Webinar – Task 46 Erosion of wind turbine blades IEA Wind TCP

31 May 2022 , 16:00 CEST

Raul Prieto (VTT) and Charlotte Hasager (DTU), Sara Pryor (Cornell Univ.) and Marijn Veraart (Ørsted), David Maniaci (Sandia), Jakob Ilsted Bech (DTU), Maral Rahimi (Hempel), Fernando Sánchez López (UCH-CEU) and Bodil Holst (Univ. of Bergen)

Please mute your mic unless presenting :-)

Technology Collaboration Programme

Agenda

•	Welcome & Introduction to Task 46 Erosion of wind turbine blades. Charlotte Hasager (DTU) and Raul Prieto (VTT).	5′
•	Key challenge questions to the audience (Interactive poll with Mentimeter).	5′
•	Atmospheric properties of relevance to leading edge erosion. Marijn Veraart (Ørsted) and Sara Pryor (Cornell University).	20'
•	Development of a Standard Erosion Classification System. David C. Maniaci (Sandia National Laboratories).	20′
•	Break	10'
•	Test methods for properties and performance of LE protection systems. Jakob I. Bech (DTU) and Maral Rahimi (Hempel).	20'
•	On the material technology & damage modelling of multilayer leading edge protection systems. Fernando Sánchez López (UCHCEU)	
	and Bodil Holst (UiB).	20′
•	Wrap-up of key challenge results. Charlotte Hasager (DTU) and Raul Prieto (VTT).	10'

IEA Wind Technology Collaboration Programme

- The International Energy Agency Wind Technology Collaboration Programme is an international co-operation that shares information and research to advance wind energy research, development and deployment in member countries.
- The consortium operates under auspices of the International Energy Agency (IEA).
- Founded in 1977, It is formed by 24 countries which represent 84% of wind capacity.
- Website:

https://iea-wind.org/

Task 46 - Background and goals

- The purpose of this IEA Wind Task is to improve understanding of the erosion driving factors, develop datasets and model tools to enhance prediction of leading edge erosion likelihood, identify damage at the earliest possible stage and advance potential solutions.
- 35 participants from 12 countries

Task 46 work packages

Towards solving blade erosion

Task 46 - WP2 Climatic conditions

Goals

- Provide assessment for wind farms regarding the potential for LEE damage
- Inform wind farm operation to optimize blade lifetime

Objectives

- Understand atmospheric drivers for LEE
- Evaluate datasets and models
- Develop roadmap for LEE atlas (including erosion classes)

Sara C Pryor sp2279@cornell.edu

Marijn Veraart mariv@orsted.dk

Task 46 - WP2 Climatic conditions

Task 46 - WP2 Climatic conditions

Active participants

Belgium	Engie
Canada	WEICan
Denmark	DTU, Ørsted A/S
Finland	VTT
Germany	Fraunhofer IWES
the Netherlands	TU Delft, TNO, ENECO
Norway	University of Bergen
Spain	Cardenal Herrera University
United Kingdom	ORE Catapult
United States	Cornell University
Japan	AIST, Osaka University

3

iea wind

First deliverable ready (technical report & spreadsheet) Atmospheric drivers of wind turbine blade leading edge erosion: Hydrometeors

- Describe **crucial meteorological parameters** for wind turbine blade leading edge erosion
- Describe technologies appropriate to measurement of hydroclimates and specifically hydrometeor size distributions
- Identify available data sets to describe hydrometeor size distributions, and phase and compile their meta-data. These data sets are available for use in mapping wind turbine blade leading edge erosion potential
 - Summary analyses based on these key datasets
 - Spreadsheet summarizing meta-data. Doi: 10.5281/zenodo.5648211
- Identify priority geographic areas for geospatial mapping of wind turbine blade leading edge erosion potential
 5

6

Crucial meteorological parameters

1. The closing velocity between the hydrometeor and the blade

Crucial meteorological parameters

- 1. The closing velocity between the hydrometeor and the blade
- 2. The number of hydrometeor impacts

Crucial meteorological parameters

- 1. The closing velocity between the hydrometeor and the blade
- 2. The number of hydrometeor impacts
- 3. The nature of the hydrometeors (size and phase)

iea wind

Rain droplet size distributions described by Marshall-Palmer (top) & Best (bottom)

8

9

Crucial meteorological parameters

- 1. The closing velocity between the hydrometeor and the blade
- 2. The number of hydrometeor impacts
- 3. The nature of the hydrometeors (size and phase)
- 4. The impact efficiency

10

Measurement techniques

- Direct in situ measurement:
 - Tipping bucket rain gauges
 - Disdrometers
 - Hail sensors
- Remote sensing:
 - Single polarization radar
 - Dual polarization radar
 - Micro-rain radar
 - Satellite-derived products
 - Gridded datasets
 - Numerical weather prediction models

Measurement techniques

Priority geographic areas

Lamont Southern Great Plains, USA – high hail freq. high WT IC WEICAN, eastern Canada – high frequency of freezing rain Weybourne, UK – close to abundant UK offshore Horns Rev 2, Denmark – offshore Risø, Denmark – heavily instrumented, comparison with HR2 Bergen, Norway – freq. precipitation 12

Priority geographic areas (key takeaways)

- Profound variations in rainfall rate, mean droplet size distributions and hail frequency
- The differences in the hydroclimates; probability of precipitation and hail, intensity of
 precipitation and the size distributions of hydrometeors have profound implications for the
 number of hydrometeor impacts on the blades
- Pronounced **regional differences** in terms of the relative importance to total accumulated kinetic energy transfer to the blades of;
 - 1. hail versus rain
 - 2. low intensity but sustained precipitation periods versus high intensity but relatively short duration precipitation periods
- There are **important gradients in hail frequency** at the regional and sub-regional scale
- Hail frequency in the USA greatly exceed those in Europe
- The **specific instrument** (i.e. type of disdrometer) from which droplet size distribution are drawn has a profound influence on the resulting droplet size distribution

