IEA Wind Task 36 “Probabilistic Forecasting Games and Experiments” initiative

EMS Annual Meeting 2022: Session ES2.3 “Dealing with Uncertainties” – 5th September 2021 –

Uncertainty is a very good thing: it's the beginning of an investigation, and the investigation should never end. – Tim Crouch

Corinna Möhrlen, WEPROG
Nadine Fleischhut, MPI
Gregor Giebel, DTU
What is the IEA (International Energy Agency)? (www.iea.org)
- International organization within OECD with 30 members countries and 8 associates
- Promotes global dialogue on energy, providing authoritative analysis through a wide range of publications
- One activity: convenes panels of experts to address specific topics/issues

Task 51: Forecasting for the Weather-Driven Energy System:
- One of 17 Tasks of IEA Wind: https://community.ieawind.org/home
- Phase 1: 2022-2025
- Operating Agent: Gregor Giebel of DTU Wind Energy
- Objective: facilitate international collaboration to improve wind energy forecasts
- Participants: (1) research organization and projects, (2) forecast providers, (3) policy-makers and (4) end-users & stakeholders

Task 51 Scope: 3 “Work Packages” divided into 13 “Work Streams”
- WP1: Global Coordination in Forecast Model Improvement
- WP2: Benchmarking, Predictability and Model Uncertainty
- WP3: Optimal Use of Forecasting Solutions – WS8: Decision Making

Task homepage: https://www.iea-wind.org/task51
WP2: Effectively communicating probabilistic impact forecasts for severe weather conditions using cognitive and behavioural science

Research Team:
- Dr. Nadine Fleischhut
- Prof. Dr. Ralph Hertwig
- Dr. Stefan M. Herzog

Despite good forecasts and warnings, people may misperceive weather risks and fail to respond appropriately. Their understanding of forecast uncertainty has long been a major concern (Joslyn and Savelli, 2010, Spiegelhalter et al., 2011); more recently, understanding weather risks and impacts has emerged as another.

One currently advocated solution for helping people understand weather risk is to move from weather forecasts to impact forecasts; essentially, translating how the weather will be into what the weather will do (WMO, 2015). While the approach sounds promising, it remains unclear whether impact forecasts would in fact be beneficial for behaviour.

The main goal of this work package is to develop representations for communicating impact forecasts and to test their effect on risk perception, expectations, and behaviour. Using a crowdsourcing approach, we will develop and test ways to translate impact model forecasts into a meaningful risk representation for the public. Another part of the workpackage will investigate the potential benefits of impact forecasts for emergency manager.

Our results will shed light on the extent to which communicating impact forecasts can live up to its promise and improve our understanding of how to communicate impact forecasts to professional users and the public.
Goals and Objectives of the Initiative

Our aim is:
* test the **most known** and **observed barriers** of making use of uncertainty/ probabilistic/risk forecasts:
 - skepticism – reluctance – misinterpretation –

* **develop solutions to overcome** these personal barriers

Tools and design structures integrated in our experiments make use of:

i. Use of “**decision from experience**” principle rather than “**decision from description**”

ii. Use of “**learning with feedback**” principle rather than “**theoretical learning**”

iii. Use of **Gamification**: a game illustrates an action without the seriousness and responsibility that comes from real applications and “**a more relaxed atmosphere**”
High-speed shutdown forecasting only works with Ensembles...!

For high-speed shutdown forecasts you need **to capture extremes**:

- **(A)**: statistical methods can only capture and predict what has been there in the past
- **(B)**: Captures only climatology and cannot be aggregated over larger areas
- **(C)**: Ensemble NWP Forecasts
- **(D)**: target horizons need calibration for the time component

See e.g. [Bessa et al. 2017](#), [Haupt et al. 2019](#)
3 Postulates:
1) Success in the trading is highly dependent on the costs of the balancing power needed due to forecast errors.
2) 5% of the cases, where there are large forecast errors are responsible for 95% of the costs in a month or a year.
3) Reducing these costs is more important than improving the general forecast by 1-2%.

Definition of a “high-speed shutdown” (HSSD) or “cut-off wind” event:
A high-speed shutdown event occurs typically in the wind range above 20-27 m/s, mostly known as the cut-off wind threshold of 25 m/s.
Note: wind turbines use both wind gusts and the mean wind to determine, whether or not they turn into high-speed shutdown (HSSD).

Game experiments for decision making in extreme events*:
Experiment 1 (2020): Offshore wind park
Experiment 2 (2021/2022): Wind park in complex terrain

Type of forecasts used in the game

In the games we use deterministic and probabilistic forecasts for the **day-ahead horizon**. All forecasts are generated with input of NWP (numerical weather prediction) forecasts from the 00UTC cycle the day before.

