IEA Wind Task 36 “Probabilistic Forecasting Games and Experiments” initiative

State-of-the-Art Workshop
Dublin, 13.09.2022

Corinna Möhrlen, WEPROG
Nadine Fleischhut, MPI

Uncertainty is a very good thing: it’s the beginning of an investigation, and the investigation should never end. — Tim Crouch
What is the IEA (International Energy Agency)? (www.iea.org)

- International organization within OECD with 30 members countries and 8 associates
- Promotes global dialogue on energy, providing authoritative analysis through a wide range of publications
- One activity: convenes panels of experts to address specific topics/issues

Task 51: Forecasting for the Weather-Driven Energy System:
- One of 17 Tasks of IEA Wind: https://community.ieawind.org/home
- Phase 1: 2022-2025
- Operating Agent: Gregor Giebel of DTU Wind Energy
- Objective: facilitate international collaboration to improve wind energy forecasts
- Participants: (1) research organization and projects, (2) forecast providers, (3) policy-makers and (4) end-users & stakeholders

Task 51 Scope: 3 “Work Packages” divided into 13 “Work Streams”
- WP1: Global Coordination in Forecast Model Improvement
- WP2: Benchmarking, Predictability and Model Uncertainty
- WP3: Optimal Use of Forecasting Solutions – WS8: Decision Making

Task homepage: https://www.iea-wind.org/task51
WP2: Effectively communicating probabilistic impact forecasts for severe weather conditions using cognitive and behavioural science

Research Team:
- Dr. Nadine Fleischhut
- Prof. Dr. Ralph Hertwig
- Dr. Stefan M. Herzog

Despite good forecasts and warnings, people may misperceive weather risks and fail to respond appropriately. Their understanding of forecast uncertainty has long been a major concern (Jostyn and Savelli, 2010, Spiegelhalter et al., 2011); more recently, understanding weather risks and impacts has emerged as another.

One currently advocated solution for helping people understand weather risk is to move from weather forecasts to impact forecasts; essentially, translating how the weather will be into what the weather will do (WMO, 2015). While the approach sounds promising, it remains unclear whether impact forecasts would in fact be beneficial for behaviour.

The main goal of this work package is to develop representations for communicating impact forecasts and to test their effect on risk perception, expectations, and behaviour. Using a crowdsourcing approach, we will develop and test ways to translate impact model forecasts into a meaningful risk representation for the public. Another part of the workpackage will investigate the potential benefits of impact forecasts for emergency managers.

Our results will shed light on the extent to which communicating impact forecasts can live up to its promise and improve our understanding of how to communicate impact forecasts to professional users and the public.
3 Postulates:
1) Success in trading is highly dependent on the costs of balancing power needed due to forecast errors
2) 5% of the cases with large forecast errors are responsible for 95% of the costs over a month/ year.
3) Reducing these costs is more important than improving the general forecast by 1-2%.

Definition of a “high-speed shutdown” (HSSD) or “cut-off wind” event:
A high-speed shutdown event occurs typically in the wind range above 20-27m/s, mostly known as the cut-off wind threshold of 25 m/s.
Note: wind turbines use both wind gusts and the mean wind to determine, whether or not they turn into high-speed shutdown (HSSD).

Game experiments for decision making in extreme events*:
Experiment 1 (2020): Offshore wind park
Experiment 2 (2021/2022): Wind park in complex terrain

Type of forecasts used in the game

In the games we use deterministic and probabilistic forecasts for the **day-ahead horizon**. All forecasts are generated with input of NWP (numerical weather prediction) forecasts from the 00UTC cycle the day before.

3 independent deterministic wind power forecasts in the unit [% of installed capacity] based on 3 different NWP (numerical weather prediction) models

1 wind speed forecast in the unit [m/s], which is a mean forecast from 75 ensemble members and smoother than a typical deterministic forecast.
9 wind power percentiles (P10..P90) and a mean (white line) in the unit [% of installed capacity] generated from 75 NWP forecasts of a multi-scheme ensemble prediction system (MSEPS).

9 wind speed percentiles P10..P90 and a median (white line) in the unit [m/s] generated from 75 NWP forecasts of a multi-scheme ensemble prediction system (MSEPS).

Note: The percentiles here are physically based uncertainty bands and provide an overview of the uncertainty of the forecast.