13

Joint Probability Distributions Lamont Southern Great Plains, USA

Journal paper

	50-100	0.01	0.02	0.07	0.07	0.06	0.12		-	7
	20-50	0.06	0.19	0.40	0.26	0.24	0.39		-	6
hr ⁻¹	10-20	0.09	0.20	0.56	0.43	0.32	0.39		-	5
mm)	5-10	0.19	0.59	1.09	0.94	0.54	0.81			1
ate	2-5	0.46	1.94	3.17	2.78	1.37	1.86			4
fall r	1-2	0.66	2.32	3.19	3.50	1.86	1.46		-	3
Rain	0.5-1	0.66	2.46	3.53	3.50	2.19	1.38		-	2
	0.2-0.5	0.92	3.00	4.47	4.45	3.05	1.92		-	1
	<0.2	1.72	6.29	7.15	6.75	5.06	6.06			
		0-2.5	2.5-5	5-7.5	7.5-10	10-12.5	12.5-25			
			Wir	nd speed 🤇	2 90 m (m	s⁻¹)				
	Hail	4.78	17.01	23.64	22.69	14.69	14.39			
		0-2.5	2.5-5	5-7.5	7.5-10	10-12.5	12.5-25	-		

Task 46 Erosion of Wind Turbine Blades Work Package #3: Wind turbine operation with erosion

Development of a Standard Erosion Classification System

David Maniaci (Sandia National Laboratories)

dcmania@sandia.gov

Public Webinar - 31 May 2022

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2022-7171 PE

Technology Collaboration Programme

WP 3 : Wind turbine operation with erosion

This work package has three key overarching objectives:

- 1. Promote collaborative research to mitigate erosion by means of wind turbine control, assessing the viability of erosion safe mode.
- 2. Improve the understanding of droplet impingement in the context of erosion.
- 3. Improve the understanding of wind turbine performance in the context of erosion, specifically the effect of LEE surface roughness on aerodynamics.

	Activity	WP code
Year	Model to predict annual energy production loss on blade erosion class	WP3.1
1	Report on standardization of damage reports based on erosion observations	WP3.2
Year 2	Droplet impingement model for use in fatigue analysis	WP3.3
Ľ	Potential for erosion safe-mode operation	WP3.4
	Accuracy of LEE performance loss model based on field observations (validation)	WP3.5

Please reach out if interested in collaborating!

David C. Maniaci dcmania@sandia.gov

Sandia National Laboratories (U.S.)

WP 3: Activity Description

WP3.1: Model to predict annual energy production loss on blade erosion class

• Develop a common model of aerodynamic performance loss due to leading edge roughness and erosion standardized classes.

WP3.2: Report on standardization of damage reports based on erosion observations

• Standardization of damage reports for validation of any erosion potential assessment and to allow effective integration of data from operators with laboratory derived estimates.

WP3.3: Droplet impingement model for use in fatigue analysis

• Develop a standard model for droplet impingement, validated with wind tunnel experimental data.

WP3.4: Potential for erosion safe-mode operation

• Report describing potential for leading edge erosion safe mode operation. This report will be used for seeking participation from industry and research funders towards a coordinated project designed to assess viability and cost-benefit of leading edge erosion safe mode operation.

WP3.5: Accuracy of LEE performance loss model based on field observations (validation)

• Carry out iterative aerodynamic loss benchmarks with model development and new wind tunnel testing for calibration and validation. Validation of complete performance loss model using probabilistic analysis of field observations.

Specific Technical Activities in Work Package 3

- Collaboration through monthly meetings focused on specific topics **CI**
 - Fundamental aerodynamic knowledge and testing for LEE.
 - Needs for AEP performance model.
 - Available sites and partners for field validation.
 - Coordination with IEA Task 43 Digitalization on topic of Risk-Based Maintenance for Blades.
 - Focus group to benchmark aerodynamic models for AEP loss. (CENER facilitating)
- WP3.1 Model to predict annual energy production loss based on blade erosion class.
 - Shared background information on existing erosion models and papers (online repository).
 - Defined turbine information needs for validation of LEE performance models.
- WP3.2 Report on standardization of damage reports based on erosion observations. (ORE CATAPULT facilitating)
 - Reviewed existing erosion classification systems and methods.
 - Discussed what existing partners do now for field identification and repair decisions.
 - Held a workshop to develop a common erosion classification system for the task.
 - Tested the classification on sample images and working on AEP estimates now.

Erosion Classification System Example

	Erosion
Observation Category	Class
Visual data definition	3
Mass-loss or Depth	3
Aerodynamics/Perf.	3
Structural	3

Workshop: IEA Wind Task 46 Proposed Solution – Considerations

Stakeholder Scenarios for Blade Damage Classification

- There are different techniques for categorizing wind turbine blade damage.
- There can also be specific motivations for individual organizations and stakeholders depending on the situation that the assessment is being carried out.
 Examples of Existing Methods Research

Research	Novel insights and understanding
Testing	Replicating in-situ conditions to predict expected performance
Manufacturing	Quality control
Operational	Performance and structural integrity of wind turbine assets

