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M.	Mitrano	et	al.,	
Nature	530,	461	(2016)	

LaQce	control	of	reflec8vity	and	possible	light-
induced	superconduc8vity	in	K3C60	

Open	problem:	
Light-induced	states	of	maLer	

MPSD	Hamburg	



Pump-probe	spectroscopy	(1887)	
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•  stroboscopic	inves8ga8ons	of	dynamic	phenomena	

Muybridge 1887



Pump-probe	spectroscopy	(today)	
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•  stroboscopic	inves8ga8ons	of	dynamic	phenomena	

TbTe3	CDW	metal	

J.	Sobota	et	al.,	PRL	108,	117403	(2012)	
F.	SchmiD	et	al.,	Science	321,	1649	(2008)	
Image	courtesy:	J.	Sobota	/	F.	SchmiD	



Challenge	
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movies by Koichiro Tanaka (Kyoto university)	

many-body	problem	
(electrons	+	ions)	

nonequilibrium	many-body	problem	
(electrons	+	ions	+	photons)	



One	method:	Nonequilibrium	Green‘s	func8ons	

history	

ini8al	state	
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been successfully used to describe the melting of a charge
density-wave state24 and the time evolution of electrons
in correlated metals25,26 via tr-ARPES and tr-reflectivity.
We connect the microscopic interaction parameters of
the electron-phonon interaction directly to the observed
timescales, and discuss the extension of the results ob-
tained here to more general models.

II. METHOD

We describe the time-evolution of the system via the
non-equilibrium Keldysh formalism. All Green’s func-
tions have two time arguments, where each time is lo-
cated on the Keldysh contour (see Fig. 1). The sys-
tems starts in equilibrium at a temperature T and time
t = tmin, and evolves until t = tfinal. The time-ordered,
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FIG. 1: Keldysh contour used in the description of the double-
time Green’s functions and self-energies.

anti-time-ordered, lesser and greater Green’s functions
are formed by selecting t and t⇥ on appropriate parts of
the contour (see Refs. 1–3,7,8).

The driving fields are included directly into the propa-
gators via the Peierls substitution in the standard double-
time formalism, which leads to the bare non-equilibrium
Green’s function

G0
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where nF is the Fermi function at temperature T :
nF (⌅) = 1/(exp(⌅/T ) + 1), t and t⇥ lie on the Keldysh
contour, ⇥c is the contour-ordered Heaviside function,
�(k) is the single-particle dispersion, which we choose
to be a square lattice tight-binding model with nearest-
neighbor and next-nearest-neighbor hoppings Vnn = 0.25
eV and Vnnn = 0.075 eV, and a chemical potential
µ = �0.255 eV.

�(k) = �2Vnn (cos kx + cos ky) + 4Vnnn cos kx cos ky � µ

A(t) is the vector potential at time t, which is related
to the electric field via A(t) = �

´
E(t)dt. Here, we use

the convention that h̄ = c = e = 1, and we work in the
Hamiltonian gauge, i.e. the scalar potential is set to zero.
Energies and frequencies are measured in units of eV.

To illustrate the momentum-dependent quasiparticle
relaxation rates we introduce coupling of electrons to a

non-dispersive optical phonon with energy ⇥. As our
starting point, we use the Holstein model which couples
a band of electrons to a single species of optical phonon:
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We include the electron-phonon interactions in the
Migdal limit, which is appropriate for weak coupling.
Furthermore, since we are primarily interested in the re-
sponse of the electronic system, we will limit the discus-
sion to just the e⇤ects of the phonons on the electrons,
and will neglect the feedback of the electronic system on
the phonons.
For a non-dispersive optical phonon, the electronic self-

energy is

�(t, t⇥) = ig2
 

k

D0(t, t⇥)G0
k(t, t

⇥)

where g is the electron-phonon coupling strength. The
bare phonon Green’s function D0(t, t⇥) is

D0(t, t⇥) =� i [nB(⇥) + ⇥c(t, t
⇥)] exp (i⇥(t� t⇥))

� i [nB(⇥) + 1� ⇥c(t, t
⇥)] exp (�i⇥(t� t⇥))

where nB(⇥) is the Bose function at temperature T :
nB(⌅) = 1/(exp(⌅/T )� 1). In the following, we will use
various values of the electron-phonon coupling strength
g and the optical phonon frequency ⇥.
With the self-energy above, we solve the Dyson equa-

tion

Gk(t, t
⇥) = G0
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This can be done by casting the Dyson equation as
a matrix equation. However, for the case of electron-
phonon coupling, better numerical stability can be ob-
tained by expanding the integral through Langreth rules
and solving the equations of motion for the retarded, real-
imaginary, and lesser Green’s functions.4,5 This leads to
a set of Volterra integrodi⇤erential equations that can be
solved via standard numerical integration.6 We find that
the solution of the Dyson equation by integrating the
Volterra equations leads to more stable and inherently
causal algorithms. Some details about number of time
points go here.
The pulse that is of direct interest to pump-probe ex-

periments is, by nature, a propagating light pulse; this
implies an oscillating field without a zero-frequency com-
ponent. We model the pump via an oscillating vector po-
tential along the (11) direction with a Gaussian profile,
where we assume that the field is slowly varying spatially
and thus neglect the spatial dependence:

A(t) = (x̂+ ŷ)
Fmax
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self-energy Σ:
electron-electron scattering
electron-phonon scattering
...

7	pump-probe	photoemission	



Electron-boson	coupling	
Weak	pump	 Strong	pump	

8me	unit	=	0.66	fs	

Goal:	realis8c	modeling	of	complex	problems	out	of	equilibrium	
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PRX	3,	041033	(2013)	

Correlation functions and response 
   Kubo formalism, Fluctuation dissipation theorem
Field theory for quantum many-particle systems 
   path integrals, second quantization, coherent state path integrals, concepts of    
   many-body perturbation theory
Keldysh formalism 
   field theory for nonequilibrium systems
Classical stochastic equations 
   Langevin equation, semiclassical equations of motion in a dissipative 
   environment
Kinetic equations 
   Derivation of the quantum Boltzmann
From collisionless dynamics to kinetic theory  
   Dynamics of BEC condensates, superconductors
Quantum Transport 
   Landauer formula,  transport and the Kondo effect
Driven systems 
   Parametric instabilities of many-particle systems
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Keldysh	formalism

L. Keldysh @ CFEL, 2014


