Progression in Calculations

Addition

Starting at the bigger number and counting on Y1/2	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on th smaller number to find you answer.	Bead strings Counters	Number line Count on Add, more, plus, make, sum, total, total, altogether Equals, is the same as (including equals sign)
Adding three single digits Y1/Y2	$4+6+7=17$		$\begin{aligned} (4)+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.	Cubes Natural objects Counters Numicon	Number bonds Add, more, plus, make, sum, total, total, altogether Equals, is the same as (including equals sign)

Regroupin g to make 10. Y2	$6+5=11$ Start with the bigger number and use the smaller number make 10 .		$7+4=11$ If I am at seven, how many more do I need to make 10? How many more do I add on now?	Tens frame Cubes	Regroup How many more to make . . ?	
Adding two 2 digit numbers. Y2/3	$35+23=58$	$\begin{aligned} & \|\\| \left\lvert\, \begin{array}{l} 00 \\ 00 \\ 0 \end{array}\right. \\ & \left\|\left\lvert\, \begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 0 \end{array}\right.\right. \end{aligned}$	Using number bonds and facts to add two 2 digit numbers mentally $\begin{aligned} & 46+27= \\ & 40+20=60 \\ & 6+7=13 \\ & 60+13=73 \end{aligned}$ $\begin{aligned} & \text { OR } \\ & 46+20=66 \\ & 66+7=73 \end{aligned}$	Dienes Place value chart Number lines Blank number lines 100 square	Number bonds Hundreds, tens, ones Partition, recombine	
Column method no regrouping Y3/4/5/6	$24+15=$ Add together the ones first then add the tens. Use the Dienes blocks first before moving onto place value counters	After practically using the Dienes blocks and place value counters, children can draw the counters to help them to solve additions.	Calculations $\begin{gathered} 21+42= \\ 21 \\ +42 \end{gathered}$	Dienes (Y3) Place value counters Decimal place value counters Coloured counters	Partition Column addition and subtraction	

			$\begin{array}{r} 162 \\ +304 \\ \hline 466 \\ \hline \end{array}$		
Column method regrouping Y3/4/5/6	Make both numbers on a place value grid. Add up the units and exchange 10 ones for one 10. Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added. This can also be done with Dienes (Year 3) to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100. As children move on to decimals, money and decimal place value counters can be used to support learning.	Children can draw a pictorial representation of the columns and place value counters to further support their learning and understanding.	Start by partitioning the numbers before moving on to clearly show the exchange below the addition. $\begin{aligned} & 20+5 \\ & 40+8 \\ & \hline 60+13 \end{aligned}=73$ As the children move on, introduce decimals with the same number of decimal places and different. Money can be used here.	Dienes Place value counters Decimal place value counters Coloured counters	Carry over - refer to correct value Partition, exchange Column addition and subtraction

Subtraction

Find the difference Y1/Y2	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bat models with items to find the difference	Count on to find the difference. Comparison Bar Models Draw bars to find the difference between 2 numbers. Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.	Cubes Numicon	Number line, bar model Difference between How many fewer is . . . than . . ?
Part Part Whole Model Y1/Y2	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$	Use a pictorial representation of objects to show the part part whole model.	5 10 Move to using numbers within the part whole model	Cubes Natural objects Counters	Part, whole, inverse

Subtraction with bridging across the ten Y2	$14-5=9$ Make 14 on the ten frames. Take away the four first to make 10 and then take away one more so you have taken away 5. You are left with the answer of 9.	Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?	Tens frame Cubes Counters	Tens, ones Bridging
Subtracting two 2-digit numbers no regrouping Y2	$54-22=$ Make first number with dienes. Look at the second number. Take away the tens. Take away the ones. How many left?	Repeat but with drawing rather than concrete apparatus.	54-22 = $54-20=34$ $34-2=32$	Dienes Place value counters	Subtract, take away, minus
Subtracting two 2-digit numbers regrouping Y2/3	$52-25=$ Exchange one ten for ten ones Subtract 25	Repeat but with drawings	Subtract mentally $75-46=$	Place value counters Dienes	Subtract, take away, minus Tens, ones Exchange