Examples of Existing Methods – Research

iea

Phil (P) Phil (S) Phil (S) Phil (S) Phil (S) Phil (S) Stage 1 100P (I) -					70
Stage 1 100P (1) - - File - File - File - File - File -					50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Stage 2 200P (2) 200P/100G (4) # </td <td>Stage 1</td> <td>100P (1)</td> <td></td> <td>-</td> <td>400 40 A → PBs Unit 400 A</td>	Stage 1	100P (1)		-	400 40 A → PBs Unit 400 A
Stage 3 400P (3) 400P/2006 (5) 400P/2006/10 (7) Stage 4 - 800P/4006 (6) 800P/4005/DL (7) Stage 5 - 1000P/8005/DL (7) Table 1. Entransmit m for summary mark from 7 500 (7) 1000 (7) Table 1. Entransmit m for summary mark from 7 500 (7) 1000 (7) Table 1. Entransmit m for summary mark from 7 500 (7) 500 (7) Table 1. Entransmit m for summary mark from 7 500 (7) 500 (7) Table 1. Entransmit m for summary mark from 7 500 (7) 500 (7)	Stage 2	200P (2)	200P/100G (4)	-	8 30 20 10 10 10 10 10 10 10 10 10 10 10 10 10
$\begin{array}{c c} Stage 5 & - & 0.009/4000/(h + 16) \\ Stage 5 & - & 0.009/4000/(h + 16) \\ \hline \\ $	Stage 3	400P (3)	400P/200G (5)	400P/200G/DL (7)	20 Delamination 20 2
Stage 5 - - 16000/8006/DL++ (9) - <td>Stage 4</td> <td></td> <td>800P/400G (6)</td> <td>800P/400G/DL+ (8)</td> <td>10 0</td>	Stage 4		800P/400G (6)	800P/400G/DL+ (8)	10 0
Texts: Dest/Engineering of the remote end fragment Arc Length (mm) W w Arc Length (mm) Fear Dest/Engineering Lasting sign energing Arc Length (mm) W w Arc Length (mm) Fear Dest/Engineering Lasting sign energing Arc Length (mm) W w Arc Length (mm) Fear Dest/Engineering Lasting sign energing Arc Length (mm) W w Arc Length (mm) Fear Dest/Length (mm) Lasting sign energing (mm) Arc Length (mm) Arc Len	Stage 5			1600P/800G/DL++ (9)	
Feature Dath/Damotor Loading adapt strength Pix (4) 0.61 Pix (4) 0.61 Pix (4) Grages (6) 2.44 mm 05 Vpl 4.00 Pix (4) 0.00 Pix (4) Delemant (10) 3.14 mm 05 Vpl 4.00 Pix (4) 0.00 Pix (4)		Tab	le L. Specifications of the nomine	l erosion features.	Arc Length (mm) A
Pisc (P) 0.51 mm (0.02 in) 0-00.8 mm (0-2 in) Gouges (A) 2.54 mm (0.10 in) 0-04.8 mm (0-2 in) Determination (DL) 3.61 mm (0.15 in) 0-4.530, 4110 2 mm (0-10.8 30, 072 m)	Featu	11	DepthyDiameter	Looding edge coverage	Sec.
	Pits 0 Goug Delan	러. es (유 nination IDC)	0.51 mm (0.02 in) 2.54 mm (0.10 in) 3.81 mm (0.15 in) 0-4.	0-50.8 mm (0-2 in) 0-50.8 mm (0-2 in) 57/9.14/18.29 mm (0-0.18/0.36/0.72 in)	
		A Invest, C.A. Ingra, Invest, and 17, no. 10, or	and M. S. Selly, "Effects of leading edge on DESI-DESI Con 2014	interview until Nationa kinds performance," Wind	

Examples of Existing Methods – Operational

CATEGOR	DAMAGE	ACTION	TUPBINE	Leading Edge (LE) Damage
1	Courses	S No need for immediate action	No Continue	Open LE
	Feedings of lightning rystem below 50m0	'	Operation	LE erosion through laminate
2	🖌 Damage, below wear and tear	Fagair only if other damages are to be repaired.	& Continue Operation	LE erosion, down to laminate and layer laminate
~				LE erosion, down to laminate
3	Damage, above wear and tear Readings of lightning system	🎸 Reasir done within next 6 months	Continue Operation	Damaged leading edge tape
9	above 50m0			Damaged leading edge protection
4	🖌 Serious damage	Fepair performed within next 3 months. Damage monitored	Continue Operation	Coat/paint damage, surface. Missi more than 10 cm ²
5	/ Critical damage	Immediate action required to prevent turbine damage. Contact technical support	Corration	Coat/paint damage, surface. Missi less than 10 cm ²
				LE discoloration, paint or bugs

Examples of Existing Methods – Research

CATAPULT

ieg wind

Small pin-holes of missing paint distributed across LE with some grouping	0.1-0.2	2	3%	MORE STORE AND ADDRESS (MARKED)
Pin-holes have coalesced in to larger eroded patches	0.1-0.2	15	3%	NDOBCINIDOBCINICEENS
Affected area has increased, with isolated larger patches with a greater depth	0.3-0.5	20/40	5%	
Patches have coalesced further and depth has increased	0.5-0.8	40	5%	
Large areas of LE laminate exposed	0.8-1.2	>500	8%	Currenter

Initial Draft Erosion Classification System

	Erosion Class based on Observations					
Observations	0	1	2	3	4	5
Visual data definition		Light pitting of coating	Small patches of missing coating	Large patches of missing coating	Large exposed surfaces of fiberglass. Signs of damage to the underlying fiberglass.	Complete loss of laminate, holes in surface material.
Mass-loss or Depth*Length		Coating mass loss <10%, Laminate mass loss 0%	Coating mass loss 10-50%, Laminate mass loss 0%	Coating mass loss 50-100%, Laminate mass loss <10%	Coating mass loss 100% , Laminate mass loss 10-100%	Coating mass loss 100%, Laminate mass loss 100%
Aerodynamics/Performance	Idealized as-built	Normal operating surface roughness,	Power loss 1%, Moderate loss to L/D and CL_max, (20% and 5%)	Power Loss 2%, Noticeable loss to L/D and CL_max	Power loss >3%, Significant loss to L/D (> -40%) and CL_max (>	Power loss >4%, Severe loss to L/D and CL_max
	Diaue	no or inthe damage	(-20% and -5%)	(-50% and -5-10%)	Leading edge	Significant
Character and		Light dirt, oil, grease, or insects on the blade	Early stages of leading edge erosion or other increased surface	Coating damage, crack in structure at the	erosion through shells, exposing blade internal	chordwise or spanwise cracks or large delaminations
Structural		surface.	roughness.	leading edge.	structure.	in shells.

Blade erosion class vs. local class: When 5% of blade span is in a given class the blade is considered that class or if a higher class changes the response, the blade class is increased.

[1] "Leading Edge Protection Lifetime Prediction Model Creation and Validation." Drew Eisenberg, Steffen Laustsen, Jason Stege. Wind Europe 2016

[2] Springer, G. S. Erosion by Liquid Impact. Scripta Publishing Co. Washington D.C., 1976.