Definition: A percentile indicates the value below which a given percentage of forecasts from the 75 available forecasts falls. E.g., the 20th percentile is the value below which 20% of forecasts are found.
Aspects on Cost Functions from 1st Experiment: “Offshore wind power trading in extreme events”

Cost Function Table

<table>
<thead>
<tr>
<th></th>
<th>HSSD</th>
<th>No HSSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trading 100%</td>
<td>-5000</td>
<td>5000</td>
</tr>
<tr>
<td>Trading 50%</td>
<td>0</td>
<td>2500</td>
</tr>
</tbody>
</table>

Cost Function Graph

- **Expected Value** vs **Probability of HSSD**

- **Trade 100%**
- **Trade 50%**
2nd Experiment Design (2021/22)

Value of probabilistic power forecasts

How do professionals decide based on probabilistic wind & power forecasts?

Design & Analysis: Dr. Nadine Fleischhut*, Dr. Corinna Möhrlen**
Host of Experiment: *Max-Planck Institute for Human Development, Hans-Ertel Center for Weather Research, Germany
Ensemble Forecasts: **MSEPS 75 Member EPS of WEPROG

Trade 100% or only 50% wind energy – given the risk of high-speed shutdown?

22 decision situations with deterministic forecasts

Blocks randomized

2nd Experiment Design (2021/22)

Value of probabilistic power forecasts

How do professionals decide based on probabilistic wind & power forecasts?

Design & Analysis: Dr. Nadine Fleischhut*, Dr. Corinna Möhrlen**
Host of Experiment: *Max-Planck Institute for Human Development, Hans-Ertel Center for Weather Research, Germany
Ensemble Forecasts: **MSEPS 75 Member EPS of WEPROG

Trade 100% or only 50% wind energy – given the risk of high-speed shutdown?

22 decision situations with probabilistic forecasts

Blocks randomized
How do professionals decide based on probabilistic wind/power forecasts?

Trade 100% or only 50% wind energy – given the risk of high-speed shutdown?

<table>
<thead>
<tr>
<th></th>
<th>HSSD</th>
<th>No HSSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trading 100%</td>
<td>-5000</td>
<td>5000</td>
</tr>
<tr>
<td>Trading 50%</td>
<td>0</td>
<td>2500</td>
</tr>
</tbody>
</table>

High-speed shutdown occurred.
If you trade 100%, you lose 5000 EUR.
If you trade 50%, you neither lose or gain anything.

You chose to trade 100%.
You current balance therefore is: -5000

Trade 100% Trade 50%
How do professionals decide based on probabilistic wind/power forecasts?

Trade 100% or only 50% wind energy – given the risk of high-speed shutdown?

<table>
<thead>
<tr>
<th></th>
<th>HSSD</th>
<th>No HSSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trading 100%</td>
<td>-5000</td>
<td>5000</td>
</tr>
<tr>
<td>Trading 50%</td>
<td>0</td>
<td>2500</td>
</tr>
</tbody>
</table>

High-speed shutdown occurred.

If you traded 100%, you loose 5000 EUR
If you traded 50%, you neither loose or gain anything.

You chose to trade 50%.
You current balance therefore is: 0
Wind Power Trading: What is the value of probabilistic forecasts for decision making?
How well can you use probabilistic or deterministic forecasts for simple trading decisions?
Find out by participating in a short decision experiment (ca. 20-30 minutes).

Let’s Play!

https://arc-vlab.mpib-berlin.mpg.de/wind-power/experiment/

The study is a cooperation of the IEA Task 36 WP1 and project WEPROG at the Max Planck Institute for Human Development.
Forecast Game 2: wind power decision-making in extreme events

