Colin and Coco's Daily Maths Workout

Workout 5.12

KeeP-uppI (Term 5)

KPIs for Term 5

Answers

Mixed Numbers Workout

Convert to mixed numbers
$\frac{5}{4}=1 \frac{1}{4}$
$\frac{9}{4}=2 \frac{1}{4}$
$\frac{5}{3}=1 \frac{2}{3}$
$\frac{8}{3}=2 \frac{2}{3}$
$\frac{7}{5}=1 \frac{2}{5}$
$\frac{11}{5}=2 \frac{1}{5}$
$\frac{9}{5}=1 \frac{4}{5}$
$\frac{19}{6}=3 \frac{1}{6}$
$1 \frac{1}{2}=\frac{3}{2} \quad 2 \frac{3}{4}=\frac{11}{4}$
$1 \frac{1}{4}=\frac{5}{4}$
$3 \frac{1}{2}=\frac{7}{2}$
$1 \frac{3}{5}=\frac{8}{5}$
$4 \frac{2}{5}=\frac{22}{5}$
$1 \frac{4}{5}=\frac{9}{5}$
$5 \frac{2}{3}=\frac{17}{3}$

Adding and Subtracting
 Fractions and Mixed Numbers Workout

Workout B

$$
\begin{array}{rrrr}
\frac{1}{3}+\frac{1}{6}=\frac{3}{6} & 1 \frac{1}{5}+\frac{2}{5}=1 \frac{3}{5} & \frac{1}{4}-\frac{1}{8}=\frac{1}{8} & 2 \frac{4}{5}-\frac{2}{5}=2 \frac{2}{5} \\
\frac{1}{4}+\frac{3}{8}=\begin{array}{|c}
\frac{5}{8}
\end{array} & 1 \frac{4}{7}+\frac{5}{7}=2 \frac{2}{7} & \frac{2}{3}-\frac{1}{6}=\frac{3}{6} & 1 \frac{6}{7}-\frac{2}{7}=1 \frac{4}{7} \\
\frac{1}{2}+\frac{1}{6}=\frac{4}{6} & \frac{1}{2}+2 \frac{1}{4}=2 \frac{3}{4} & \frac{3}{5}-\frac{7}{15}=\frac{2}{15} & 2 \frac{2}{3}-\frac{1}{6}=2 \frac{3}{6} \\
\frac{9}{10}=\frac{7}{10}+\frac{1}{5} & 2 \frac{1}{9}=1 \frac{2}{3}+\frac{4}{9} & \frac{2}{12}=\frac{3}{4}-\frac{7}{12} & 2 \frac{5}{8}=3 \frac{1}{4}-\frac{5}{8} \\
\frac{1}{3}+\frac{1}{6}+\frac{3}{12}=\frac{9}{12} & \frac{3}{4}+2 \frac{5}{8}=3 \frac{3}{8} & \frac{1}{5}-\frac{1}{10}-\frac{1}{20}=\frac{1}{20} & 4 \frac{3}{5}-\frac{7}{10}=3 \frac{9}{10} \\
\hline
\end{array}
$$

Multiplying Fractions Workout

$$
\begin{array}{llll}
\frac{1}{5} \times 2=\frac{2}{5} & \frac{2}{5} \times 3=\frac{6}{5} & 1 \frac{1}{5} \times 3=3 \frac{3}{5} & 1 \frac{2}{5} \times 3=4 \frac{1}{5} \\
\frac{1}{4} \times 3=\frac{3}{4} & \frac{3}{4} \times 2=\frac{6}{4} & 2 \frac{1}{4} \times 3=6 \frac{3}{4} & 2 \frac{1}{2} \times 3=7 \frac{1}{2} \\
\frac{1}{3} \times 4=\frac{4}{3} & \frac{2}{3} \times 4=\frac{8}{3} & 3 \frac{2}{7} \times 2=6 \frac{4}{7} & 3 \frac{4}{7} \times 2=7 \frac{1}{7} \\
\hline \frac{5}{2}=5 \times \frac{1}{2} & \frac{15}{7}=5 \times \frac{3}{7} & 8 \frac{6}{10}=2 \times 4 \frac{3}{10} & 9 \frac{4}{10}=2 \times 4 \frac{7}{10}
\end{array}
$$