[3] "Uncertainty Quantification of Leading Edge Erosion Impacts on Wind Turbine Performance." Maniaci, D.C., Westergaard, C., Hsieh, A., and Paquette, J.A., in Torque 2020.

Erosion Classification System Example

• Participants were asked to test the draft classification system on a sample of images.

Information to Categorize	Erosion Class	Note
		Large exposed surfaces of fiberglass. Signs of
Visual data definition	4	damage to the underlying fiberglass.
Mass-loss or Depth	4	
Aerodynamics/Performance	4	
Structural	3	

Parameter (Specified by Service Provider)	Value
Material	Laminate
Blade Length	37 m
Distance from Root	37.3 m
Length of damage	4.1 m
Width of damage	0.15 m

Erosion Classification System Test

						- ī						L.,	<u> </u>	-	
	Organization Tuna	510	OWF	erloper	ator versity	oine OEM	ersity	. Init	ersity	Own	erloper	ator bine OEM	Median	Variance	
	Organisation Type	<u> </u>	/ 0	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	/ * /	/ 0/	/ <u>^</u>		2	0.05	٦
	Visual data definition	2	1		2	0	2.5	2		2	3		2	0.85	
Image 1	Mass-loss of Depth	1	1	-	2.5	2	1		2	1	4		1	1.47	
	Aerodynamics/Performance	2	1	2	2.5	2	2		2	1	2 1		2	1.44	J
	Structural	1	1		4	2	2.5	-	2	2	3		2	1.06	۲ ۲
	Visual data definition	4	4		4	3	4	5	4	4	5		4	0.36	
Image 2	Mass-loss or Depth	4	4	-	4 5	3	3			3	5		3.5	0.67	K
	Aerodynamics/Performance	4	4	5	4.5	3	3.5		4	3	5		4	0.56	
	Structural	4	3			0	4		3	4	5		4	2.57]
	Visual data definition	1	2		2	1	2		2	1	2		2	0.27	
Image 3	Mass-loss or Depth	1	1		-	0	1		-	1	1		1	0.17	
	Aerodynamics/Performance	1	1		2	1	2		2	1	3		1.5	0.55	
	Structural	2	1			0	2		3	1	2		2	0.95	-
	Visual data definition	3	1		2	1	2	1	2	1	2		2	0.50	
Image 4 -	Mass-loss or Depth	2	1			1	1			1	4		1	1.47	L
Part 1	Aerodynamics/Performance	3	1	3	2	1	1.5		2	1	2		2	0.63	\square
	Structural	2	1			0	2		3	2	3		2	1.14	
	Visual data definition	2	2		1	1	2.5	1	2	1	1		1	0.38	
Image 4 -	Mass-loss or Depth	1	2			1	1.5			1	1		1	0.18	
Part 2	Aerodynamics/Performance	2	1	2	1	1	1.5		2	1	2		1.5	0.25	
	Structural	2	1			0	2		3	2	1		2	0.95	
	Visual data definition	1	1		1	0	0.5	2		1	0		1	0.42	
Imago E	Mass-loss or Depth	1	1			0	0			1	1		1	0.27	
inage 5	Aerodynamics/Performance	2	1	2	2.5	2	1		1	2	2		2	0.32	
	Structural	1	1			0	1			1	0		1	0.27	
	Visual data definition	1	1		1	1	1.5	1	1	1	1		1	0.03	
lanaaa C	Mass-loss or Depth	1	1			1	1			1	1		1	0.00	
image 6	Aerodynamics/Performance	1	1		1	1	1		1	1	0		1	0.13	
	Structural	2	1			0	2		2	1	1		1	1 0.57	
	Visual data definition	2	1		1.5	0	1	1	1	1	3		1	0.69	1
	Mass-loss or Depth	1	1			1	0			1	2		1	0.40	
Image 7	Aerodynamics/Performance	2	1		3	2	1		2	2	4		2	0.98	
	Structural	1	1			0	1		2	1	1		1	0.33	

• Classification is in draft form and could be refined based on discussions and feedback.

Work Package 3 Plans for the Next Year

Next steps:

- Collect images to create archive of how to use the erosion classification system
- Technical summary of erosion classification system, background and proposed system, results from testing it
- Apply system and test images to AEP estimate
 - Model to predict annual energy production loss based on blade erosion class
 - Select common turbine model(s) for initial performance loss exercise

Year 2 focus areas:

- Aerodynamic benchmarks, detailed aerodynamic studies on common datasets
 - Compare AEP predictions to pre aero-benchmarks. Have the AEP models changed significantly?
- Droplet impingement model for use in fatigue analysis: Develop a standard model for droplet impingement, validated with wind tunnel experimental data.
 - Characterization of aerodynamics for droplet impingement probability.

IEA Wind task 46 WP4 Laboratory testing for LEE Public webinar 31/5-2022

Jakob Ilsted Bech – DTU Wind & Energy Systems Maral Rahimi – Hempel A/S

WP4. Laboratory testing of erosion

WP4.1: Available technologies (report) M1-M10 - extended

WP4.2: Erosion failure modes (literature review) M11-M16

WP4.3: Normalization of test substrates (Recommended practice - input) M17-M22

WP4.4: Pre-evaluation of test specimens M23-M28

WP4.5: Test data analysis, damage accumulation and VN curves (RP) M29-M34

WP4.6: "Simple" mechanical test for screening of key parameters (report) M35-M40

WP4.7: Correlation between RET data and expected field service life (report + model) M41-M46

WP4.8: Aging – unloaded and during testing (literature review + RP)

WP4.1 Available technologies Review on lab testing related to wind blade erosion

Edit: Jakob+William Finnegan – NUI Galway et al.