First Analysis after reaching 100 participants

...and the winner is.... -

<table>
<thead>
<tr>
<th>Nickname</th>
<th>Running number</th>
<th>Probabilistic score</th>
<th>Deterministic score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent O</td>
<td>180</td>
<td>32500</td>
<td>25000</td>
</tr>
<tr>
<td>lets see</td>
<td>388</td>
<td>30000</td>
<td>27500</td>
</tr>
<tr>
<td>gaol1990</td>
<td>164</td>
<td>20000</td>
<td>20000</td>
</tr>
<tr>
<td>Mimi57</td>
<td>961</td>
<td>20000</td>
<td>20000</td>
</tr>
<tr>
<td>Mercedes</td>
<td>111</td>
<td>20000</td>
<td>20000</td>
</tr>
<tr>
<td>energy1</td>
<td>182</td>
<td>20000</td>
<td>20000</td>
</tr>
<tr>
<td>isimiham</td>
<td>94</td>
<td>20000</td>
<td>20000</td>
</tr>
<tr>
<td>sailforcaster</td>
<td>541</td>
<td>20000</td>
<td>20000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nickname</th>
<th>Running number</th>
<th>Probabilistic score</th>
<th>Deterministic score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amel6</td>
<td>657</td>
<td>25000</td>
<td>42500</td>
</tr>
<tr>
<td>Trader2000</td>
<td>137</td>
<td>25000</td>
<td>37500</td>
</tr>
<tr>
<td>liifia</td>
<td>352</td>
<td>20000</td>
<td>32500</td>
</tr>
<tr>
<td>RB1GRET</td>
<td>252</td>
<td>5000</td>
<td>32500</td>
</tr>
<tr>
<td>Anapiolou</td>
<td>652</td>
<td>22500</td>
<td>30000</td>
</tr>
<tr>
<td>kevinger</td>
<td>616</td>
<td>17500</td>
<td>30000</td>
</tr>
<tr>
<td>123456</td>
<td>68</td>
<td>17500</td>
<td>30000</td>
</tr>
</tbody>
</table>

here is a first glimpse into the data...
Forecast Game 2: wind power decision-making in extreme events

First ANALYSIS – Final balance

Higher median balance with probabilistic forecasts

Independent of the forecast type:
• Only slightly better than chance
• Worse than all-safe strategy that ignores the forecast

\[N = 95 \text{ participants} \]
• only first attempts)
• Recruited within wind energy community

Deterministic Forecasts
Probabilistic Forecasts
First ANALYSIS – Final balance

Some people benefit from the probabilistic forecast – some don’t

→ across all performance levels

Overall, 35% of all decisions differed between probabilistic and deterministic forecasts.
First ANALYSIS – Proportion ‘correct’ (correct categorization as HSSD/no HSSD)

HSSD cases: Slightly better with probabilistic forecast

No HSSD cases:
• Slightly worse with probabilistic forecast
• Below chance level

Why?
• Better identification of HSSD?
• Reflects asymmetric payoffs: more safe decisions even without HSSD?
More safe choices with probabilistic forecasts

With both forecast:
- about 60% safe
- reflects asymmetric payoffs

First ANALYSIS – Proportion ‘safe’ decisions (trading 50%) per participant

Forecast Game 2: wind power decision-making in extreme events
First ANALYSIS – Mean confidence by forecast type

Slightly higher confidence with probabilistic forecasts

Across participants:
- High variance in participants’ mean confidence
Forecast Game 2: wind power decision-making in extreme events

First ANALYSIS – Proportion ‘correct’ for each forecast level and forecast type

Confidence is not at all calibrated

No calibration of confidence

Why?
• Difficult task?
• Participants try to avoid losses rather than being correct
 • Reflected in > 60% safe choices
 • Equally in cases with /without HSSD
First ANALYSIS – Learning: final balance by order of forecast type

Order Effect?

Increase in median performance
• with probabilistic forecast after deterministic forecasts.
• with deterministic after probabilistic forecasts?
THANK YOU for your attention...

Follow us:

Project webpage: http://www.iea-wind.org/task51

Task-page: https://iea-wind.org/task51/task51-work-streams/ws-decision-making-under-uncertainty/ or
https://iea-wind.org/task36/task36-work-packages/wp3-optimal-use-of-forecasting-solution/wp3-4-probabilistic-forecast-games/

Publications: https://iea-wind.org/task51/task51-publications/

YouTube Channel: https://www.youtube.com/channel/UCsP1rLoutSXP0ECZKicczXg

Contact WP Lead: Dr. Corinna Möhrlen, WEPROG com@weprog.com

Contact Operating Agent: Dr. Gregor Giebel, DTU Wind grgi@dtu.dk

Contact Behavioural & Cognitive Scientist: Dr. Nadine Fleischhut, MPI for Human Development, Hans-Ertel Center for Weather Research Nadine_Fleischhut<fleischhut@mpib-berlin.mpg.de>

Link for the 2nd experiment

Version ... still Open to Play!
https://arc-vlab.mpib-berlin.mpg.de/wind-power/experiment/
Wind Power Trading in Complex Terrain: The value of probabilistic forecasts for decision making?