

IEA Wind Task 36 Workshop on Best Practice in the Use of Forecasting in the Power Industry

University of Strathclyde, Glasgow, UK 21 January 2020

Housekeeping

Time	Description	Presenter/Chair	Glasgow	
09:15	Welcome and Introduction	Gregor Giebel (DTU) & Jethro Browell (Strathclyde)		
09:30	Presentation: Leveraging turbine-level data for improved forecast performance	Jethro Browell (Strathclyde)	[
10:00	Presentation: IEA Wind Recommended Practice on Renewable Energy Forecast Solution Selection	John Zack (AWS Truepower)	Fire alarm	
10:40	Coffee	test		
11:00	Presentation: <i>Definitely Uncertain - Wind Power</i> Probability Forecasting	David Lenaghan (National Grid ESO)	 Evening meal 	
11:30	Presentation: Benefits of Probabilistic Forecasting in Electricity Trading - a few real world examples	Tilman Koblitz (WindPoint)		
12:00	Forecasting Game	Corinna Möhrlen (WEPROG)		
12:30	Lunch			
13:30	OpenSpace Discussion and Forecasting Game Analysis	Corinna Möhrlen (WEPROG) and IEA Task Representatives		
15:10	Coffee			
15:30	Panel: Bridging the gap between forecast innovation and business as usual	Industry and IEA Task Representatives	iog wind	
16:45	Closing Remarks	Gregor Giebel (DTU)		

Leveraging turbine-level data for improved forecast performance

Dr Jethro Browell Research Fellow

University of Strathclyde, Glasgow, UK jethro.browell@strath.ac.uk

IEA Wind Task 36 Workshop 21 January 2020, Glasgow

Engineering and Physical Sciences Research Council

Part 1: The future of forecasting for renewable energy, an academic perspective

- Status quo in wind power forecasting
- Evolving business models in wind power forecasting
- Where does innovation fit in?

Part 2: Leveraging all of that SCADA data operators have been studiously archiving...

- Overview of methodology
- Case Study and Results

The future of forecasting for renewable energy

From on work with Conor Sweeney, Ricardo J. Bessa & Pierre Pinson

> WIRES Energy and Environment https://doi.org/10.1002/wene.365

Status Quo

National weather centres produce global and regional numerical weather prediction (NWP)
 Weather Forecasts

- Forecast vendors produce and sell site-specific weather and power forecasts
 Specialised Weather specialised Weather and Power Forecasts
- Forecast users procure weather and/or power forecast to present to decision-makers on trading desks and in control rooms
 Wide range of models from

Wide range of models from "inhouse vendors" to complete dependency on service providers

Status Quo

Status Quo **University of** Strathclyde Glasgow 4D Grid of Weather **Predictions** "Site" Wind Speed and Weather-to-power **Direction Forecast** relationship... Based on farm-level power curve... 000000 Windfarm Export 3 Meter Weather is a prediction, and therefore uncertain Single wind speed and • direction for wind farm Wind Turbine SCADA ... Wind farm power curve is ٠ complex and uncertain

Innovation Reaching BAU

*Gilbert, Browell & McMillan (2019), doi:10.1109/TSTE.2019.2920085

The next evolution?

Something completely different...

What do we want to predict anyway?

- **Energy:** Blocks of energy for trading and generator scheduling
- Power: ramps for system operation; instantaneous power for ancillary service provision
- Interdependency with markets: risk management, algorithmic trading
- **Network flows/constraints:** constraint management and regional balancing

Leveraging turbine-level data for wind power forecasting Work with Ciaran Gilbert and David McMillan

IEEE Trans. Sustainable Energy https://doi.org/10.1109/TSTE.2019.2920085

Motivation:

- 1. Gather as much information as possible to improve forecast skill
 - Electricity network is a natural hierarchy
 - Turbine Farm Region National/Zone
 - Information from other levels can improve predictive performance
- 2. Coherency across hierarchy
 - Some applications require that forecasts from lower level to sum to upper level, e.g. market settlement

Motivation:

- 1. Gather as much information as possible to improve forecast skill
 - Electricity network is a natural hierarchy
 - **Turbine Farm** Region National/Zone
 - Information from other levels can improve predictive performance
- 2. Coherency across hierarchy
 - Some applications require that forecasts from lower level to sum to upper level, e.g. market settlement

- Wind farm power curve is complicated by many factors: layout, terrain, interactions
- It is difficult to distinguish between random variation and true processes...
 Smoothing vs Training
- ...can looking at individual turbine behaviours can help extract more signal from the noise?