- 1. Introduction
- 2. Rain erosion test
- 3. Impact test and fatigue
- 4. Viscoelastic properties
- 5. Fracture delamination
- 6. Micro structure
- 7. Ageing

https://share.dtu.dk/sites/IEA_WIND_T46_493900/SitePages/Home.aspx

Review of each test method

- -State of the art/available technologies
- -test results/observations (and failure modes where relevant)
- -Relevance and current use for LEE
- -Opportunities & strengths/Limitations & weaknesses
- -Availability & access
- -Future work & challenges
- -Potential project ideas

4.1.4. Viscoelastic properties

Jakob (DTU)

By Chem538w10grp1 - Own work, Public Domain, https://commons.wikimedia.org/w/index.php? curid=9715576

WP 4.2 Erosion failure modes in LE systems -**Review**

WP4.3: Normalization of test substrates Recommended practice M17-M22

- Specification of test substrate
- Role of composite lay-up; putty; prim
- Stress waves, reflections, interface

DTU

WP4.4: Pre-evaluation of test specimens M23-M28

- QA
- thickness (variation); curing; adhesion, air inclusions, surface defects etc.
- characterization methods, NDA
- Acceptance criteria

DTU

WP4.5: Test data analysis, damage accumulation and VN curves (RP) M29-M34

- initiate from DNV GL RP 0171 and 0573
- Take into account defect dominated damage
- Stochastic failure probabilistic approach?

WP4.6: "Simple" mechanical test for screening of key parameters (report) M35-M40

DMTA

DTU

Tensile test

And others...

www.shutterstock.com · 1820939435

WP4.7: Correlation between RET data and expected field service life (report + model) M41-M46

WP4.8: Aging – unloaded and during testing (literature review + RP)

- UV Photo oxidation
- H2O Hydrolysis
- Thermal degradation
- Time
- Change of properties
- etc

- Engie (BE)
- DTU (DK)
- Hempel (DK)
- VTT (FI)
- Fraunhofer IWES (GE)
- Covestro (GE)
- Emil Frei Lacke (GE)
- Delft University of Technology (NL)
- University of Bergen (NO)

- Equinor (NO)
- Aerox (ES)
- CEU Cardenal Herrera University (ES)
- Nordex (ES)
- SGRE (ES)
- ORE Catapult (UK)
- University of Bristol (UK)
- 3M (US)
- Uni. Limerick (IR)
- Uni. Galway (IR)
- Uni. Carlow (IR)
- AIST (JP)
- 14 Uni. Niigata (JP)

IEA Wind TCP

Task 46 Erosion of Wind Turbine Blades Work Package #5 Erosion Mechanics and material properties

ON THE MATERIAL TECHNOLOGY AND DAMAGE MODELLING OF MULTILAYER LEADING EDGE PROTECTION SYSTEMS

Fernando Sánchez (CEU) fernando.sanchez@uchceu.es

Public Webinar- 31 May 2022

Technology Collaboration Programme

<u>WP5 Aim & Scope</u>: Appropriate modelling techniques and material properties characterization methods will be defined and used to understand erosion mechanics for LEP system technologies and to quantify the influence on the performance.

- Report literature reviews and alternative/complementary studies including partner's experiences
- Focused on better understanding of 3 key factors:
 - ✓ damage mechanisms,
 - ✓ influence of material behavior,
 - ✓ and performance analysis.
- Based on Modelling techniques and related input material parameters

Specific Technical Activities WP5. Year 1

WP5.1 Damage models based on fundamental material properties

Specific Technical Activities WP5. Year 1

WP5.2 Multilayer systems

WP5.3 Microstructure and macroscopic material properties

Specific Technical Activities WP5. Year 1

Table 3 Project timeline & work breakdown structure

Specific Technical Activities WP5. Year 1-2

WP5.1 Damage models based on fundamental material properties. Identify appropriate

damage models and define appropriate testing methodologies for the material properties defined as input parameters in the modelling. Work will be performed in alignment with WP2.8 and 3.3 (modelling including droplet impingement aerodynamics and key atmospheric issues) and WP4.7 (modelling from RET Data).

- Report 1 based on Literature Review: To write a scientific paper as a review and extend to IEA Report
- ✓ Identify **lacks and drawbacks on state-of-the-art** erosion damage modelling techniques

and corresponding material characterization including partner's experiences.

Next steps:

- □ **To compile available test data relevant to the erosion damage models**, state of the art in models for the accumulation of damage, and its relationship with fundamental material properties. To link with WP4 Lab Testing.
- To explore further analysis of combined weathering and RET and inclusion in Lifetime Prediction Models. Analysis of UV effect on material base fundamental properties and hence a key issue on erosion mechanics. Research to be focused on how to relate weathering cycles with RET and in-field performance modelling analysis. In Relation with WP2

Specific Technical Activities WP5. Year 1-2

<u>WP5.2 Multilayer systems.</u> Consider the leading edge as a multilayer system, and the different modelling approaches (in relation with 5.1). Appropriate analysis for **Manufacturing issues** due to **LEP configuration**, application procedure, LEP **blade integration** technology.

- Report 2 based on Literature Review: LEP multilayer technology and interface modelling methodologies. To write&present conference paper as a review and to extend to IEA Report
 - Develop <u>comprehensive literature reviews</u> on multilayer / interface damage and underline different SoA modelling approaches with required input parameters.

Next steps:

- Develop a report for performance testing analysis methodology to extract material/interfacial modelling inputs such as the interfacial fracture toughness quantification and the critical traction/separation of the interfaces. This work is closely connected to the experimental fracture mechanics approaches discussed in WP4.
- □ To develop an interface performance testing & modelling analysis methodology which will take into account the effect of:
 - the different layers of each configuration
 - the strain rate sensitivity of the interfaces
 - the gradual property degradation due to rain erosion

Specific Technical Activities WP5. Year 1-2

WP5.3 Microstructure and macroscopic material properties. Connecting the observed macroscopic mechanical behavior with the polymer composition and microstructure. Investigating the effect of fillers, additives, polymer chemistry, on erosion mechanics and accumulation damage. To investigate testing techniques for polymer system analysis linked with the erosion damage progression. To explore how material properties derived at an atomistic level can feed into mesoscale and macroscale simulations.

