

WRA in the 'small wind' regime

IEA Task 41 meeting: Wind Resource Assessment and Obstacle Modelling

19 Feb. 2021

Mark Kelly, RAM section / DTU Wind Energy

WRA for 'typical' smaller turbines

(What was [not] addressed the first time around?)

- First generation of wind energy (~1970's–80's):
 - » hub heights in the atmospheric surface layer
 - » stall-regulation common
 - » observations limited (though cheaper; more accessible?)
 - wind conditions
 - large velocity perturbations
 - nonlinear effects
 - 'strange' statistics: P(u) form, directional dependence
 - bottom-up flow problem
 - » many phenomena look like "turbulence"
 - measurement inadequacy
 - sample length
 - flow-distortion: instrument / externally
 - different turbulent environment than turbine

Task 41 research / end-user context

from 2020 research priorities survey

- [H] Standardize/open markets for WTG >55kW, >200 m²
 - Increase upper limit for small/DW; adapt 61400-2 for this
 - Need data! \rightarrow report data/validation?
- [H] Aeroelastic models & validation
- [H] Loads testing* & characterization: adapt 61400-13 for DW
- [H/M] Duration testing (USA)
- [M/H] turbulence prescription, characterization, classes*;
- [M] performance

DTU

- [M] tower dynamics/interaction
- [M] separate classification for micro-turbines

Task 41 research / end-user context

<u>from 2020 research priorities survey</u> (* denotes specific issues from T41 workshops)

- [H] Standardize/open markets for WTG >55kW, >200 m²
 - Increase upper limit for small/DW; adapt 61400-2 for this
 - Need data! \rightarrow report data/validation?
- [H] Aeroelastic models & validation
- [H] Loads testing* & characterization: adapt 61400-13 for DW
- [H/M] Duration testing (USA)
- [M/H] turbulence prescription, characterization, classes*
- [M] performance

DTU

Ħ

- [M] tower dynamics/interaction
- [M] separate classification for micro-turbines

Task 41 research / end-user context

<u>from 2020 research priorities survey</u> (* denotes specific issues from T41 workshops)

- [H] Standardize/open markets for WTG >55kW, >200 m²
 - Increase upper limit for small/DW; adapt 61400-2 for this
 - Need data! \rightarrow report data/validation?
- [H] Aeroelastic models & validation
- [H] Loads testing* & characterization: adapt 61400-13 for DW
- [H/M] Duration testing (USA)
- [M/H] turbulence prescription*, characterization, classes*
- [M] performance

DTU

- [M] tower dynamics/interaction
- [M] separate classification for micro-turbines

Actual Power Curves (reporting... c.f. -15) WAsP-online/myWindTurbine.com :

- (small turbines)
- no extrapolation
- wind-atlas driven
- WAsP engine

WAsP-online: Uncertainty types/framework

<u>Component</u>	Input	<u>Model: sensitivity</u>	Model: representat	tivity
Wind Atlas	(*.lib file)	Geostrophic Drag Law	GDL, with Wind Atlas	
Orography	Map: $z(x,y)$	IB-z $(\partial z/\partial x)$		
Roughness	Map: $z_0(x,y)$	IBL(Δz_0) + horiz.extrapol'n(z_0)		
Obstacle	Missing? Location + dimensions	`model' = user input (+map?) + Pereira(<i>r,z,H,\</i>)		
Power Curve	P(U) table	P(U) + yaw error; Missing table		
DTU Wind Energy, Tecl	nnical University of Denmark		Mark Kelly, MET group	Mar.201

