under exchange of both spin (σ) and position (\vec{r}) :
symmetric under exchange \Rightarrow anti-symmetric of σ_{i} under exchange of \vec{r}_{i}
anti-symmetric under exchange of σ_{i}
\Rightarrow symmetric under exchange of \vec{x}_{i}
$\hat{\xi}$

Effective interaction
Between spies
cerchange interaction

Couloueb energy depends
$s=$ on this form of the wave function
! Exchange interaction is "not a fundamental force"
can take various forms (ferromagnetic, auth-ferro long range I shortrange). depending on the electronic state of the solid.

Direct exchange
oxample: two-electron system

$$
\begin{aligned}
H & =\overbrace{\frac{p_{1}^{2}}{2 m}+\frac{p_{2}^{2}}{2 a c}+V\left(r_{1}\right)+V\left(r_{2}\right)}^{H_{0}} \\
& +\frac{e^{2}}{\left|\vec{r}_{1}-\vec{r}_{2}\right|}
\end{aligned}
$$

Basis: - Wanner orbitals $\varphi^{(1)}$, $\varphi^{(2)}$ (localized at nuclear positions R_{1}, R_{2}.

- tightly bound clectous, $\varphi_{l}^{(i)} \simeq$ atomic orbitals, take into account only one orbital per site Cothers are at "high energy").
- neglect hopping $T=\int d^{3} T \varphi^{(t)}\left(\vec{r}^{*}\right)\left[\frac{p^{2}}{2 m}+V(v)\right] \varphi^{2}(\vec{r})$ (\rightarrow leads to different type of exchange, see below) goal: find ground state

$$
\Phi\left(\vec{r}_{1} \sigma_{1} ; \vec{r}_{2} \sigma_{2}\right)=\underbrace{\varphi\left(\vec{r}_{1}, \vec{r}_{2}\right)}_{\text {orbital part }} \underbrace{x\left(\sigma_{1}, \sigma_{2}\right)}_{\text {spice part }}
$$

excluding ionized states (Cote electrons in $\varphi^{\text {(s)}}$ or $\varphi^{(2)}$)
possible combinations

- $x\left(\sigma_{1}, \sigma_{2}\right) \equiv x^{s}\left(\sigma_{1} \sigma_{2}\right)=\frac{1}{\sqrt{2}}\left(\delta_{\sigma_{1} \uparrow} \delta \sigma_{2 \downarrow}-\delta_{\sigma_{1},} \delta_{\sigma_{1} \uparrow}\right)$ $\hat{=}$ Singlet $S_{\text {tot }}=0$ (ie. $\left(\vec{S}_{1}+\vec{S}_{2}\right)^{2}=0$)
antisymmetric under $1 \leftrightarrow 2 \Rightarrow$ orbital part $\equiv \varphi^{t}\left(r_{1}, r_{2}\right) \propto\left(\varphi_{1}^{(+1)}\left(r_{1}\right) \varphi^{(2)}\left(r_{2}\right)+\varphi^{(t)}\left(r_{2}\right) \varphi^{(2)}\left(r_{1}\right)\right)$
$\cdot x\left(\sigma_{1} \sigma_{2}\right) \equiv\left\{\begin{array}{l}x^{\left(t \sigma_{0},+1\right)}\left(\sigma_{1} \sigma_{2}\right)=\delta_{\sigma_{1} \uparrow} \delta_{\sigma_{2} \uparrow} \\ x^{(t, 0)}\left(\sigma_{1} \sigma_{2}\right)=\frac{1}{12}\left(\delta_{\sigma_{1} \uparrow} \delta_{\sigma_{2} \downarrow}+\delta_{\sigma_{1} \downarrow} \delta_{\sigma_{2} \uparrow}\right) \\ x^{(t,-1)}\left(\sigma_{1} \sigma_{2}\right)=\delta_{\sigma_{1} \downarrow} \delta \sigma_{2 \downarrow}\end{array}\right.$
$\hat{=\text { triplet }} \xlongequal{S_{\text {tot }}=1},\left(\vec{S}_{1}+\vec{S}_{2}\right)^{2}=S_{\text {tot }}\left(S_{\text {tot }}+1\right)=2$
symmetric under $k \Leftrightarrow 2 \Rightarrow$
orbital part $\equiv \varphi\left(r_{1}, r_{2}\right) \propto\left(\varphi^{(1)}\left(r_{1}\right) \varphi^{(2)}\left(r_{2}\right) \sum \varphi^{(1)}\left(r_{2}\right) \varphi^{(2)}\left(r_{1}\right)\right)$