 ✓ Develop comprehensive literature reviews on polymer composition and microstructure and underline different LEP technology approaches

Next steps:

Report 3 on the material microstructure and macroscopic material fundamental properties in relation with erosion performance. SoA to predict high strain rate viscoelastic properties of LEP systems computationally with molecular dynamics, and the materials properties to evaluate models. To analyse temperature effects in terms of viscoelasticity relation with erosion mechanics. In relation with WP2

Webinar – Task 46 Erosion of wind turbine blades

IEA Wind TCP Poll & mentimeter© results

31 May 2022 , 16:00 CEST

Raul Prieto (VTT) and Charlotte Hasager (DTU), Sara Pryor (Cornell Univ.) and Marijn Veraart (Ørsted), David Maniaci (Sandia), Jakob Ilsted Bech (DTU), Maral Rahimi (Hempel), Fernando Sánchez López (UCH-CEU) and Bodil Holst (Univ. of Bergen)

Technology Collaboration Programme

Blade erosion: What are key research challenges?

accurate and fair testing

Blade erosion: What are key challenges in the wind industry?

lab results vs real life aging of materials offshore maintenance new blades without it apply product - defects find safe mode settings reliable-repairable lep lep tapes wind data find easy fix 4 old blade blade o and m planning requirements unclear increasing velocity aerodynamic influence risk evaluation performance loss financials rain data lep durability in field damage categorization aerodynamic loss long-lasting-materials selection of lep processability offshore repair aep loss lep installability lep variability geopraphies inspection and repair confidentiality lifetime prediction eb prediction process feasibility cost reduction repair quality of repairs inspection interval coe characterize reliability maintenance strtategy rain erosion damage quantification site specific prediction human resources appropriate coating select products material ret and cost offshore field repair quantify economic loss

Mentimeter

Poll – Question #1

IEA task 46 webinar 31 May 2022

1 5:11 | 2 questions | 33 of 39 (84%) participated

1. What challenges do you foresee on blade erosion 10 years from now? (Multiple Choice) *

33/33 (100%) answered

Weather conditions in emerging markets poorly known	(13/33) 39%
Higher tip speeds of novel turbines will increase blade erosion	(20/33) 61%
Cost effective coating solutions will not be available	(7/33) 21%
O&M costs increase for the fleet of existing wind farms	(16/33) 48%
Blade aerodynamic performance cause loss of energy production due to erosion	(16/33) 48%
Scaling up offshore wind installations rapidly will increase blade erosion	(20/33) 61%

Poll – Question #2

2. Which concepts have the highest potential to tackle blade erosion? (Multiple Choice) *

33/33 (100%) answered

Wind farm planning, e.g. site specific erosion assessment maps	(10/33) 30%
Blade design, e. g. new coating materials	(32/33) 97%
Blade design, e. g. blade design for lower tip speed	(5/33) 15%
O&M, e. g. cost effective inspection	(6/33) 18%
O&M, e. g. cost effective service and repair	(16/33) 48%
Wind turbine control, e. g. erosion safe operation	(11/33) 33%
Disruptive innovation tackling blade erosion 100%	(14/33) 42%

End Poll

Operating agents:

Charlotte Bay Hasager (cbha@dtu.dk) and Raul Prieto (raul.Prieto@vtt.fi)