UQ for 'simple, small' wind turbines

Practical way from WAsP-online

<u>Component</u>	Estimate ($\delta U/U$)	Note
Wind Atlas input	$\sim (10\%)*f(z,\sigma_z)$	$2 \cdot RIX(\%) \frac{\Delta x}{90m}$
z map + flow-model	$f(\Delta x, \sigma_z) \sim f(\Delta x, RIX) \sim$	Flow-model unc.; complex terrain; can affect $dU(z_{0,bkd})$
$z_0 map + model$	$c_1 m_c(z/r_c)$	P(missing contour) $m = Abs\{ln(\Delta z_{02}/\Delta z_{01})\}$ + bad $z_{0,land}$ at coastline
WindAtlas+GDL→Wasp	$\delta \ln z_0 * \left(z_0 / z_{0,w} \right)^p$	
Obstacle represent'n	$\propto P(\text{missed/bad})$	Likely collapsable into Obst. model
Power Curve		Potential off-diagonals! (x-correl.'s)
Obstacle model	~ some % of Perera	Potential off-diagonals! (x-correl.'s)
User-entered thing		
Wind Energy, Technical University of	Denmark	Mark Kelly, MET group Feb- Mar.2015

UQ for 'simple, small' wind turbines

Practical way from WAsP-online

Uncertainty component	estimated form	worksheet form	<u>p1</u>	<u>p2</u>	<u>p3</u>	<u>p4</u>	<u>p5</u>	est.unc.
								<u>in U</u>
Wind atlas (.lib) input	$y\%+(x\%) \ln(1+RIX*z_{ref}/z)$	$p_1+p_2*ln(1+p_3*p_5/p_4)$	5.0%	5.0%	5	21m.	10m.	11%
z map + flow-model	<i>c</i> *RIX(%)*Dx/dx0	p4*p ₁ *p ₂ /p ₃	5.0%	180	90	0.4		4%
z_0 map + model	$c * \ln(z_0/z_{0w})(1-e^{-z/r})*P(\text{coast})$	$p_5*\ln(p_1/.0002)(1-e^{-p^2/p^3})*p_4$	0.03	18m.	100m.	50%	0.20	8%
WindAtlas+GDL> Wasp	$c \left(z_{0}/z_{0wr} \right)^{0.3} \left[1 + \delta z_{0}/z_{0} \right]^{0.3}$	$(p_1/.0002)^{0.3} * [p_2]^{0.3}$	0.03	3				4%
Obstacle rep.+pos.+turb.pos.		p ₁ %	5%					5%
Power Curve		p ₁ %	10%					10%
Obstacle model	$c_1 * (\Delta U_{obs}/U_{obs}) * f(r/h, z/h)$	p ₁ *(p ₂ %)*[]	0.3	6%				2%
1								
1	Power Curve						correl.'s)	
1								
	User-entered thing							
	Wind Energy, Technical University of				Mark Ke			

WRA for 'modern' (multi-MW) wind turbines

uncertainty context :

- 'easier' measurements
- more models

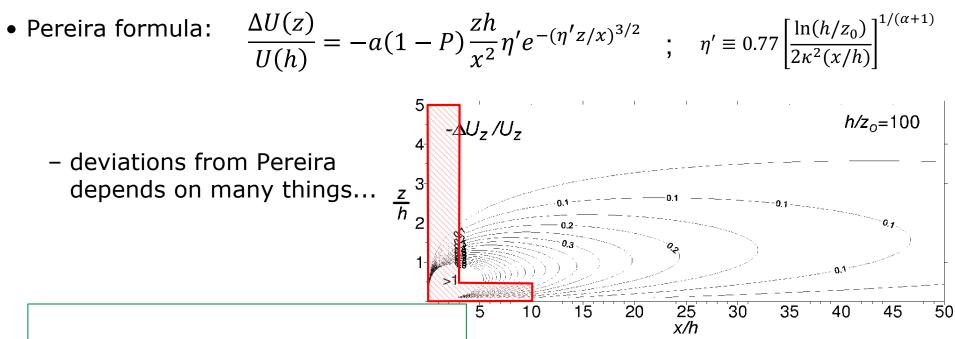
DTU

- flow: 'more terrain seen'
- horiz. extrapolation
- vertical extrapolation
- power curves!
- long-term correction