Column method without regrouping Y3/4/5/6	Use Dienes to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again make the larger number first.	Draw Dienes or place value counters alongside the written calculation to help to show working out.	$\begin{gathered} 47-24=23 \\ -\frac{40+7}{20+4} \\ \hline 20+3 \\ \hline \end{gathered}$ This will lead to a clear written column subtraction.	Dienes Place value counters Coloured counters Place value chart	Subtract, take away, minus
Column method with regrouping $Y 3 / 4 / 5 / 6$	Use Dienes to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Column method (using Dienes to exchange) $45-26=$	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you make.	Children can start their formal written method by partitioning the number into clear place value columns.	Dienes Place value counters Coloured counters Place value chart	Subtract, take away, minus Exchange

1) Start by partitioning 45
2) Exchange one ten for ten ones
3) Subtract the ones, then the tens

Make the larger number with the place value counters.

Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.

解 that the child understands the method and knows when to exchange/ regroup.

$$
\begin{array}{ccc}
728 & -582 & =146 \\
4 & \% & 4 \\
67 & 2 & 8 \\
5 & 8 & 2 \\
\hline 1 & 4 & 6 \\
\hline
\end{array}
$$

Moving forward the children use a more compact method.

This will lead to an understanding of subtracting any number including decimals.

When subtracting decimals with different numbers of decimal places, children should be taught and encouraged to make them the same through
identification that 2 tenths is the same as 20 hundredths, therefore, 0.2 is the same value as 0.20

Multiplication

Repeated addition Y1/Y2	Use different objects to add equal groups. This could be written or said as 3 groups of 3.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$ This could be written or said as 3 groups of 5 .	Write addition sentences to describe objects and pictures.	Cubes Bead string Natural objects Counters Numicon Dishes for groups of e.g. cupcake cases/ yogurt pots	Repeated addition, groups of, total, plus, add, altogether
Arrays showing commutative multiplicatio n Y2/Y3/Y4	Create arrays using counters/cubes to show multiplication sentences. This could be written or said as 3 groups of 4 or 4 groups of 3 .	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$	Counters Cubes Array grids	Array, row, column Multiply by, times Commutative
Grid method Y3/Y4	 Show the link with arrays to first	Children can represent the work they have done with place value counters in a way that they understand. They can draw the counters, using colours to	Start with multiplying by one digit numbers and showing the clear addition alongside the grid.	Place value counters Coloured counters	Array, row, column, exchange

Division

Equal groups Reception/Y1			Are the groups equal? Why? Can you make them equal?	Cubes Natural objects Counters	Equal groups, share
Halving Reception/Y1		Reinforce not always a vertical line through the middle.	Half of $6=3$ Mental recall of halves to 10	Cubes Natural objects Counters Food	Halve, halving, share, share equally, equal groups of
Sharing objects into groups $\mathrm{Y} 1 / 2$		Children use pictures or shapes to share quantities. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.	Share 9 buns between three people. $9 \div 3=3$	Cubes Natural objects Counters	share, share equally, equal groups of

Division as grouping Y2	Divide quantities into equal groups. Use cubes, counters or objects to aid understanding. 	Use a number line to show jumps in groups. The number of jumps equals the number of groups.	$28 \div 7=4$ Divide 28 into groups of 7. How many are in each group?	Cubes Counters	Number line Groups of, divided by, divide, equal groups of
Division within arrays Y2	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{r} \text { Eg } 15 \div 3=55 \times 3=15 \\ 15 \div 5=33 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$	Counter Cubes Array grids	Array, row, column Groups of
Division with a remainder Y2/Y3	$14 \div 3=$ Divide objects between groups and see how much is left over.	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. $13 \div 4=$	Complete written divisions and show the remainder using r	Counters Cubes	Left, left over, remainder

		Draw dots and group them to divide an amount and clearly show a remainder. $14 \div 4=$	$29 \div 8=3$ r 5		
Short division Y3/4/5/6	Use place value counters to divide with written method alongside. $42 \div 3=$ Starting with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups.	Children can continue to use drawn diagrams with dots or circles to help them divide numbers into equal groups. Children to represent the counters pictorially e.g. the image below. $42 \div 3=$ Encourage them to move towards counting in multiples to divide more efficiently.	Begin with divisions that divide equally with no remainder. Move onto divisions with a remainder. Finally move into decimal places to divide the total accurately.	Coloured counters Place value counters	Short division, divisor, dividend, quotient