3 independent deterministic wind power forecasts in the unit [\% of installed capacity] based on 3 different NWP (numerical weather prediction) models

1 wind speed forecast in the unit [m/s], which is a mean forecast from 75 ensemble members and smoother than a typical deterministic forecast.
9 wind power percentiles (P10..P90) and a mean (white line) in the unit [% of installed capacity] generated from 75 NWP forecasts of a multi-scheme ensemble prediction system (MSEPS).

Definition: A percentile indicates the value below which a given percentage of forecasts from the 75 available forecasts falls. E.g., the 20th percentile is the value below which 20% of forecasts are found.
Aspects on Cost Functions from 1st Experiment: “Offshore wind power trading in extreme events”

Cost Function Table

<table>
<thead>
<tr>
<th></th>
<th>HSSD</th>
<th>No HSSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trading 100%</td>
<td>-5000</td>
<td>5000</td>
</tr>
<tr>
<td>Trading 50%</td>
<td>0</td>
<td>2500</td>
</tr>
</tbody>
</table>

Interesting aspects of the cost function:

- if the probability of a HSSD exceeds 33%, trading 50% will give higher payoff
- if the probability of a HSSD < 33%, trading 100% will give higher payoff

Deterministic forecasts: no information

Probabilistic forecasts: percentiles provided information about the probability in wind and power!

Cost Function Graph

Can/Could participants read this out?
Value of probabilistic power forecasts

How do professionals decide based on probabilistic wind & power forecasts?

Design & Analysis: Dr. Nadine Fleischhut*, Dr. Corinna Möhrlein**
Host of Experiment: *Max-Planck Institute for Human Development, Hans-Ertel Center for Weather Research, Germany
Ensemble Forecasts: **MSEPS 75 Member EPS of WEPROG

Trade 100% or only 50% wind energy – given the risk of high-speed shutdown?

2nd Experiment Design (2021/22)

Randomized order

Each participant

22 decision situations with deterministic forecasts

Blocks randomized

Feedback

Trade 100% or 50%?

How confident?

Randomized order

Same 22 decision situations with probabilistic forecasts
How do professionals decide based on probabilistic wind/power forecasts?

Trade 100% or only 50% wind energy - given the risk of high-speed shutdown?

<table>
<thead>
<tr>
<th></th>
<th>HSSD</th>
<th>No HSSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trading 100%</td>
<td>-5000</td>
<td>5000</td>
</tr>
<tr>
<td>Trading 50%</td>
<td>0</td>
<td>2500</td>
</tr>
</tbody>
</table>

High-speed shutdown occurred.
If you trade 100%, you lose 5000 EUR
If you trade 50%, you neither lose or gain anything.
You chose to trade 100%.
You current balance therefore is: -5000
How do professionals decide based on probabilistic wind/power forecasts?

Trade 100% or only 50% wind energy - given the risk of high-speed shutdown?

How confident are you?
50% | 60% | 70% | 80% | 90% | 100%

Power forecast
Wind forecast

High-speed shutdown occurred.
If you traded 100%, you lose 5000 EUR
If you traded 50%, you neither lose or gain anything.

You chose to trade 50%. You current balance therefore is: 0
Forecast Game 2: wind power decision-making in extreme events

First Analysis after reaching 100 participants

…and the winner is…. -

<table>
<thead>
<tr>
<th>Nickname</th>
<th>Running number</th>
<th>Probabilistic score</th>
<th>Deterministic score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent O</td>
<td>180</td>
<td>32500</td>
<td>25000</td>
</tr>
<tr>
<td>lets see</td>
<td>388</td>
<td>30000</td>
<td>27500</td>
</tr>
<tr>
<td>gaol1990</td>
<td>164</td>
<td>20000</td>
<td>20000</td>
</tr>
<tr>
<td>Mimi57</td>
<td>961</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercedes</td>
<td>111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>energyl</td>
<td>182</td>
<td></td>
<td></td>
</tr>
<tr>
<td>isimiham</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sailor caster</td>
<td>541</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nickname</th>
<th>Running number</th>
<th>Probabilistic score</th>
<th>Deterministic score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ameli6</td>
<td>657</td>
<td>25000</td>
<td>42500</td>
</tr>
<tr>
<td>Trader2000</td>
<td>137</td>
<td>25000</td>
<td>37500</td>
</tr>
<tr>
<td>liifa</td>
<td>352</td>
<td>20000</td>
<td>32500</td>
</tr>
<tr>
<td>RBIGRET</td>
<td>252</td>
<td>5000</td>
<td>32500</td>
</tr>
<tr>
<td>Anapilou</td>
<td>652</td>
<td>22500</td>
<td>30000</td>
</tr>
<tr>
<td>kevinger</td>
<td>616</td>
<td>17500</td>
<td>30000</td>
</tr>
<tr>
<td>123456</td>
<td>68</td>
<td>17500</td>
<td>30000</td>
</tr>
</tbody>
</table>
Forecast Game 2: wind power decision-making in extreme events