WAsP sub-models (ALL of them)

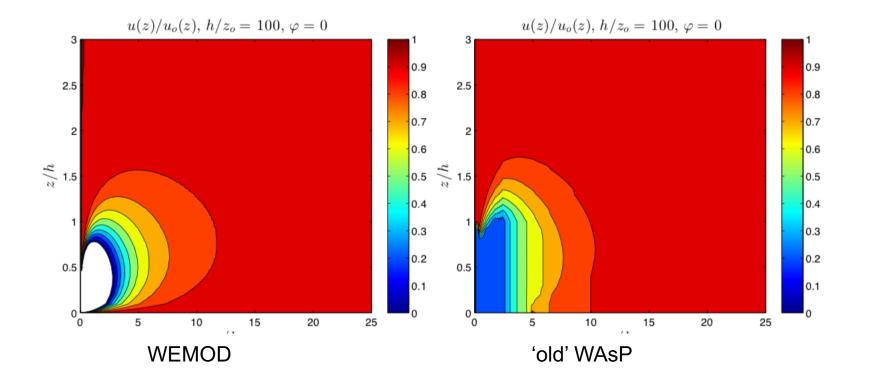
<u>Component</u>	Inputs [x]	Parameters/choices [θ]
(Weibull fit)	U, ϕ timeseries	(Weibull-fit algorithm)
flow-model (IBZ)	z map	Map size [Δr], $\Delta \phi$, h_{inv}
Δz_0 (IBL) model	Δz_0 map: $[m_i, r_i]$	$\Delta \phi$, c1 _{IBL} , c2 _{IBL} , $n_{\Delta z0}$,
GDL	$z_0, f, U, [r, z, \sigma_z, z_{0, eff}] _1^2, \dots$	<i>A</i> , <i>B</i>
Profile modeling	z, z ₀₁	$H_{\rm off}, H_{\rm rms}, A, B, dA/d\mu, dB/d\mu$
Power Curve	P, C_T, ho (+TI, shear)	IPC adj.(z)
Obstacle model	r_i , $\{\Delta r, \Delta \theta\}_i$, por _i , h_i	<u>A_P, a_P, b_P</u> (Pereira)
Park Wake model	U, z	R, D, C_T, k_{exp}
(Long-term correction)	$U, U_{LT.ref}, [T_{obs}, T_{ref}, \sigma_{1yr}, R_{LT-obs}]$	Interpolation method; Reanalysis set

Wind Energy, Technical University of Denmark

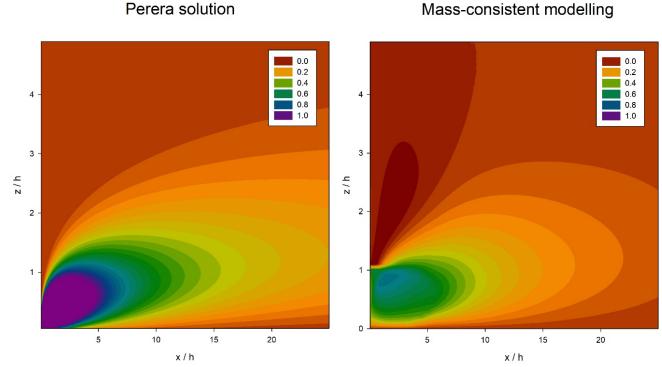

Mark Kelly, RAM Aug.-Nov.2016

Flow around bluff bodies is not easy, even for CFD

- In the ABL: multi-scale interaction, terrain, etc. make it harder !
- Belcher *et al* (1993): $F \sim \rho u_*^2 (h^2/L) (U_1/U_2)^4$

