Ph458/213 Evidence and Policy Lecture 2

John Worrall

LAK 3.02
Office Hours:
Monday 13.30-14.30
Thursday12.30-13.30

Surrogate outcomes

- Real story these deaths were iatrogenic: caused by antiarrythmic drugs.
- The story of ventricular ectopic beats
- You DON'T want to have your VEBs suppressed
- You DO want to avoid cardiac arrest.
- Question 5: Is there evidence that there is a connection between the intervention and the outcome I really care about?
- (Easy mistake 5: settle for connections between the evidence and surrogate outcomes -
- Invariably because you feel it's plausible that there is a causal link between the surrogate and the real outcome
- But you need EVIDENCE for that
- AND you would like some evidence about a possible independent effect)
- Cp statins and reduction in cholesterol.

External Validity

- STAR project in Tennessee (1985-), RCT study ("gold standard of evidence")
- Result: reducing class sizes in Tennessee High Schools produced notable increases in educational performance
- (minority and inner city children benefitting 2 or 3 times as much as their white and nonurban peers)
- Formed an important basis for the decision by the California State Authorities in the 1990s to agree to spend \$1bn p.a. (rising to $\$ 1.6 \mathrm{bn}$) on reducing class sizes
- Result: no effect
- No suggestion that STAR produced the wrong result in Tennessee
- Question 6: Does the evidence generalise?
- (Easy mistake 6 assuming that because there is evidence that a policy worked 'there', it will also work 'here')

Evidence in Science

- Let's begin by thinking about evidence in "hard science"
- Even in physics we can't expect to establish theories conclusively (show that they are certainly true) on the basis of evidence.
- The reason for this is logical:
- Theories go beyond any possible evidence
- (a) in being universal
- [whereas the evidence we can collect is inevitably finite]
- (b) in making claims about what is going on 'beyond' or 'beneath' the data recorded in the evidence - to produce those data.

Evidence in Science

- But also illustrated historically
- Pope:
- Nature and Nature's Laws lay hid in night
- God said 'Let Newton be!' and all was light.
- But Newton's theory is not true (or so the evidence now says)

Evidence in Science

- Nonetheless we do sometimes think we have good evidence that a theory is at least approximately true.
- How?
- Via confirmation through tests
- A couple of examples

GTR and stellar positions

Wave theory of light and the 'white spot'

Evidence in Science

- These are cases where NOT ONLY
- 1. The theory entails the evidence
- BUT ALSO (and crucially)
- 2. The evidence is surprising - we would judge the probability of the evidence being as it is very low, or the probability of a theory getting that evidence correct would be very low, unless the theory at issue were true.
- Cases where condition 2 fails to hold:
- (a) Gypsy Rose Lee: "you will have a pleasant surprise tomorrow"
- (b) The "Gosse Dodge"

Evidence in Science

- This second - "otherwise surprising" - requirement is a part of every serious account of confirmation in science
- E.g. Popper
- Talks about 'severe tests'

Evidence in Science

- And the Bayesian approach:
- The amount of confirmation lent by e to h
- Is inversely proportional to p(e)

Evidence in Science- Positive evidence

- So good/strong evidence FOR a theory - should elicit the 'wow factor': the theory must have something going for it if it can get a fact like that right!

Evidence in Science - negative evidence

- How about evidence AGAINST a theory?
- Popper's view

Evidence in Science - negative evidence

- Imre Lakatos:
- Things are more complicated
- Scientists hold on to their theories -
- despite 'refutations' -
- two types of outcome:
- (a) progressive (e.g. Neptune - wow factor returns!)
- (b) degenerative (e.g. classical physics, Gosse, the 'French Paradox' (??))

The 'French Paradox'

- Hypothesis: Eating excess saturated fat in the diet raises LDL (Low Density Lipoprotein) levels. The LDL (aka "bad cholesterol") then causes thickening and narrowing in the arteries.
- The 'French Paradox': Over 15% of the calories in the average Frenchman's diet are supplied by saturated fats; this is a greater percentage than in Austria, Finland, Iceland, Switzerland .. all of whom have a higher rate of deaths from heart disease.
- Reaction: there must be something else about the French diet that compensates
- Leading to: any number of studies (e.g. into the effects of high garlic consumption) all of which have so far proved negative.