Energy expectation value: ($\pm \xlongequal{=}$ singlet / triplet)

$$
\begin{aligned}
& E^{(\pm)}=\left\langle\Phi^{ \pm}\right| H\left|\Phi^{ \pm}\right\rangle \quad\left(\begin{array}{c}
\text { note: } \\
|\Phi\rangle \text { normalized, lecture } \\
\varphi^{(1)} \text { are wanurev-functions }
\end{array}\right) \\
& =\int d r_{1}^{3} d^{3} r_{2} \varphi^{ \pm}\left(r_{11} r_{2}\right) H\left(r_{1} r_{2}\right) \varphi^{ \pm}\left(r_{1}, r_{2}\right) \\
& =E_{1}+E_{2}+C_{1} \pm C_{2} \\
& E_{1,1,2}=\int d^{3} q \varphi^{(1,2)}(\bar{\gamma})^{*}\left(\frac{p^{2}}{2 m}+V(\bar{r})\right) \varphi^{(, 12)}(\bar{\gamma}) \\
& C_{1}=\int d^{3} r_{1} d^{3} \bar{r}_{2} \frac{e^{2}\left|P_{1}^{(1)}\left(r_{1}\right)\right|^{2}\left|\varphi^{(2)}\left(\dot{\gamma}_{2}\right)\right|^{2}}{\left|\bar{r}_{1}-\bar{r}_{2}\right|}<\left\{\begin{array}{l}
\text { classical } \\
\text { Conloub } \\
\text { energy }
\end{array}\right. \\
& C_{2}=\int d^{3} r_{1} d^{3} r_{2} \frac{e^{2}}{\left|r_{1}-r_{2}\right|} \varphi_{1}^{(1)}\left(r_{1}\right)^{*} \varphi^{(2)}\left(r_{2}\right)^{*} \varphi^{(2)}\left(r_{1}\right) \varphi^{(1)}\left(r_{2}\right)
\end{aligned}
$$

\Rightarrow up to the constant energy shift $E_{1}+E_{2}+C_{1}$ the spectrum $E^{(\pm)}$cane be obtained by the equivalent spin Hamiltonian:

$$
H_{\text {eHf }}=-J \stackrel{\rightharpoonup}{S}_{1} \cdot \stackrel{\rightharpoonup}{S}_{\alpha} \quad J=\frac{2 C_{2}}{\hbar^{2}}
$$

proof:
Heft acts only on spin

$$
\begin{aligned}
& \left\langle\Phi^{ \pm}\right| H_{\text {eff }}\left|\phi^{ \pm}\right\rangle \stackrel{\downarrow}{=}\left\langle x^{s / t}\right| \text { Hoff }\left|x^{s / t}\right\rangle \\
& =-J\langle x^{s / t} \mid[\underbrace{\left(\vec{S}_{1}+\vec{S}_{2}\right)^{2}-\vec{S}_{2}} \vec{S}_{1}^{2}-\vec{S}_{2}^{2}] / 2, x^{s / t}\rangle \\
& \hbar^{2} S_{\text {tot }}\left(S_{\text {tot }}+1\right) \quad \hbar^{2} 3 / 4 \text {, for spice }-1 / 2 \text {, } \\
& S=\frac{1}{2}\left(\frac{1}{2}+1\right) \\
& =\left\{\begin{array}{cc}
\left.\hbar^{2}\right] \frac{3}{4} & \text { singlet } \\
\left.-\hbar^{2}\right] \frac{1}{4} & \text { triplet }
\end{array}\right. \\
& \underbrace{E^{+}-E^{-}}_{2 C_{2}} \stackrel{!}{=} E^{(0)}-E^{(t)}=\hbar^{2} J
\end{aligned}
$$