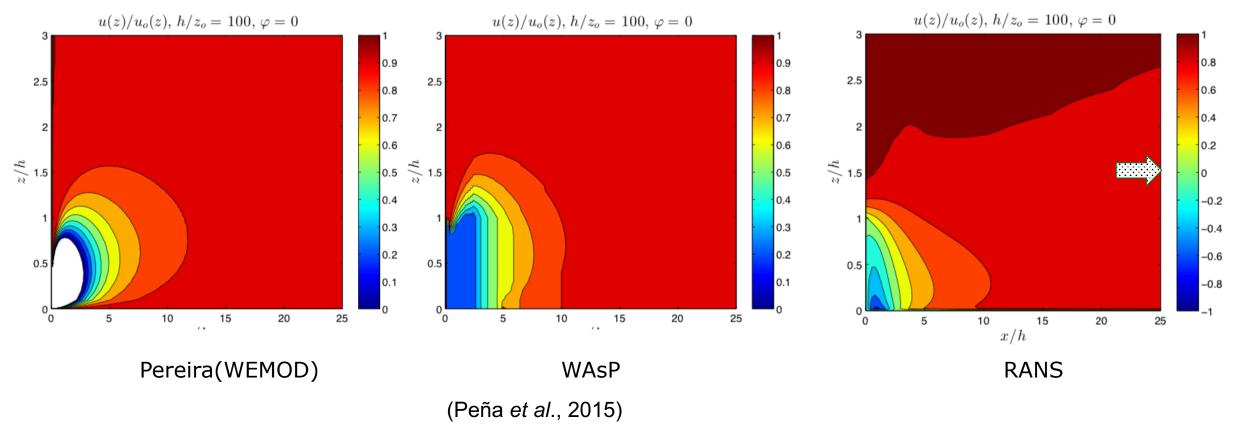


- Modelling
 - Pereira parameterization long used (e.g. WAsP, AWS)
 - updated in 2015 based on lidar & fence experiment
 - Mass-consistent models also efficient
 - RANS used in WRA already, but...
 - more expensive for obstacles; boundary condition requirements
 - difficulty with steep faces; k- ε trouble with lengthscales
 - statistics problematic


- Modelling : rectangular obstacle
 - Pereira parameterization long used (e.g. WAsP, AWS)

(Peña et al., 2015)

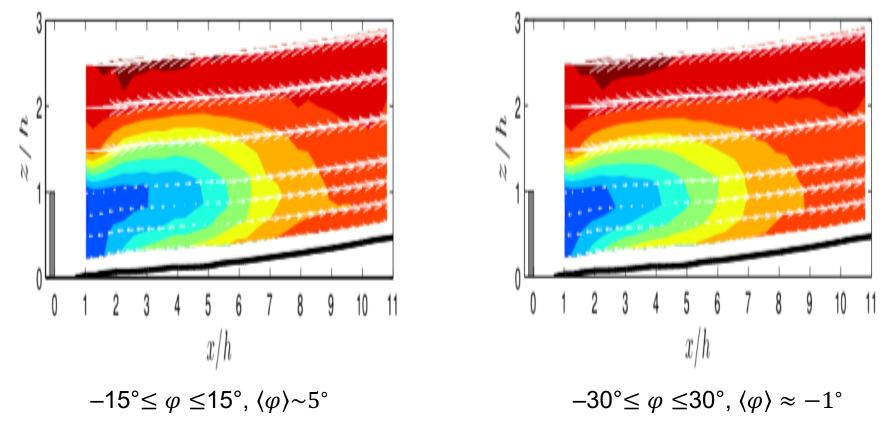
- Modelling : rectangular obstacle
 - Pereira parameterization long used (e.g. WAsP, AWS)
 - Mass-consistent models also efficient



