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Surrogate outcomes

• Real story these deaths were iatrogenic: caused by antiarrythmic drugs.

• The story of ventricular ectopic beats

• You DON’T want to have your VEBs suppressed

• You DO want to avoid cardiac arrest.

• Question 5: Is there evidence that there is a connection between the 
intervention and the outcome I really care about?

• (Easy mistake 5: settle for connections between the evidence and 
surrogate outcomes –

• Invariably because you feel it’s plausible that there is a causal link 
between the surrogate and the real outcome

• But you need EVIDENCE for that

• AND you would like some evidence about a possible independent effect)

• Cp statins and reduction in cholesterol.



External Validity

• STAR project in Tennessee (1985-), RCT study (“gold standard of evidence”)

• Result: reducing class sizes in Tennessee High Schools produced notable 
increases in educational performance

• (minority and inner city children benefitting 2 or 3 times as much as their 
white and nonurban peers)

• Formed an important basis for the decision by the California State 
Authorities in the 1990s to agree to spend $1bn p.a. (rising to $1.6bn) on 
reducing class sizes

• Result: no effect

• No suggestion that STAR produced the wrong result in Tennessee

• Question 6: Does the evidence generalise?

• (Easy mistake 6 assuming that because there is evidence that a policy 
worked ‘there’, it will also work ‘here’)



Evidence in Science

• Let’s begin by thinking about evidence in “hard science”

• Even in physics we can’t expect to establish theories 
conclusively (show that they are certainly true) on the basis of 
evidence.

• The reason for this is logical:

• Theories go beyond any possible evidence 

• (a) in being universal

• [whereas the evidence we can collect is inevitably finite]

• (b) in making claims about what is going on ‘beyond’ or 
‘beneath’ the data recorded in the evidence – to produce 
those data.



Evidence in Science

• But also illustrated historically

• Pope: 

• Nature and Nature’s Laws lay hid in night

• God said ‘Let Newton be!’ and all was light.

• But Newton’s theory is not true (or so the evidence now says)



Evidence in Science

• Nonetheless we do sometimes think we have good evidence 
that a theory is at least approximately true.

• How?

• Via confirmation through tests

• A couple of examples



GTR and stellar positions



Wave theory of light and the ‘white spot’



Evidence in Science

• These are cases where NOT ONLY

• 1. The theory entails the evidence

• BUT ALSO (and crucially)

• 2. The evidence is surprising - we would judge the probability 
of the evidence being as it is very low, or the probability of a 
theory getting that evidence correct would be very low, unless 
the theory at issue were true.

• Cases where condition 2 fails to hold:

• (a) Gypsy Rose Lee: “you will have a pleasant surprise 
tomorrow”

• (b) The “Gosse Dodge”



Evidence in Science

• This second – “otherwise surprising” – requirement is a part 
of every serious account of confirmation in science

• E.g. Popper

• Talks about ‘severe tests’



Evidence in Science

• And the Bayesian approach:

• The amount of confirmation lent by e to h

• Is inversely proportional to p(e)



Evidence in Science- Positive evidence

• So good/strong evidence FOR a theory – should elicit the 
‘wow factor’: the theory must have something going for it if it 
can get a fact like that right!



Evidence in Science – negative evidence

• How about evidence AGAINST a theory?

• Popper’s view



Evidence in Science – negative evidence

• Imre Lakatos:

• Things are more complicated

• Scientists hold on to their theories –

• despite ‘refutations’ -

• two types of outcome:

• (a) progressive (e.g. Neptune – wow factor returns!)

• (b) degenerative (e.g. classical physics, Gosse, the ‘French 
Paradox’ (??))



The ‘French Paradox’

• Hypothesis: Eating excess saturated fat in the diet raises LDL (Low 
Density Lipoprotein) levels .  The LDL (aka "bad cholesterol") then 
causes thickening and narrowing in the arteries.

• The 'French Paradox‘: Over 15% of the calories in the average 
Frenchman's diet are supplied by saturated fats; this is a greater 
percentage than in Austria, Finland, Iceland, Switzerland .. all of 
whom have a higher rate of deaths from heart disease.

• Reaction: there must be something else about the French diet that 
compensates

• Leading to: any number of studies (e.g. into the effects of high 
garlic consumption) all of which have so far proved negative.



Testing Statistical Theories

• Ok so one way or the other tests play the crucial role in 
providing evidence for or against basic theories in physics

• But let’s come down to earth

• Relatively few practical policy decisions are based on such 
theories



Testing Statistical Theories

• Most theories of everyday concern and most relevant to 
policy issues are probabilistic/statistical:

• 1. You have a better chance of avoiding heart attacks if you 
take statins

• 2. You are more likely to develop lung cancer if you smoke 
cigarettes.

• 3. The probability of major flooding in London has been 
reduced by 25% by the Thames Barrier 

• ....



Deterministic vs statistical theories

• There is clearly an important distinction

• Newton’s theory is deterministic: given a complete 
specification S of the system at time t, the theory entails that 
the system must be in state S’ at later time t’.

• So, e.g., a system consisting of a single body of mass 2 kgs
subjected to a constant total force of 6 Newtons, will 
accelerate constantly at 3 m per sec per sec

• Clearly not true of the statistical theories I listed or in general

• Clear how we test deterministic theories; and – at least in 
outline – how we get evidence for or against them by testing

• Can we also get evidence for or against statistical theories by 
testing them?



Testing statistical theories

• This man, R.A. Fisher, insisted that we can

• And indeed that testing – ‘significance testing’ – was the very 
heart of statistics and statistical inference



Testing statistical theories

• An examination of the logic of Fisher’s – enormously 
influential – views will form an important part of this course.

