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Surrogate outcomes

Real story these deaths were iatrogenic: caused by antiarrythmic drugs.
The story of ventricular ectopic beats

You DON’T want to have your VEBs suppressed

You DO want to avoid cardiac arrest.

Question 5: Is there evidence that there is a connection between the
intervention and the outcome | really care about?

(Easy mistake 5: settle for connections between the evidence and
surrogate outcomes —

Invariably because you feel it’s plausible that there is a causal link
between the surrogate and the real outcome

But you need EVIDENCE for that
AND you would like some evidence about a possible independent effect)
Cp statins and reduction in cholesterol.



External Validity

STAR project in Tennessee (1985-), RCT study (“gold standard of evidence”)

Result: reducing class sizes in Tennessee High Schools produced notable
increases in educational performance

(minority and inner city children benefitting 2 or 3 times as much as their
white and nonurban peers)

Formed an important basis for the decision by the California State
Authorities in the 1990s to agree to spend S1bn p.a. (rising to $1.6bn) on
reducing class sizes

Result: no effect
No suggestion that STAR produced the wrong result in Tennessee
Question 6: Does the evidence generalise?

(Easy mistake 6 assuming that because there is evidence that a policy
worked ‘there’, it will also work ‘here’)



Evidence in Science

Let’s begin by thinking about evidence in “hard science”

Even in physics we can’t expect to establish theories
conclusively (show that they are certainly true) on the basis of
evidence.

The reason for this is logical:

Theories go beyond any possible evidence

(a) in being universal

[whereas the evidence we can collect is inevitably finite]

(b) in making claims about what is going on ‘beyond’ or
‘beneath’ the data recorded in the evidence — to produce
those data.



Evidence in Science

But also illustrated historically

Pope:

Nature and Nature’s Laws lay hid in night

God said ‘Let Newton be!” and all was light.

But Newton’s theory is not true (or so the evidence now says)



Evidence in Science

Nonetheless we do sometimes think we have good evidence
that a theory is at least approximately true.

How?
Via confirmation through tests
A couple of examples



GTR and stellar positions
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Wave theory of light and the ‘white spot’
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Evidence in Science

These are cases where NOT ONLY
1. The theory entails the evidence
BUT ALSO (and crucially)

2. The evidence is surprising - we would judge the probability
of the evidence being as it is very low, or the probability of a
theory getting that evidence correct would be very low, unless
the theory at issue were true.

Cases where condition 2 fails to hold:

(a) Gypsy Rose Lee: “you will have a pleasant surprise
tomorrow”

(b) The “Gosse Dodge”



Evidence in Science

* This second — “otherwise surprising” — requirement is a part
of every serious account of confirmation in science
* E.g. Popper

Talks about ‘severe tests’




Evidence in Science

* And the Bayesian approach:
 The amount of confirmation lent by e to h
* Isinversely proportional to p(e)




Evidence in Science- Positive evidence

* So good/strong evidence FOR a theory — should elicit the
‘wow factor’: the theory must have something going for it if it
can get a fact like that right!



Evidence in Science — negative evidence

* How about evidence AGAINST a theory?
* Popper’s view




Evidence in Science — negative evidence

Imre Lakatos:

Things are more complicated
Scientists hold on to their theories —
despite ‘refutations’ -

two types of outcome:

wn

(a) progressive (e.g. Neptune — wow factor return

(b) degenerative (e.g. classical physics, Gosse, the ‘French
Paradox’ (?7?))



The ‘French Paradox’

Hypothesis: Eating excess saturated fat in the diet raises LDL (Low
Density Lipoprotein) levels . The LDL (aka "bad cholesterol") then
causes thickening and narrowing in the arteries.

The 'French Paradox’: Over 15% of the calories in the average
Frenchman's diet are supplied by saturated fats; this is a greater
percentage than in Austria, Finland, Iceland, Switzerland .. all of
whom have a higher rate of deaths from heart disease.

Reaction: there must be something else about the French diet that
compensates

Leading to: any number of studies (e.g. into the effects of high
garlic consumption) all of which have so far proved negative.



Testing Statistical Theories

Ok so one way or the other tests play the crucial role in
providing evidence for or against basic theories in physics

But let’s come down to earth

Relatively few practical policy decisions are based on such
theories



Testing Statistical Theories

Most theories of everyday concern and most relevant to
policy issues are probabilistic/statistical:

1. You have a better chance of avoiding heart attacks if you
take statins

2. You are more likely to develop lung cancer if you smoke
cigarettes.

3. The probability of major flooding in London has been
reduced by 25% by the Thames Barrier



Deterministic vs statistical theories

There is clearly an important distinction

Newton’s theory is deterministic: given a complete
specification S of the system at time t, the theory entails that
the system must be in state S’ at later time t.

So, e.g., a system consisting of a single body of mass 2 kgs
subjected to a constant total force of 6 Newtons, will
accelerate constantly at 3 m per sec per sec

Clearly not true of the statistical theories | listed or in general

Clear how we test deterministic theories; and — at least in
outline — how we get evidence for or against them by testing

Can we also get evidence for or against statistical theories by
testing them?