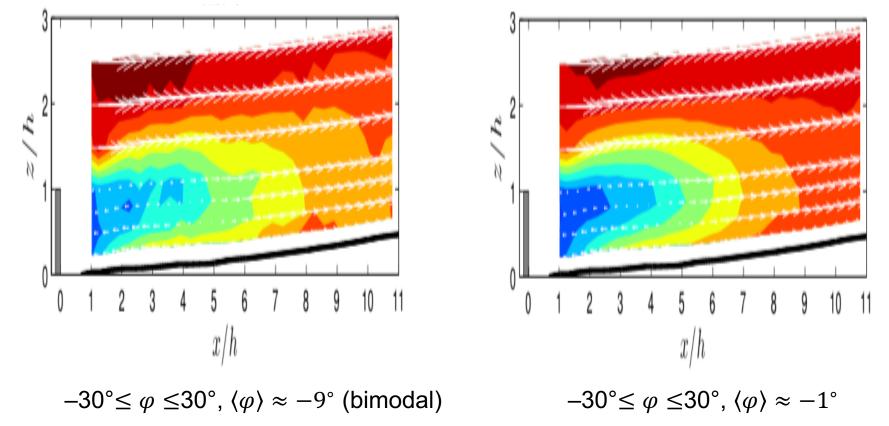
Perera solution

(Sogachev, 2020)

Obstacles...


- Modelling : rectangular obstacle
 - Pereira parameterization long used (e.g. WAsP, AWS)
 - Mass-consistent models also efficient
 - RANS used in WRA already...

- Observation (lidar) : Risø 2014 Fence experiment
 - neutral conditions $\langle z/L \rangle \simeq 0.015$

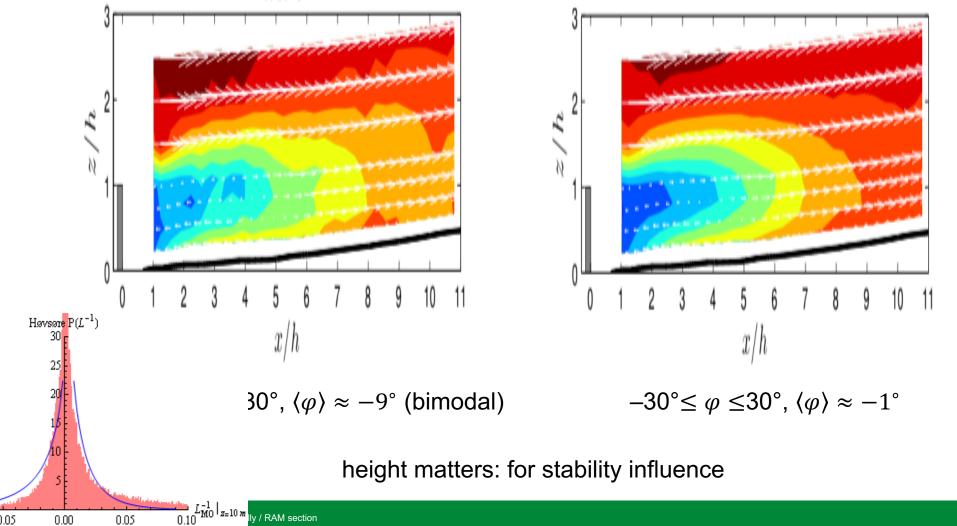

 $\langle z/L \rangle \simeq 0.021$

- Observation (lidar) : Risø 2014 Fence experiment
 - bit stable $\langle z/L \rangle \simeq 0.044$

more neutral $\langle z/L \rangle \simeq 0.021$

DTU Obstacles...