• But first we should take a step backwards to think a bit about 
probability

• We need first to get straight on what probabilities are, before 
examining Fisher’s views on how probabilistic claims can be 
tested.



Probability Theory

• Game: drawing a card “at random” from a well-shuffled pack

• Outcome space/basic events

• Other events are then characterised in terms of basic events:

• E.g. event of drawing a club

• Or drawing a red card ..

• Probabilities of non-basic events

• Addition law?

• Real addition law: 

• P(A U B) = P(A) + P(B) – P(A∩B)

• [IF A and B are mutually exclusive P(A U B) = P(A) + P(B) ]



Probability Theory

• P(A∩B)?? (equivalently P(A&B))

• probability of drawing a card that is both a club and at the 
same time at least as high in value as a Jack?

• Only 4 cards satisfy both conditions so P (Club & ≥Jack)  = 4/52

• How does this relate to P(Club) and P(≥Jack)?

• Simpler case: tossing a fair coin twice

• P(H1) = P(H2) = ½

• P(H1 & H2) = ¼

• So(??) P(A&B) = P(A).P(B) ??

• Gives right result also with P (Club & ≥Jack) 



Probability Theory

• BUT

• P(Heart & Red) ?

• Intuitively problem is that there is a connection between 
‘Heart’ and ‘Red’

• Cp 1st and 2nd tosses of coin



Probability Theory

• Probabilistic dependence/independence

• Correct Law for Joint Probabilities: for any two events A and B, P(A&B) = 
P(A).P(B/A)

• Special case: IF A and B are independent, then P(A&B) = P(A).P(B)

• Gives correct answers in all cases – e.g. P(Heart & Red)

• Since A & B is the same event as B & A we should also have

• for any two events A and B, P(A&B) = P(B).P(A/B)

• And that must imply P(A/B) = P(A) iff P(B/A) = P(B)

• Finally correct law yields a ‘definition’ of conditional probability

• P(B&A) = P(B).P(A/B) and so

• P(A/B) = P(B&A)/ P(B) =  P(A&B)/ P(B) IF P(B) ≠ 0

• [For Probability axioms and some theorems – see further reading.]



“Inverse Probability”

• Back to coin tossing:

• Given: coin is fair 

• Trial: toss it 4 times

• Statistic: r= number of heads out of 4

• Given that the coin is fair we can readily calculate the 
probabilities (“direct” probabilities) for all possible values of r

• P(4 heads) = P(0 heads) = (½)4 = 1/16

• P(3 heads) = P(1 head) = 4/16

• P(2 heads) = 6/16



“Inverse Probability”

• Now suppose we have another coin which we are told is 
biassed

• In fact P(H) = ¾

• Same trial, same statistic

• Again easy to calculate the direct probabilities

• P(4 heads) = (¾)4 = 81/256

• P(3heads) = 4.(1/4).(3/4)3

• P(2heads) = 6.(1/4)2.(3/4)2

• P(1 head) = 4. (1/4)3.(3/4)

• P(0 heads) = (1/4)4



“Inverse Probability”

• But now suppose we have both coins in a box, that they are 
physically indistinguishable, and that we draw one at random  
and then toss it 4 times

• Suppose the outcome is r = 1

• What’s the probability that it was the fair(biassed) coin that 
we tossed to produce that result?

• Bayes’ Theorem allows us to answer.

• Bayes’ Theorem: P(A/B) = P(B/A).P(A)/ P(B).



“Inverse Probability”

• Bayes’ Theorem: P(A/B) = P(B/A).P(A)/ P(B).

• Let A be the event that it was the fair coin that we tossed

• (So ¬A is the event of having tossed the biased coin)

• And let B be the observed event: r =1

• We know P(B/A) = ¼

• And, given that the coin was chosen from the box ‘at random’ 
[??] P(A) = ½

• So we need one more probability to apply the theorem – viz

• P(B) 

• What was the probability of getting one head out of 4 
whichever coin was tossed?



“Inverse Probability”

• It’s a general result (‘Theorem on Total Probability’) that

• P(B) = P(A).P(B/A) + P(¬A). P(B/¬A) 

• So here 

• P(B) = ½.P(B/A) + ½.P(B/¬A) 

• (Why this is intuitively correct)

• So P(B) = ½ . ¼ + ½ . 4. (1/4)3.(3/4) = 38/256

• So, remember, Bayes’ Theorem is

• P(A/B) = P(B/A).P(A)/ P(B)

• Plugging in these values we get 

• P(A/B) = ¼. ½ /(36/256) = 256/304 

• So we have a ‘prior’ of ½ and a ‘posterior’ of over 2/3

• So probability has gone up that it is the fair coin even though an event 
occurred that was relatively unlikely to occur if it was the fair coin.

• (Why this is intuitively correct.)



The Bayesian approach to confirmation

• Rewriting Bayes’ theorem to apply to the case of general interest 
where we have some hypothesis h and some evidence e, we have

• P(h/e) = (P(e/h).P(h))/P(e)

• P(e/h) is the “likelihood” of the evidence in the light of h

• P(h) is the “prior probability” of h

• P(e) is the “prior probability” of e

• Fundamental Bayesian Principle: e confirms [or gives evidence in 
favour of] h if and only if P(h/e) > P(e)

• Fundamental Bayesian Principle: e confirms h if and only if and to 
the extent that P(h/e) > P(e)

• N.B. ‘Gives evidence in favour of’ ≠ ‘makes it more likely than not 
to be true’