Testing Statistical Theories

- Ok so one way or the other tests play the crucial role in providing evidence for or against basic theories in physics
- But let's come down to earth
- Relatively few practical policy decisions are based on such theories

Testing Statistical Theories

- Most theories of everyday concern and most relevant to policy issues are probabilistic/statistical:
- 1. You have a better chance of avoiding heart attacks if you take statins
- 2. You are more likely to develop lung cancer if you smoke cigarettes.
- 3. The probability of major flooding in London has been reduced by 25% by the Thames Barrier

Deterministic vs statistical theories

- There is clearly an important distinction
- Newton's theory is deterministic: given a complete specification S of the system at time t, the theory entails that the system must be in state S^{\prime} at later time t^{\prime}.
- So, e.g., a system consisting of a single body of mass 2 kgs subjected to a constant total force of 6 Newtons, will accelerate constantly at 3 m per sec per sec
- Clearly not true of the statistical theories I listed or in general
- Clear how we test deterministic theories; and - at least in outline - how we get evidence for or against them by testing
- Can we also get evidence for or against statistical theories by testing them?

Testing statistical theories

- This man, R.A. Fisher, insisted that we can
- And indeed that testing - 'significance testing' - was the very heart of statistics and statistical inference

Testing statistical theories

- An examination of the logic of Fisher's - enormously influential - views will form an important part of this course.
- But first we should take a step backwards to think a bit about probability
- We need first to get straight on what probabilities are, before examining Fisher's views on how probabilistic claims can be tested.

Probability Theory

- Game: drawing a card "at random" from a well-shuffled pack
- Outcome space/basic events
- Other events are then characterised in terms of basic events:
- E.g. event of drawing a club
- Or drawing a red card ..
- Probabilities of non-basic events
- Addition law?
- Real addition law:
- $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- [IF A and B are mutually exclusive $P(A \cup B)=P(A)+P(B)$]

Probability Theory

- $P(A \cap B)$?? (equivalently $P(A \& B)$)
- probability of drawing a card that is both a club and at the same time at least as high in value as a Jack?
- Only 4 cards satisfy both conditions so P (Club \& \geq Jack $)=4 / 52$
- How does this relate to $\mathrm{P}(\mathrm{Club})$ and $\mathrm{P}(\geq$ Jack $)$?
- Simpler case: tossing a fair coin twice
- $\mathrm{P}\left(\mathrm{H}_{1}\right)=\mathrm{P}\left(\mathrm{H}_{2}\right)=1 / 2$
- $\mathrm{P}\left(\mathrm{H}_{1} \& \mathrm{H}_{2}\right)=1 / 4$
- So(??) $P(A \& B)=P(A) \cdot P(B)$??
- Gives right result also with P (Club \& \geq Jack)

Probability Theory

- BUT
- P(Heart \& Red) ?
- Intuitively problem is that there is a connection between 'Heart' and 'Red'
- Cp $1^{\text {st }}$ and $2^{\text {nd }}$ tosses of coin

Probability Theory

- Probabilistic dependence/independence
- Correct Law for Joint Probabilities: for any two events A and $\mathrm{B}, \mathrm{P}(\mathrm{A} \& \mathrm{~B})=$ $P(A) . P(B / A)$
- Special case: IF A and B are independent, then $P(A \& B)=P(A) \cdot P(B)$
- Gives correct answers in all cases - e.g. P(Heart \& Red)
- Since A \& B is the same event as B \& A we should also have
- for any two events A and $B, P(A \& B)=P(B) \cdot P(A / B)$
- And that must imply $P(A / B)=P(A)$ iff $P(B / A)=P(B)$
- Finally correct law yields a 'definition' of conditional probability
- $P(B \& A)=P(B) \cdot P(A / B)$ and so
- $P(A / B)=P(B \& A) / P(B)=P(A \& B) / P(B)$ IF $P(B) \neq 0$
- [For Probability axioms and some theorems - see further reading.]