0.05


-0.05

-0.10

0.00

- Observation (lidar) : Risø 2014 Fence experiment
 - bit stable $\langle 6 \text{ m/L} \rangle \simeq 0.044$

more neutral $\langle z/L \rangle \simeq 0.021$

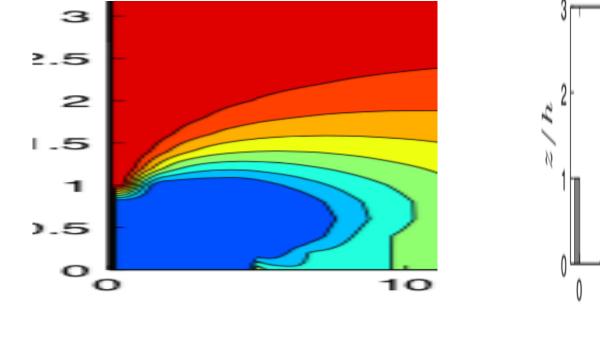
0.9

0.8

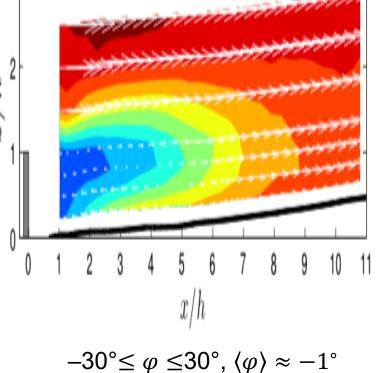
0.7

0.6

0.5


0.4

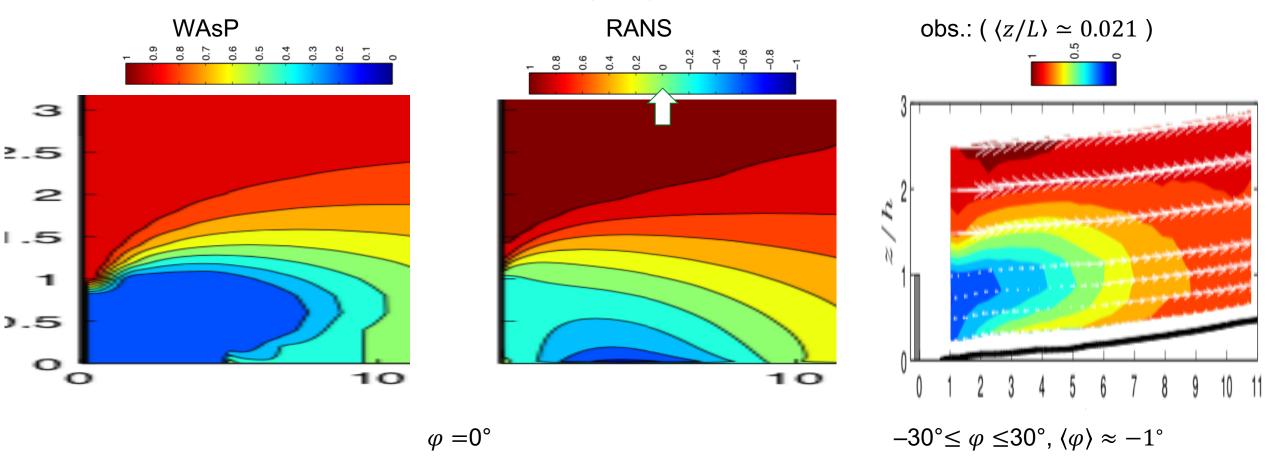
0.3


0.2

0.1 0

- Observation (lidar) : Risø 2014 Fence experiment
- Model (WAsP)

obs.: more neutral $\langle z/L \rangle \simeq 0.021$



 $\varphi = 0^{\circ}$

• Model vs. lidar observations: Risø Fence (2014)

[Peña et al. DTU E-0092 (2015), IEA Task 27]

note different color scales: RANS has re-circulation!