Testing statistical theories

* This man, R.A. Fisher, insisted that we can

* And indeed that testing — ‘significance testing’ — was the very
heart of statistics and statistical inference




Testing statistical theories

* An examination of the logic of Fisher’s — enormously
influential — views will form an important part of this course.

e But first we should take a step backwards to think a bit about
probability

* We need first to get straight on what probabilities are, before
examining Fisher’s views on how probabilistic claims can be
tested.



Probability Theory

Game: drawing a card “at random” from a well-shuffled pack
Outcome space/basic events

Other events are then characterised in terms of basic events:
E.g. event of drawing a club

Or drawing a red card ..

Probabilities of non-basic events

Addition law?

Real addition law:

P(A U B) =P(A) + P(B)— P(ANB)

[IF A and B are mutually exclusive P(A U B) = P(A) + P(B) ]



Probability Theory

P(ANB)?? (equivalently P(A&B))

probability of drawing a card that is both a club and at the
same time at least as high in value as a Jack?

Only 4 cards satisfy both conditions so P (Club & >Jack) =4/52
How does this relate to P(Club) and P(>Jack)?

Simpler case: tossing a fair coin twice

P(H,) =P(H,) =%

P(H, & H,) =7

So(??) P(A&B) = P(A).P(B) ??

Gives right result also with P (Club & >Jack)



Probability Theory

BUT
P(Heart & Red) ?

Intuitively problem is that there is a connection between
‘Heart’ and ‘Red’

Cp 15t and 2" tosses of coin



Probability Theory

Probabilistic dependence/independence

Correct Law for Joint Probabilities: for any two events A and B, P(A&B) =
P(A).P(B/A)

Special case: IF A and B are independent, then P(A&B) = P(A).P(B)
Gives correct answers in all cases — e.g. P(Heart & Red)

Since A & B is the same event as B & A we should also have

for any two events A and B, P(A&B) = P(B).P(A/B)

And that must imply P(A/B) = P(A) iff P(B/A) = P(B)

Finally correct law yields a ‘definition’” of conditional probability
P(B&A) = P(B).P(A/B) and so

P(A/B) = P(B&A)/ P(B) = P(A&B)/ P(B) IFP(B) # 0

[For Probability axioms and some theorems — see further reading.]



“Inverse Probability”

Back to coin tossing:

Given: coin is fair

Trial: toss it 4 times

Statistic: r= number of heads out of 4

Given that the coin is fair we can readily calculate the
probabilities (“direct” probabilities) for all possible values of r

P(4 heads) = P(0 heads) = (%4)* = 1/16
P(3 heads) = P(1 head) =4/16
P(2 heads) = 6/16



“Inverse Probability”

Now suppose we have another coin which we are told is
biassed

In fact P(H) = %

Same trial, same statistic

Again easy to calculate the direct probabilities
P(4 heads) = (%4)* = 81/256

P(3heads) =4.(1/4).(3/4)3

P(2heads) = 6.(1/4)%.(3/4)?

P(1 head) = 4. (1/4)3.(3/4)

P(O heads) = (1/4)*



“Inverse Probability”

But now suppose we have both coins in a box, that they are
physically indistinguishable, and that we draw one at random
and then toss it 4 times

Suppose the outcomeisr=1

What’s the probability that it was the fair(biassed) coin that
we tossed to produce that result?

Bayes’ Theorem allows us to answer.
Bayes’ Theorem: P(A/B) = P(B/A).P(A)/ P(B).



“Inverse Probability”

Bayes’ Theorem: P(A/B) = P(B/A).P(A)/ P(B).

Let A be the event that it was the fair coin that we tossed
(So -A is the event of having tossed the biased coin)

And let B be the observed event: r =1

We know P(B/A) = V%

And, given that the coin was chosen from the box ‘at random
[??] P(A) =%

So we need one more probability to apply the theorem — viz
P(B)

What was the probability of getting one head out of 4
whichever coin was tossed?

4



“Inverse Probability”

It’s a general result (‘Theorem on Total Probability’) that
P(B) = P(A).P(B/A) + P(=A). P(B/-A)

So here

P(B) = %.P(B/A) + %.P(B/-A)

(Why this is intuitively correct)
SoP(B)=%.%+%.4.(1/4)3.(3/4) = 38/256

So, remember, Bayes’ Theorem is

P(A/B) = P(B/A).P(A)/ P(B)

Plugging in these values we get

P(A/B) =%. % /(36/256) = 256/304

So we have a ‘prior’ of %2 and a ‘posterior’ of over 2/3

So probability has gone up that it is the fair coin even though an event
occurred that was relatively unlikely to occur if it was the fair coin.

(Why this is intuitively correct.)



The Bayesian approach to confirmation

Rewriting Bayes’ theorem to apply to the case of general interest
where we have some hypothesis h and some evidence e, we have

P(h/e) = (P(e/h).P(h))/P(e)

P(e/h) is the “likelihood” of the evidence in the light of h

P(h) is the “prior probability” of h

P(e) is the “prior probability” of e

Fundamental Bayesian Principle: e confirms [or gives evidence in
favour of] h if and only if P(h/e) > P(e)

Fundamental Bayesian Principle: e confirms h if and only if and to
the extent that P(h/e) > P(e)

N.B. ‘Gives evidence in favour of’ # ‘makes it more likely than not
to be true’



