New separation methods for production of light stable isotopes for use in nuclear technology

By

Dag Øistein Eriksen¹, Bruno Ceccaroli², Pierre Hilaireau³, and Wieslaw Majewski⁴

¹ Primus.inter.pares AS, Norway; ² Isosilicon AS, Norway; ³ Stonedge SA, Luxembourg, ⁴ Novasep SA, France

> 3rd – INCC, Sicily - Italy 18 - 23 September 2011

Outline

- 1. Use of isotopically pure elements
 - 1. Nuclear technology
 - 2. Medicine and science
 - 3. Electronics
- 2. Isotope separation technology
- 3. Isosilicon's separation technology
- 4. Future isotopes of interest

Stable isotopes – Medicine and science

Medicine:

¹⁸O is used as target (H₂O) for production of PET nuclide ¹⁸F: ¹⁸O(p,n)¹⁸F

NMR/MRI:

Deuterated compounds and $D_2O = {}^2H_2O$ ${}^{13}C$ -labelled compounds

Tracer studies: D₂O used as water tracer ¹⁵N used in fertilizer studies as NH₄-salts

Stable isotopes – Electronics

NTD Neutron Transmutation Doped (for high power devices) ${}^{30}Si(n,\gamma){}^{31}Si \rightarrow {}^{31}P$ homogeniously doped throughout the crystal

Spiking silicon with ³⁰Si will increase capacity of irradiation facilities

Use of ²⁹Si

Journal of Superconductivity: Incorporating Novel Magnetism, Vol. 16, No. 1, February 2003 (C° 2003)

E. Abe, K. M. Itoh, T. D. Ladd, J. R. Goldman, F. Yamaguchi, and Y. Yamamoto: Solid-State Silicon NMR Quantum Computer

Stable isotopes – nuclear technology

- Primarily ²³⁵U to be enriched from natural abundance of 0.72%
- Thermal neutron absorbers:
 - ⁶Li 7.59% σ(n,α) 940b
 - ⁹B 19.9% σ(n,α) 3840b
 - $-{}^{91}$ Zr 11.22% $\sigma(n,\gamma)$ 1.2b, but rep. 77% abs. in Zr
 - ^{155,157}Gd: 14.8, 15.65% $\sigma(n,\gamma)$ 6.1⁻¹⁰⁴, 2.54⁻¹⁰⁵b
- Neutron reflectors:
 - -⁷Li 92.41% σ(n,γ) 0.045b
 - ¹⁰B 80.1% σ(n,γ) 0.005b

Gen IV - Very high temperature gas reactors

- HTTR, Japan
- GTMHR, Russia
- HTR-10, China
- PBMR, RSA

Prismatic blocks of fuel

Pebble beds of fuel

Common features:

- Graphite moderated
- He cooled
- Operated at approx. 1000°C

Pebble Bed Modular Reactor Pty., RSA

Time frame:

- 1993: Start of development
- 2009: Start construction of pilot reactor
- 2013: Fuel loading
- 2016: Start construction of first commercial PBMR, 165MW

Technical key elements:

- He cooled
- Pressure of 9 bars
- Temperature 500°C in and 900°C out
- Moderator C (graphite) covered with SiC

Pebble Bed Modular Reactor

TRISO = triply coated ceramic particle fuel

Isotope separation technology

- Electrolysis
- Diffusion based
- Membrane based
- Distillation
- Electromagnetic
- Centrifugation

- Gas-jet centrifugation
- Separation nozzle
- Selective exitation by laser
- Ion-mobility
- Isotopic exchange
- Chromatography

Norsk Hydro's heavy water process

 ${}^{1}\text{H}_{2}\text{O} \leftrightarrows {}^{1}\text{H}^{+} + \text{OH}^{-}$ ${}^{1}\text{H}^{2}\text{HO} \leftrightarrows {}^{1}\text{H}^{+} + \text{O}^{2}\text{H}^{-} \text{ or}$ $HDO \leftrightarrows {}^{+}\text{H}^{+} + \text{OD}^{-}$ $2{}^{1}\text{H}^{+} + 2 e^{-} \rightarrow {}^{1}\text{H}_{2} \qquad E^{0} = 0.000\text{V}$ $2{}^{2}\text{D}^{+} + 2 e^{-} \rightarrow {}^{2}\text{D}_{2} \qquad E^{0} = -0.044\text{V}$

Handbook of Chemistry and Physics, 64th Edition, CRC Press, Boca Raton, Fl 1983

Klydon Ltd.(RSA): Laser Isotope Separation

Laser-based isotope enrichment of Carbon-12/13

• Feed: Freon (CHClF₂), Product: C₂F₄

$$CHClF_2 \xrightarrow{h\nu} {}^{13}CHClF_2 + {}^{12}C_2F_4 + HCl$$

High isotope selectivity achieved

Enrichment Factor for Uranium

By courtesy of Klydon

Rosegard Vortex Extraction

Wikdahl Vortex Separation

October, 1976

Enrichment: 1.056 (Argon)

Cut:

6-8%

March, 1976:

Enrichment: 1.023

Cut: 50%

UCOR Vortex Process

Enrichment is achieved under pressurized conditions by centrifugal means in a stationary-wall centrifuge

Diffusion theory

• Diffusion

 $\frac{\partial c}{\partial t} = D_x \frac{\partial^2 c}{\partial x^2}$

- Molecular sieving

Diffusion through a porous medium:

$$v\frac{\partial c}{\partial x} + \frac{\partial c}{\partial t} = D_x \frac{\partial^2 c}{\partial x^2}$$

$$v\frac{\partial c}{\partial x} + F\frac{\partial Q}{\partial x} + \frac{\partial c}{\partial t} = D_x \frac{\partial^2 c}{\partial x^2}$$

$$c(x,t) = \frac{Ax}{2\sqrt{\pi D}(t-t_0)^{3/2}} \exp\left\{-\left(\frac{v}{2\sqrt{D}}\sqrt{t-t_0} - \frac{x}{2\sqrt{D}}\frac{1}{\sqrt{t-t_0}}\right)^2\right\}$$

Technology of Isosilicon – Reasons for silane, SiH₄

- The lighter the compounds to be separated, the larger the differences in diffusion coefficients. No stable molecule lighter than SiH₄ among those involving Si. (MW is 32 for SiH₄ vs. 104 for SiF₄). The relative isotopic difference of mass between ²⁸Si and ²⁹Si is 1/32 = 0.03125 in case of SiH₄ and 1/104 = 0.009615 in case of SiF₄.
- SiH₄ is now widely used in the electronics and ceramics industry.

Technology of Isosilicon – Reasons for silane, SiH₄

- The suitable isotope ²⁸Si is by far the most abundant (92,23%); ²⁹Si (4,67%) and ³⁰Si (3,10%). We may afford to "spoil" a large part of the feed of SiH₄ to increase the isotopic ratio. The remaining silane may be used for purposes requiring silane with enrichment of the two heavier isotopes.
- The impact of ²H in natural hydrogen, i.e.
 0.015%, will just add a small portion to the fractions of the heavier Si-isotopes.

• The basic idea that led to the first patent:

- The present technology is improved by Novasep SA, Nancy, France
- Smaller columns, higher flowrates, and less expensive absorbent, i.e. zeolite
- Patent appl.: WO 2010/018422 A1 "PROCESS FOR THE ENRICHMENT OF ISOTOPES"

(12) United States Patent Eriksen et al.

(10) Patent No.:	US 7,309,377 B2
(45) Date of Patent:	Dec. 18, 2007

- (54) METHOD FOR SEPARATION OF ISOTOPES
- (75) Inventors: Dag Ølstein Eriksen, Oslo (NO); Bruno Ceccaroli, Kristiansand (NO)
- (73) Assignee: Isosilicon AS, Kristiansand (NO)

FOREIGN PATENT DOCUMENTS

- (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
- (19) World Intellectual Property Organization International Bureau

- (43) International Publication Date 18 February 2010 (18.02.2010)
- (51) International Patent Classification: *B01D 59/26* (2006.01)
- (21) International Application Number:

PCT/IB2008/003448

(22) International Filing Date:

28 October 2008 (28.10.2008)

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): HILAIREAU, Pierre [FR/FR]; Le Clos du Point du Jour, 23 chemin des Brigeottes, F-54130 Saint Max (FR). MAJEWSKI, Wieslaw [PL/FR]; 4, Terrasse des Vosges, F-54520 Laxou (FR).

(10) International Publication Number

WO 2010/018423 A1

(74) Agents: POCHART, François et al.; Cabinet Hirsh-

					Cut off
	³⁰ Si/ ²⁸ Si	2σ	²⁹ Si/ ²⁸ Si	2σ	(%)
Front	1.01513	0.00025	1.00784	0.00017	7.1
Tail	1.00573	0.00024	1.00291	0.00014	21.8

Proposed mechanism: Isotopic exchange between gas and SiH₄ absorbed on the packing material

Number of stages needed:60Purity of ${}^{28}Si$:99.5%Investment:15 MUSDExpected annual production:5 000 kgExpected price of ${}^{28}SiH_4$:2 000 USD/kg

Possible other elements and isotopes that can be enriched by the technology

- Covered by patent: B₂H₆, NH₃, CH₄, C₂H₄, H₂O, H₂S, HCl, GaH₃, GeH₄ and Ge₂H₆, H₂Se, HBr, H₃Sb, SiH₄, H₂Te, and UF₆
- Today markets exist for the following isotopes:
 - Non-nuclear applications: D, ¹³C, ¹⁵N, ¹⁸O, ^{28,29,30}Si
 - Nuclear applications: ²H, ³H, ⁶Li, ⁷Li, ¹⁰B, ¹⁵N, ²⁸Si,
 ⁹¹Zr-depleted, ⁶⁴Zn-depleted, ²³⁵U

Acknowledgements:

- Thanks to Research Council of Norway for financial support
- Thanks to the Franco-Norwegian Foundation for financial support
- Thanks to Novasep SA, Nancy, France for experimental support
- Thanks to Institute for Energy Technology for experimental support

Thank you for your attention!