Resource vs. site "assessment" in DW

- { I_u , α } due to surfaces \rightarrow big effect on SWT performance
 - fatigue/lifetime also affected
 - usually single turbine

(except μ -turbines)

- rarely measured

DTU

Ħ

- obstacle models designed for mean speed/up

» not I_u , α

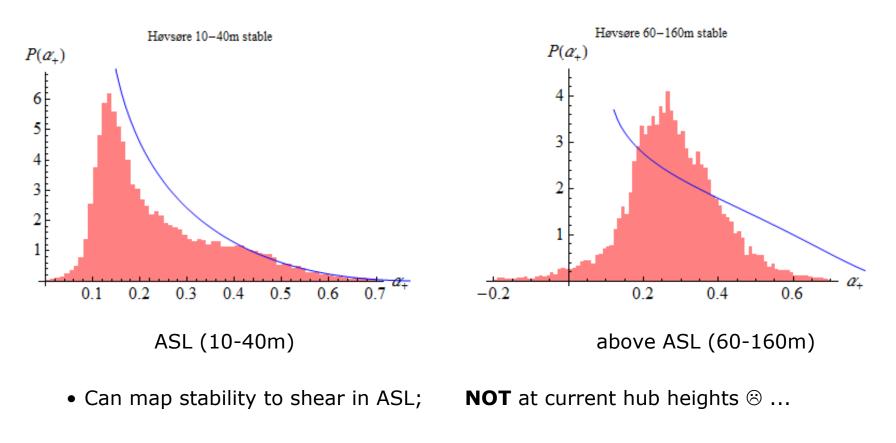
- Missing Power curves in representative conditions
- RANS has difficulty predicting both I_u and U in the ABL [<u>Atmospheric</u> Boundary Layer]
- Resource/site considerations 'mixed together' compared to conventional/MW wind
 - cost versus production
 - guidelines
- We do have some guidance for simple terrain...

simple-terrain basis : statistical "help"

- example of shear exponent from stability
- $P(\alpha)$ is wide... - predictable

3 Stability and shear $P(L^{-1})$ Høvsøre 10-40m stable $P(a'_{+})$ 6 5 $L_{MO}^{-1}|_{z=10 \text{ m}}$ 0.10 4 0.00 0.05 3 2 (Kelly et al., 2014) $P_{+}(\alpha_{+}) \approx P_{+}(L_{+}^{-1}) \frac{1 + 5zL_{+}^{-1}}{\alpha_{+}5z |1 - \alpha_{+}|}$ 0.7 *a*+ 0.1 0.2 0.3 0.4 0.5 0.6 ASL (10-40m)

Høvsøre $P(L^{-1})$


30

Can map stability to shear in ASL

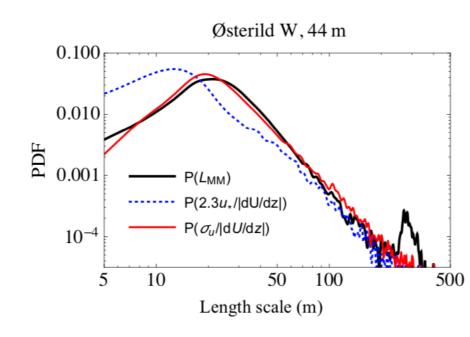
ntu

- SWT "see" bigger α than multi-MW turbines
- old theory adaptable
 - (stability)
- obstacles disrupt

(Kelly et al., 2014)

9 DTU Wind Energy, Technical University of Denmark, Risø campus

Mark Kelly May 2015


DTU

turbulence and wind <u>...</u> assessment

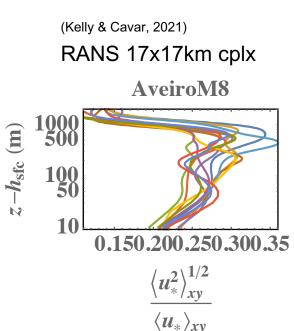
- Not "resource assessment" per se, but for SWT's siting is somewhat mixed with WRA
 - turbulence affects power curve

DTU

- turbulence \rightarrow lifetime changes \rightarrow total yield differs
- Length scales affected by obstacles, terrain, etc. – relation with local shear and σ_u
- use wind-atlases if measurements inadequate
 need local terrain/obstacle description
- leverage [model] uncertainties (?)
 - speedup due to obstacles/surfaces
 - power-curve (σ_u , α basis)
- reporting is crucial...