Adding and Subtracting Fractions Game

You need: (print off the cards)
Game Template A or B
Card Set A for each player.
Card Set B or C for each player.
To play:
Each card set is shuffled and placed face down.
Each player picks TWO cards from Set B (or C) and places them on their Game
Template as the denominators.
Each player picks one digit card from their Set A and places it on their Game
Template either as a numerator or, in the case of Game B, a whole number.
Each player picks another digit card from their Set A and places it on their Game
Template.
Once cards have been placed they can not be moved.
Both players keep picking cards to create fractions or mixed numbers.
To win:
The player who creates the largest total scores one point.
Using the same cards, the players try and create the smallest total. A second point is scored for the smallest total.
The first player to get 10 points wins the Game.

Game Template A

Note
The Game Templates can be adapted by changing the ' + ' to a '-' to practise subtracting fractions and/or mixed numbers.

Game Template B

Ordering Fractions Game

Set A: 2-9 Digit Cards

Set B

Set C

Put different digits in the empty boxes so that the fraction statements are correct.

Possible Solution

$$
\begin{aligned}
& \frac{\boxed{3}}{7} \times 4 \frac{1 \boxed{2}}{\boxed{7}} \\
& \frac{8}{9}-\frac{1}{3}=\frac{5}{9}
\end{aligned}
$$

Are there any boxes that it is impossible to put a digit in? Why?
Are there any boxes that could have any of the digits in them?
Now try to complete both calculations together using the digits $1,2,3,4,5,6,7,8$ and 9 once each.

Which digit did you not use?6

$6 \frac{A}{12}$

A is an even number

Investigate how to get this answer by:

- adding a mixed number and a proper fraction
- adding a mixed number and more than one proper fraction
- subtracting a proper fraction from a mixed number
- subtracting more than one proper fraction from a mixed number
- multiplying a mixed number by a whole number

Word Problem Workout Measures

1. Colin and Coco are trying to run 6 km each week.

The table shows the distances they have run so far this week.

	Coco	Colin
Monday	$1 \frac{3}{5} \mathrm{~km}$	$1 \frac{3}{10} \mathrm{~km}$
Tuesday	$1 \frac{3}{5} \mathrm{~km}$	$1 \frac{3}{10} \mathrm{~km}$
Wednesday	$1 \frac{3}{10} \mathrm{~km}$	$1 \frac{3}{5} \mathrm{~km}$

Who has the most distance to run to complete 6 km this week?
What is the difference in their remaining distances as a fraction of a km ?
2. Coco uses $1 \frac{3}{8} \mathrm{~kg}$ potatoes for a party stew.

The bag of potatoes had $3 \frac{1}{4} \mathrm{~kg}$ potatoes in it.
What weight of potatoes will be left?
3. A bottle contains $2 \frac{1}{4}$ litres of water.

Colin pours $\frac{5}{8}$ litre of water into a glass.
What fraction is left in the bottle?
4. KeePuppI wants $4 \frac{1}{4} \mathrm{~kg}$ cheese.

The pieces of cheese in the shop are $1 \frac{1}{4} \mathrm{~kg}, 1 \frac{5}{8} \mathrm{~kg}, 1 \frac{3}{8} \mathrm{~kg}$
Yes
Is there enough cheese?
5. Coco plants a fast growing sunflower. It grows $7 \frac{3}{5} \mathrm{~cm}$ a week. How tall will it be in 6 weeks?
6. KeePuppI wants to jog 20 km this week. He jogs $2 \frac{5}{8} \mathrm{~km}$ per day for 6 days.
How far does KeePuppI need to run on the seventh day?

Create your own word problems involving fractions.

Matching Workout

Match the fraction or mixed number in column A with an operation in column B to make an answer in column C.

Match the fraction or mixed number in column A with an operation in column B to make an answer in column C

Create your own Matching Workouts.