400

Methodology Overview

Objective

- Produce probabilistic (density) forecasts
- Extend forecasting methodologies to incorporate turbine-level information

New Approaches

- 1. Bottom-up: make predictions for individual turbines and use as additional explanatory information
- 2. Spatial Dependency: predict the full joint distribution of output from all turbines in a wind farm

Benchmarks (using NWP and windfarm data only)

- 1. Analog Ensemble (*k*NN) super robust and competitive
- 2. GBM/quantile regression leading machine learning algorithm

Objective: Density Forecasts

Benchmark

GBM

- Gradient Boosted Decision
 Tree a powerful non-linear function approximator
- Quantile regression: one model per quantile: 5,...,95
- Inputs: features derived from NWP
- Target: Windfarm power

Bottom-up Approach

Bottom-up

- Produce deterministic forecasts for each individual turbine
- Use these as *additional features* in a windfarm power forecasting model

Spatial Dependency Approach

Density forecast for wind farm = Distribution of sum of all turbines

Joint Predictive Distribution Individual turbine density forecasts AND spatial dependency model

 $q_1^{\alpha} = f_{\text{GBM},1}^{\alpha}(\boldsymbol{x}_{\text{NWP}}) \qquad q_3^{\alpha}$

 $q_4^{\alpha} = f_{\text{GBM},4}^{\alpha}(\boldsymbol{x}_{\text{NWP}})$

Spatial Dependency Approach

- 1. Produce density forecast for each turbine
- 2. Model spatial dependency using Gaussian copula with parametric covariance
- 3. Sample and sum turbine power prediction
- 4. Construct wind farm density forecast from samples

Additional Benchmarks:

- 1. Empirical Covariance (data-driven)
- 2. Vine Copula (facilitates more complex spatial structure)

Case Study

Set up

- 2 Wind Farms with 56 and 35 turbines
- NWP inputs plus *engineered features*
- 30 minute wind farm production
- 30 minute wind turbine production
- Produce probabilistic (density) forecasts up to 48h ahead

Spatial Structure at WF-A

0.9

0.8

0.7

0.6

0.5

0.4

Spatial Structure at WF-B

Results: Reliability

Results: Scores

Windfarm	Score	Best Benchmark	Bottom-up	Full Spatial Model
	MAE	9.69	9.27	9.11 (6%)
VV F-A	CRPS	7.02	6.74	6.66 (5%)
	MAE	11.39	11.21 <mark>(2%)</mark>	11.26
VV F-D	CRPS	8.10	8.00 (1%)	8.02

Additional benchmarks...

Empirical Covariance and Vine Copula ...performance a little worse than parametric covariance model.

Results: Scores

Significance of improvement: sampling variation

Recommended Practice (coming up next!) & Forthcoming paper in Wind Energy by IEA Task Members

Questions for you:

What is 5% reduction in MAE worth to you?

How much effort is required to integrate turbine-level data in to your forecasting systems?

Summary

- Forecasting practice is evolving rapidly, recent advances coming from data science
 - New business models may emerge as a result
 - Forecasts should get a little better
 - Potentially more *value* will come from improving the way we use forecast information in the future...
- We can leverage existing data to improve wind power forecast with software alone!
- Ongoing research includes:
 - Forecasting ancillary service capability using high-resolution SCADA (when minimum instantaneous power is key)
 - Hierarchical and spatio-temporal dependency on Site-Region-National scale
 - **Decision-support** for spatially-constrained problems: regional balancing, network constraints (wind and net-demand)

Thanks! Questions for me? Papers and more at jethrobrowell.com

y in ≃

Welcome to my website where you can find out about my academic activities and access associated

Latest News

New Paper! Some thoughts from Calum Edmunds, Sergio Martin Martinez, myself and colleagues on wind participating in response and reserve markets. Just published in Renewable and Sustainable Energy Reviews. Enjoy 50 days free access with this link. Pre-print also available.

New Paper! Ciaran Gilbert recently published his work on improving wind farm power forecasts by leveraging data from individual turbines! Read it here.