First ANALYSIS – Final balance

Higher median balance with probabilistic forecasts

Independent of the forecast type:
- Only slightly better than chance
- Worse than all-safe strategy that ignores the forecast

\[N = 95 \text{ participants} \]
- only first attempts
- Recruited within wind energy community

God’s eye
All-safe
All-risky

Deterministic Forecasts
Probabilistic Forecasts
First ANALYSIS – Final balance

Some people benefit from the probabilistic forecast – some don’t

→ across all performance levels

Overall, 35% of all decisions differed between probabilistic and deterministic forecasts.

Forecast Game 2: wind power decision-making in extreme events
First ANALYSIS – Proportion ‘correct’ (correct categorization as HSSD/no HSSD)

HSSD cases: Slightly better with probabilistic forecast

No HSSD cases:
• Slightly worse with probabilistic forecast
• Below chance level

Why?
• Better identification of HSSD?
• Reflects asymmetric payoffs: more safe decisions even without HSSD?
More safe choices with probabilistic forecasts

With both forecast:
- about 60% safe choices
- reflects asymmetric payoffs

First ANALYSIS – Proportion ‘safe’ decisions (trading 50%) per participant
First ANALYSIS – Mean confidence by forecast type

- Slightly higher confidence with probabilistic forecasts

Across participants:
- High variance in participants’ mean confidence

Forecast Game 2: wind power decision-making in extreme events
Forecast Game 2: wind power decision-making in extreme events

First ANALYSIS – Proportion ‘correct’ for each forecast level and forecast type

Confidence is not at all calibrated

No calibration of confidence

Why?
• Difficult task?
• Participants try to avoid losses rather than being correct
 • Reflected in > 60% safe choices
 • Equally in cases with /without HSSD
First ANALYSIS – Learning: final balance by order of forecast type

Order Effect?

Increase in median performance
- with probabilistic forecast after deterministic forecasts.
- with deterministic after probabilistic forecasts?

![Graph showing final balance in monetary units for deterministic and probabilistic forecasts across different levels of risk (God's eye, All-safe, All-risky, chance).]
Probabilistic forecasts can benefit decision making... Can we break down the barriers? Do we need to go from „description“ to „impact“?

Reduce **Skepticism** by tailoring information and provide training tools
- Need to help end-users to precisely define the decisions that have to be made?
- Is there a need to go from **forecast description** to **impact from forecast**?

Reduce **Reluctance** by improving risk perception via transparent representations
- Need for better design and evaluation of the perception by experts and non-experts
- Does playing in a safe environment help?

Reduce **misinterpretation** by improved understanding & mapping of information
- How can we make users learn by feedback instead of by description?
- What are cues for interpretation or how can be provide impact forecasts?
- How can we put information into perspective (e.g. definition of impact)
- Do there exist simple, robust heuristics /decision strategies?
2nd Experiment Design (2022)
Value of probabilistic power forecasts

Wind Power Trading: What is the value of probabilistic forecasts for decision making?
How well can you use probabilistic or deterministic forecasts for simple trading decisions?
Find out by participating in a short decision experiment (ca. 20–30 minutes).

Link for the 2nd experiment
Open to Play!
https://arc-vlab.mpib-berlin.mpg.de/wind-power/experiment/

Follow us on: iea-wind.org
→ Task 36 → Workpackage 3 → Forecast Games
or
Task 51 → Workstream Decision making under uncertainty

The study is a cooperation of the IEA Task 36 WP3 and project WEXICOM at the Max Planck Institute for Human Development.
THANK YOU for your attention...

Follow us:

Project webpage: http://www.iea-wind.org/task51

Publications: https://iea-wind.org/task51/task51-publications/

YouTube Channel: https://www.youtube.com/channel/UCsP1rLoutSXP0ECZKicczXg

Contact WP Lead:
Dr. Corinna Möhrlen, WEPROG
com@weprog.com

Contact Operating Agent:
Dr. Gregor Giebel, DTU Wind
grgi@dtu.dk

Contact Behavioural & Cognitive Scientist:
Dr. Nadine Fleischhut, MPI for Human Development, Hans-Ertel Center for Weather Research
Nadine Fleischhut <fleischhut@mpib-berlin.mpg.de>

Link for the 2nd experiment
Version ... still Open to Play!
https://arc-vlab.mpib-berlin.mpg.de/wind-power/experiment/
Wind Power Trading in Complex Terrain: The value of probabilistic forecasts for decision making?