Belgian Belgian Ministry of Economy Engie Canada Natural Resources Canada WEICan Denmark Danish Energy Agency Hempel Finland Business Finland VTT Germany Federal Ministry for Economic Affairs and Energy Fraunhofer IWES Japan Sustainable Energy Authority of Ireland NUI Galway University of Limerick IT Carlow Japan New Energy and Industrial Technology Development Organization (NEDO) AIST Netherlands Suztainable Energy University of Limerick IT Carlow Sustainable Energy University of Limerick IT Carlow Netherlands New Energy and Industrial Technology Development Organization (NEDO) AIST Netherlands RVO Suzton TNO Eneco Norway NVE Generos University of Bergen Spain CIEMAT Generos University of Bergen Spain ORE Catapult Siemens Gamesa Renewable Energy Nordex Energy Spain DNV Iberica United Kingdom ORE Catapult ORE Catapult University of Bristol Lancaster University Ormell University United States US DOE Sandia National Laboratories	Country	IEA Wind Contracting party	Task Participant		
CanadaNatural Resources CanadaWEICanDenmarkDanish Energy Agency Panish Energy AgencyDTU Hempel Orsted A/SFinlandBusiness FinlandVTTGermanyFederal Ministry for Economic Affairs and EnergyFaunhofer IWES CovestroGermanyFederal Ministry for Economic Affairs and EnergyCovestroIrelandSustainable Energy Authority of IrelandNUI Galway University of Limerick IT CarlowJapanNew Energy and Industrial Technology Development Organization (NEDO)AIST Osaka University Tokyo Gas Co. Asahi Ruber Inc.NetherlandsRVOTI Delft Suzion TNO EnecoSuzionNorwayNVEEquinor University of BergenNorwayRVEEquinor Universida Cardenal Herrera - CEUSpainCIEMATCENER Siemens Gamesa Renewable Energy Nordez Energy Spain DIV IbericaUnited KingdomORE Catapult University of Bristol Lancaster UniversityUnited StatesUS DOESandia National Laboratories	Belgium	Belgian Ministry of Economy	Engie		
Denmark Danish Energy Agency DTU Pennark Danish Energy Agency Hempel Ørsted A/S Fraunhofer IWES Germany Ederal Ministry for Economic Affairs and Energy Fraunhofer IWES Ireland Sustainable Energy Authority of Ireland Nordex Energy Iniversity of Limerick Japan New Energy and Industrial Technology Development Organization (NEDO) AIST Netherlands Suston (NEDO) Suston Norway RVO TU Norway NVE Tu Delft Spain CIEMAT Suston Spain CIEMAT Aerox University of Bergen University of Bergen Ver Aerox University of Bergen Ver Energy Nordex Energy Spain DNV Iserica Spain ORE Catapult ORE Catapult ORE Catapult University of Bristol Lancaster University Spain	Canada	Natural Resources Canada	WEICan		
DenmarkDanish Energy Agency Ørsted A/SHempel Ørsted A/SFinlandBusiness FinlandVTTGermanyFederal Ministry for Economic Affairs and EnergyCovestroFederal Ministry for Economic Affairs and EnergyCovestroIrelandSustainable Energy Athority of IrelandNUI Galway University of Limerick IT CarlowJapanNew Energy and Industrial Technology Development Organization (NEDO)AIST Osaka University Tokyo Gas Co. Asahi Ruber Inc.NetherlandsNVEEquinor University of Bergen University of BergenNorwayNVEEquinor University of Bergen University of BergenNorwayORE CatapultAirox University University of Bergen Aerox University of Bergen University of Bergen Nordex Energy Spain ONV BericaUnited KingdomORE CatapultORE Catapult University of Bristol Lancaster UniversityUnited StatesUS DOESandia National Laboratories			DTU		
Prinand Orsted A/S Finland Business Finland VTT Germany Federal Ministry for Economic Affairs and Energy Faunhofer IWES Germany Federal Ministry for Economic Affairs and Energy Covestro Ireland Sustainable Energy Authority of Ireland NUI Galway Ireland New Energy and Industrial Technology Development Organization (NEDO) AIST Netherlands NVE Tokyo Gas Co. Asahi Ruber Inc. Norway NVE TU Delft Norway NVE Equinor University of Bergen Spain CIEMAT Equinor University of Bergen Spain CIEMAT Gereau CEVER Spain ORE Catapult ONV ENER Siemens Gamesa Renewable Energy Nordex Energy Spain DNV Iberica University of Bristol Lancaster University ORE Catapult ORE Catapult University of Bristol Lancaster University Cornell University University of Bristol Lancaster University Sandia National Laboratories	Denmark	Danish Energy Agency	Hempel		
Finland Business Finland VTT Germany Federal Ministry for Economic Affairs and Energy Faunhofer IWES Sustainable Energy Authority of Ireland Ovdex Energy NV Ireland Nustainable Energy Authority of Ireland NUI Galway University of Limerick IT Carlow Japan New Energy and Industrial Technology Development Organization (NEDO) AIST Osaka University Tokyo Gas Co. Asahi Ruber Inc. Netherlands RVO TU Delft SuzIon TNO Eneco Norway NVE Equinor University of Bergen Aerox University of Bergen Aerox University of Bergen Spain CIEMAT Equinor Universida Cardenal Herrera - CEU United Kingdom ORE Catapult ORE Catapult ONV learica University of Bristol Lancaster University United States US DOE Sandia National Laboratories			Ørsted A/S		
Sermany Federal Ministry for Economic Affairs and Energy Covestro reland Sustainable Energy Authority of Ireland MUI Galway Nul Galway University of Limerick Tartanable Tartanable Japan New Energy and Industrial Technology Development Organization (NEDO) AIST Netherlands Tu Delft Norway Tu Delft Norway NVE Norway NVE Spain CIEMAT Great Kingdom ORE Catapult University of Bristol Lancaster University University of Bristol Lancaster University	Finland	Business Finland	VTT		
Sermany Federal Ministry for Economic Affairs and Energy Covestro reland Sustainable Energy Authority of Ireland Nordex Energy NUI Galway NUI University of Limerick lapan New Energy and Industrial Technology Development Organization (NEDO) AIST Netherlands Tokyo Gas Co. Asahi Ruber Inc. Sustainable Energy Athority of Ireland Netherlands RVO Tu Delft Suzion Netherlands NVE Tu Delft Suzion Norway NVE Equinor University of Bergen Spain CIEMAT Equinor University of Bergen Junited Kingdom ORE Catapult ORE Catapult University of Bristol Lancaster University ORE Catapult ORE Catapult University of Bristol Lancaster University Sandia National Laboratories			Fraunhofer IWES		
Sermany Economic Affairs and Energy Emil Frei value Sustainable Energy Authority of Ireland NUI Galway Papan Sustainable Energy Authority of Ireland NUI Galway Vetherlands New Energy and Industrial Technology Development Organization (NEDO) AIST Vetherlands New Energy and Industrial Technology Development Organization (NEDO) AIST Vetherlands RVO Tu Delft Suzion TNO Eneco Suzion Norway NVE Equinor University of Bergen Spain CIEMAT Aerox University of Bergen Spain ORE Catapult ONV Ierrica Jnited Kingdom ORE Catapult ORE Catapult ORE Catapult Jnited States US DOE Sandia National Laboratories		Federal Ministry for	Covestro		