"Inverse Probability"

- Back to coin tossing:
- Given: coin is fair
- Trial: toss it 4 times
- Statistic: $r=$ number of heads out of 4
- Given that the coin is fair we can readily calculate the probabilities ("direct" probabilities) for all possible values of r
- $P(4$ heads $)=P(0$ heads $)=(1 / 2)^{4}=1 / 16$
- $P(3$ heads $)=P(1$ head $)=4 / 16$
- $P(2$ heads $)=6 / 16$

"Inverse Probability"

- Now suppose we have another coin which we are told is biassed
- In fact $P(H)=3 / 4$
- Same trial, same statistic
- Again easy to calculate the direct probabilities
- $P(4$ heads $)=(3 / 4)^{4}=81 / 256$
- $P(3 h e a d s)=4 .(1 / 4) \cdot(3 / 4)^{3}$
- $P(2$ heads $)=6 .(1 / 4)^{2} \cdot(3 / 4)^{2}$
- $P(1$ head $)=4 .(1 / 4)^{3} .(3 / 4)$
- $P(0$ heads $)=(1 / 4)^{4}$

"Inverse Probability"

- But now suppose we have both coins in a box, that they are physically indistinguishable, and that we draw one at random and then toss it 4 times
- Suppose the outcome is $r=1$
- What's the probability that it was the fair(biassed) coin that we tossed to produce that result?
- Bayes' Theorem allows us to answer.
- Bayes' Theorem: $P(A / B)=P(B / A) \cdot P(A) / P(B)$.

"Inverse Probability"

- Bayes' Theorem: $P(A / B)=P(B / A) \cdot P(A) / P(B)$.
- Let A be the event that it was the fair coin that we tossed
- (So $\neg A$ is the event of having tossed the biased coin)
- And let B be the observed event: $r=1$
- We know $P(B / A)=1 / 4$
- And, given that the coin was chosen from the box 'at random' [??] $P(A)=1 / 2$
- So we need one more probability to apply the theorem - viz
- $P(B)$
- What was the probability of getting one head out of 4 whichever coin was tossed?

"Inverse Probability"

- It's a general result ('Theorem on Total Probability') that
- $P(B)=P(A) \cdot P(B / A)+P(\neg A) \cdot P(B / \neg A)$
- So here
- $P(B)=1 / 2 \cdot P(B / A)+1 / 2 \cdot P(B / \neg A)$
- (Why this is intuitively correct)
- So $P(B)=1 / 2 \cdot 1 / 4+1 / 2 \cdot 4 \cdot(1 / 4)^{3} .(3 / 4)=38 / 256$
- So, remember, Bayes' Theorem is
- $P(A / B)=P(B / A) \cdot P(A) / P(B)$
- Plugging in these values we get
- $P(A / B)=1 / 4.1 / 2 /(36 / 256)=256 / 304$
- So we have a 'prior' of $1 / 2$ and a 'posterior' of over $2 / 3$
- So probability has gone up that it is the fair coin even though an event occurred that was relatively unlikely to occur if it was the fair coin.
- (Why this is intuitively correct.)

The Bayesian approach to confirmation

- Rewriting Bayes' theorem to apply to the case of general interest where we have some hypothesis h and some evidence e, we have
- $\mathrm{P}(\mathrm{h} / \mathrm{e})=(\mathrm{P}(\mathrm{e} / \mathrm{h}) \cdot \mathrm{P}(\mathrm{h})) / \mathrm{P}(\mathrm{e})$
- $P(e / h)$ is the "likelihood" of the evidence in the light of h
- $\mathrm{P}(\mathrm{h})$ is the "prior probability" of h
- $\mathrm{P}(\mathrm{e})$ is the "prior probability" of e
- Fundamental Bayesian Principle: e confirms [or gives evidence in favour of] h if and only if $P(h / e)>P(e)$
- Fundamental Bayesian Principle: e confirms h if and only if and to the extent that $\mathrm{P}(\mathrm{h} / \mathrm{e})>\mathrm{P}(\mathrm{e})$
- N.B. 'Gives evidence in favour of' $=$ 'makes it more likely than not to be true'