Notes: "direct exchange" "directly related to Coulourb matrix element

- depends on overlaps of $\varphi^{(1)}$ and $\varphi^{(2)}$ decays exponentially with distance
- Let $\varphi^{(1)}, Y^{(2)}$ be atonic orbitals of same atom \#D calculation can be sene as model calculation for intra-atomic exchange \cong 1.st Hounds rule (maximal S favored)
- in solids: more often other exchange medecrisms relevant (see below)
- argument for localized electrons \approx applies to insulators.

Superexchange (kinetic Exchange)
many magnetic oxides (Mn O, Ni O,...) have well defined magnetic moments ("localized electrons") bet their distance is too large for direct exchange. \sim exchange mechanism involving hopping of electrons between ions, or between origen and ions. mschange due to Cowering of kinetic energy.

- Simplest model for "kinetic energy driven exchange" "two orbitals Cdoes not yet contain the O-ion, just single band)

$$
H=-t \underbrace{\sum_{\sigma}\left(c_{1 \sigma}^{+} c_{2 \sigma}+b_{c c}\right)}_{\text {hopping }}+\underbrace{u_{i=2,1}^{\sum_{i \uparrow} n_{i j}}}_{\begin{array}{l}
\text { intra-orbital } \\
\text { Coulomb energy }
\end{array}}
$$

occupation number basis: (sign!)

$$
\left.\left|n_{1 \uparrow} n_{1 \downarrow} n_{2 \uparrow} n_{2 \downarrow}\right\rangle \equiv\left(c_{1 \uparrow}^{+}\right)^{n_{\uparrow}}\left(c_{1 \downarrow}^{+}\right)^{n_{1}}\left(c_{2 \uparrow}^{+}\right)^{n_{k}}\left(c_{2 \downarrow}^{+}\right)^{n_{2}} \varphi_{0}\right\rangle
$$

$\$ 1$ states for two elections:

$$
\begin{aligned}
& \left.\begin{array}{l}
|1100\rangle=|n, 0\rangle \\
|0011\rangle=|0, x\rangle
\end{array}\right\} \\
& \text { high-cnergy states } \\
& \text { (} E \approx U \text {) }
\end{aligned}
$$

$$
H=\left(\begin{array}{cc:cccc}
2 \varepsilon & 0 & 0 & 0 & 0 & 0 \\
0 & 2 \varepsilon & 0 & 0 & 0 & 0 \\
\hdashline 0 & 0 & 2 \varepsilon & 0 & -t & -t \\
0 & 0 & 0 & 2 \varepsilon & t & t \\
0 & 0 & -t & t & 2 \varepsilon+U & 0 \\
0 & 0 & -t & t & 0 & 2 \varepsilon+u
\end{array}\right)
$$

analytic diagonalization possible. noting that

$$
\left.\cdot(|\uparrow, \downarrow\rangle+|\downarrow, \uparrow\rangle) \frac{1}{\sqrt{2}} \equiv(0,0,1,1,0,0)^{+} \sqrt{2}\right)
$$

$|\uparrow, \downarrow\rangle,|\downarrow \downarrow\rangle$ are eigenstates with energy $\quad E_{t} \equiv 2 \varepsilon$

- $(|\pi, 0\rangle-|0, \mathbb{k}\rangle) / \sqrt{2}$ eigenstate energy $2 \varepsilon+U$ \leadsto remaining 2×2 matrix:
Ground state $\left.E_{S}=2 \varepsilon+\frac{u}{2}-\sqrt{\left(\frac{U}{2}\right)^{2}+4 t^{2}}\right\}$ singlet.
result inemortant for $t \ll U$.
 states for $(t=0)$
$\}$ high energy states

$$
\begin{aligned}
H_{t H} & =J \vec{S}_{1} \cdot \vec{S}_{2} \\
J & =\cdot \frac{4 t^{2}}{U} \\
\equiv & E_{t}-E_{S} \text { Cikeabove }
\end{aligned}
$$

- Singlet lowered due to virtual hopping processes (kinetic energy). Virtual hopping excluded for triplet due to Pauli principle.