Energy Nordex Energy DNV reland Sustainable Energy Authority of Ireland NUI Galway Papan New Energy and Industrial Technology Development Organization (NEDO) AIST Netherlands AUST Osaka University Netherlands Tu Delft Suzion Norway NVE Tu Delft Norway NVE Equinor Noriversity of Bergen Aerox University of Bergen University of Bergen Spain CIEMAT Aerox University of Bergen NVE University of Bergen Juited Kingdom ORE Catapult University of Bristol Juited States US DOE Sandia National Laboratories	Germany	Economic Affairs and	Emil Frei		
Image: space		Energy	Nordex Energy		
reland NUI Galway Vertherland University of Limerick Vertherland New Energy and Industrial Technology Development Organization (NEDO) AIST Vertherlands New Energy and Industrial Technology Development Organization (NEDO) AIST Vertherlands New Energy and Industrial Technology Development Organization (NEDO) Tokyo Gas Co. Netterlands TU Delft Norway NVE Tu Delft Norway NVE Equinor Vertherlands Equinor University of Bergen Acrox University of Bergen Aerox Mathematication University of Bergen Acrox Universidad Cardenal Herrera - CEU Spain CIEMAT Eismens Gamesa Renewable Energy Nordex Energy Spain Juited Kingdom ORE Catapult University of Bristol Junited States US DOE Sandia National Laboratories			DNV		
Sustainable Energy Authority of Ireland University of Limerick IT Carlow Iapan New Energy and Industrial Technology Development Organization (NEDO) AIST Osaka University Netherlands RVO Tokyo Gas Co. Asahi Ruber Inc. Norway RVO TU Delft Suzion TNO Eneco Norway NVE Equinor University of Bergen Aerox University of Bergen Spain CIEMAT Equinor Universidad Cardenal Herrera - CEU CENER Spain ORE Catapult ONVE Universidad Cardenal Herrera - CEU CENER Jnited Kingdom ORE Catapult ORE Catapult Jnited States US DOE Sandia National Laboratories			NUI Galway		
Authority of Ireiand IT Carlow IT Carlow AIST Osaka University Development Organization (NEDO) Netherlands Norway Norway NVE CIEMAT Spain Dirited Kingdom NUE CIEMAT AUTORING AUST Osaka University Tokyo Gas Co. Asahi Ruber Inc. TU Delft Suzion TNO Eneco Equinor University of Bergen Aerox Universidad Cardenal Herrera - CEU CENER Siemens Gamesa Renewable Energy Nordex Energy Spain DNV Iberica ORE Catapult University of Bristol Lancaster University South ONE Sandia National Laboratories Sandia National Laboratories Sandia National Laboratories Sandia National Laboratories Sandia National Laboratories	reland	Sustainable Energy	University of Limerick		
New Energy and Industrial Technology Development Organization (NEDO) AIST Osaka University Tokyo Gas Co. Asahi Ruber Inc. Netherlands TU Delft Suzion TNO Eneco Norway NVE Equinor University of Bergen Spain CIEMAT Equinor Universidad Cardenal Herrera - CEU Spain CIEMAT Energy Nordex Energy Spain DNV Iberica Jnited Kingdom ORE Catapult ORE Catapult University of Bristol Lancaster University Jnited States US DOE Sandia National Laboratories Sandia National Laboratories		Authority of Ireland	IT Carlow		
New Eregy and industrial Technology Development Organization (NEDO) Osaka University Netherlands Tokyo Gas Co. Norway RVO TU Delft Norway NVE Equinor Norway NVE Equinor University of Bergen Aerox University of Bergen Spain CIEMAT ENER Spain ORE Catapult University of Bergen Jnited Kingdom ORE Catapult University of Bristol Jnited States US DOE Sandia National Laboratories		New Freedow and	AIST		
Japan Development Organization (NEDO) Tokyo Gas Co. Asahi Ruber Inc. Netherlands RVO TU Delft Suzion Norway NVE Equinor University of Bergen Spain CIEMAT EQUINOR CIEMAT Spain ORE Catapult University of Bristol Lancaster University Jnited States US DOE ORE Catapult		ndustrial Technology	Osaka University		
Organization (NEDO) Asia Ruber Inc. Netherlands TU Delft Norway RVO NVE Equinor University of Bergen Aerox CIEMAT CIEMAT CIEMAT ORE Catapult University of Bristol Lancaster University ORE Catapult University of Bristol Lancaster University Spain	lapan	Development	Tokvo Gas Co.		
Netherlands RVO TU Delft Norway RVO Suzion Norway NVE Equinor Spain CIEMAT Aerox University of Bergen Aerox CEU CENER Siemens Gamesa Renewable Energy Nordex Energy Spain DNV Iberica University of Bristol Carcapult University of Bristol Lancaster University University Cornell University University Sandia National Laboratories		Organization (NEDO)	Asahi Ruber Inc.		
Netherlands RVO RVO RVO RVO RVO RVO RVE Spain RVE RVO RVE RUD RECO Equinor University of Bergen Aerox University of Bristol Lancaster University Cornell University Sandia National Laboratories Add			TU Delft		
Netherlands RVO TNO Eneco Norway NVE Equinor University of Bergen Spain CIEMAT Equinor Universidad Cardenal Herrera - CEU Spain CIEMAT CENER Siemens Gamesa Renewable Energy Nordex Energy Spain DNV Iberica Jnited Kingdom ORE Catapult ORE Catapult Jnited States US DOE Sandia National Laboratories 2M			Suzion		
Norway NVE Equinor Norway NVE Equinor Spain CIEMAT Aerox Universidad Cardenal Herrera- CEU Spain CIEMAT CIENER Siemens Gamesa Renewable Energy Nordex Energy Spain DNV Iberica Jnited Kingdom ORE Catapult ORE Catapult Jnited States US DOE Sandia National Laboratories 2M	Netherlands	RVO	TNO		
Norway NVE Equinor University of Bergen Aerox Universidad Cardenal Herrera - CEU CENER Siemens Gamesa Renewable Energy Nordex Energy Spain DNV Iberica ORE Catapult University of Bristol Lancaster University United States US DoE US DoE UNIVE UNIVERIAN UNIVERIAN UNIVERIAN UNIVERIAN US DOE UNIVERIAN UNIVERIA			Eneco		
Norway NVE Lighton VVE University of Bergen Aerox University of Bergen CIEMAT C			Equipor		
Spain CIEMAT CIE	Norway	NVE	Liniversity of Bergen		
CIEMAT CI			A arrest		
Spain CIEMAT CENER Siemens Gamesa Renewable Energy Nordex Energy Spain DNV Iberica Jnited Kingdom ORE Catapult ORE Catapult University of Bristol Lancaster University Cornell University Jnited States US DOE Sandia National Laboratories 2M			Universidad Cardenal Herrera – CEU		
Spain CIEMAT Siemens Gamesa Renewable Energy Nordex Energy Spain DNV Iberica Jnited Kingdom ORE Catapult ORE Catapult University of Bristol Lancaster University Cornell University Us DoE Sandia National Laboratories 2M			CENER		
United States US DOE UNITED States UNORE Catapult UNIVERIAL Correll University US DOE UNIVERIAL CORE Catapult UNIVERSITY	Spain	CIEMAT	Siemens Gamesa Renewable Energy		
United Kingdom ORE Catapult University of Bristol Lancaster University University University US DoE US DoE US DoE UN US US US DOE UN US			Nordex Energy Spain		
United Kingdom ORE Catapult ORE Catapult University of Bristol Lancaster University United States US DOE Sandia National Laboratories			DNV Iberica		
United Kingdom ORE Catapult University of Bristol Lancaster University Cornell University UNITED States US DOE Sandia National Laboratories			ORE Catapult		
Lancaster University Cornell University United States US DoE Sandia National Laboratories	United Kingdom	ORE Catapult	University of Bristol		
United States US DoE Sandia National Laboratories			Lancaster University		
US DOE Sandia National Laboratories			Cornell University		
	United States	US DoF	Sandia National Laboratories		
		00 000	3M		

6