Terrain / obstacles...

DTU


High-Re flow around bluff bodies isn't easy, even for CFD...

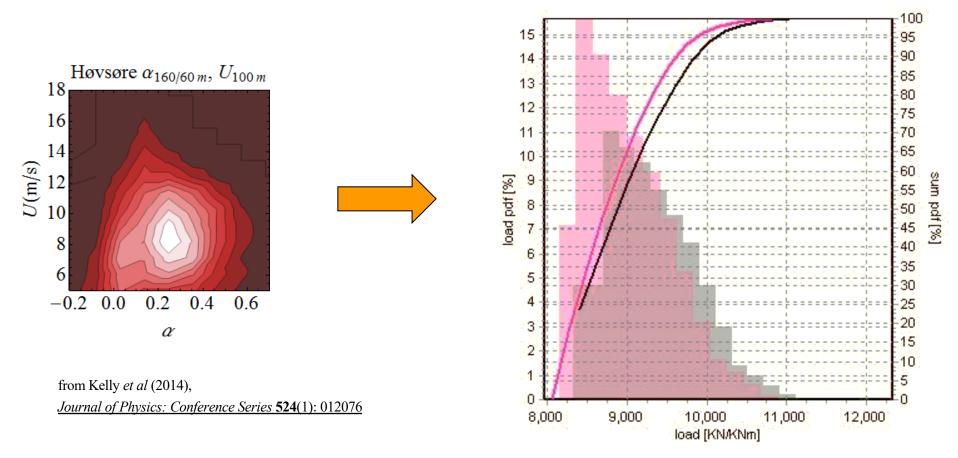
- In the ABL: multi-scale interaction
 - engineering scaling (similitude) fails: stability vs. $z_{0,eff}$...
- High-Reynolds number flow
- recirculation; difficult PDF of velocity:
 - not uni-modal, sensitive to position, terrain (obstacle) geometry, inflow angle
- Belcher *et al* (1993): $F \sim \rho u_*^2 (h^2/L) (U_1/U_2)^4$ for terrain-drag
- low-order models preferable in practice
 - universal metrics useful (see e.g. Pope); reduce input parameter space
 - (allowable) uncertainty should be considered
 - requirements of end-user dictate this...

Terrain / obstacles...

High-Re flow around bluff bodies isn't easy, even for CFD...

- In the ABL: multi-scale interaction
 - engineering scaling (similitude) fails : stability vs. $z_{0,eff}$
- High-Reynolds number flow
- recirculation; difficult PDF of velocity:
 - not uni-modal, sensitive to position, terrain (obstacle) geometry, inflow angle
- Belcher *et al* (1993): $F \sim \rho u_*^2 (h^2/L) (U_1/U_2)^4$ for terrain-drag
- low-order models preferable in practice
 - universal metrics useful (see e.g. Pope); reduce input parameter space
 - (allowable) uncertainty should be considered
 - requirements of end-user dictate this...

"Simple" example (?!?): uncertainty for WAsP-Online


- "Observation" / input
 - CREYAP shows <5% in wind speed for measurements
 - Global wind atlas data: >40km resolution, via upper-air dp/dx
 - meso models give >5% error in wind speed
 - CREYAP gave error ~5% for horiz.extrapolations <20km
 - Obstacle inputs/representation:
 - probability of missing; mis-characterization metric
 - Power curve (e.g. due to turbulence)
 - Map input: roughness/terrain
- Flow modelling
 - complex terrain issues (Troen et al.: 10-40% for d>10km)
 - roughness: local vs. global (<5%)
 - <u>obstacles</u>!

Example 5...Monte Carlo methods

HAWC2, NREL 5MW ref. (black/grey) Flapwise Blade root 1Hz equiv. moments

(14-16 m/s bin)

IEA Task 41 / WRA+obstacles...