Spin-orbital exchange (Kugel-Khomski model KCuF3)

Cu 3d orbitals 9 electrons

eg orbitals

t2g orbitals

Low-energy manifold in either of the two e.g. orbitals:

Orbital
pseudospin:
Spin:
$\tau_{z}=\frac{1}{2}$

$\tau_{z}=-\frac{1}{2}$
$\tau_{z}=\frac{1}{2}$
$\tau_{z}=-\frac{1}{2}$
$s_{z}=\frac{1}{2}$
$s_{z}=-\frac{1}{2}$
$s_{z}=-\frac{1}{2}$

Interaction: intra-orbital Coulomb, inter-orbital Coulomb, Hunds-Coupling Orbital-orbital exchange, and mixed orbital-spin exchange

Orbital-orbital exchange

Spin-orbital exchange terms

Super exchange via oxygen ion

Mn, Ni ... no direct overlap between magnetic ions

Simple cluster model:

\leadsto an election while hops froe O^{2-} to Mn^{2+} surest , b anti-parallel to spin on $\mathrm{Mn}^{2 t}$

- possible states for anti parallel alignment of Me spies:

large spice, like classical variable
- for parallel alignment:
$\rangle \equiv$ T (0)
$|2\rangle=\mathbb{Q} \downarrow$
$|3\rangle \equiv \hat{\|}(1) \downarrow$

$$
\langle i| H|j\rangle \cong\left(\begin{array}{lll}
0 & t & t \\
t & u & 0 \\
t & 0 & u
\end{array}\right)
$$

v again"singlet" (antiparallel Mn<super>2t spins)
lower in energy, because 0^{2-} electrons more delocalized, jer lowe kinetic energy (difference in 4th order perturbation e theory)

Double exchange
eg. mixed valence $\mathrm{Mn}^{3+} / \mathrm{Mn}^{4+}$
parallel spires due to Hands rule
if Mn-spius are parallel \Rightarrow extra eg electron can move freely. (without violating Houds'rule) \Rightarrow lower kinetic energy $\Rightarrow D$ ferromagnetic exchange

Itinerant ferromagnetiom (e.g. Te) ohly brif summary... responce of band elections (paramagnetion)

$B=0$ shift of chenvical potartial of $\downarrow, \hat{\imath}$ electrons due to Feeman energy \Rightarrow

$$
X=\frac{\partial M}{\partial B} \sim N\left(\varepsilon_{p}\right)
$$

Cocal conlome interaction Cdensily-density
$\underbrace{\| n_{\uparrow}(\stackrel{\rightharpoonup}{r}) n_{l}(\vec{r})}=\underbrace{\frac{U_{1}}{4}}[\frac{n(r)^{2}}{\underbrace{S_{z}^{2}}_{n}]}$
becaure of Pauli principle only
elections with opposite

$$
\frac{n_{\uparrow}-n_{l}}{2} \cong
$$

local magnetization
spin interact Cocally
\approx local interaction leads to induced magnetic fold $\sim U\langle M\rangle$ in mean fold desniption.

$$
x=\frac{x_{\text {free }}^{\text {s } N\left(\varepsilon_{q}\right)}}{1-U N\left(q_{p}\right)}
$$

instability $\hat{=}$ magnetic ordering for $\underbrace{U N\left(\varepsilon_{q}\right)}=1$

Stoner criterion

enhanced for large Coulomb interaction or large deusily_of stake Clan Hove singulasinios, flat bands,...)

