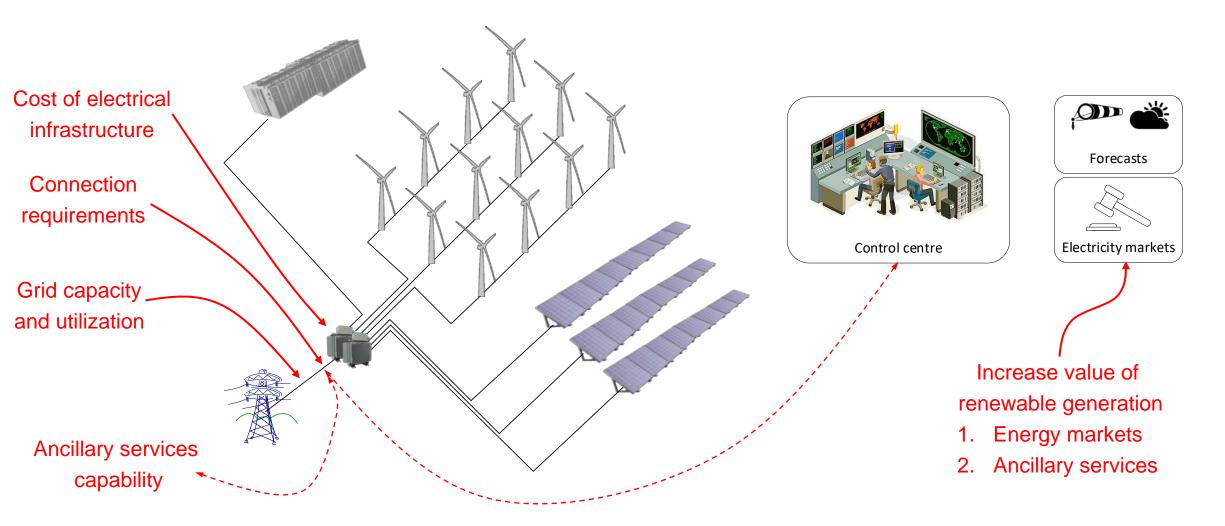


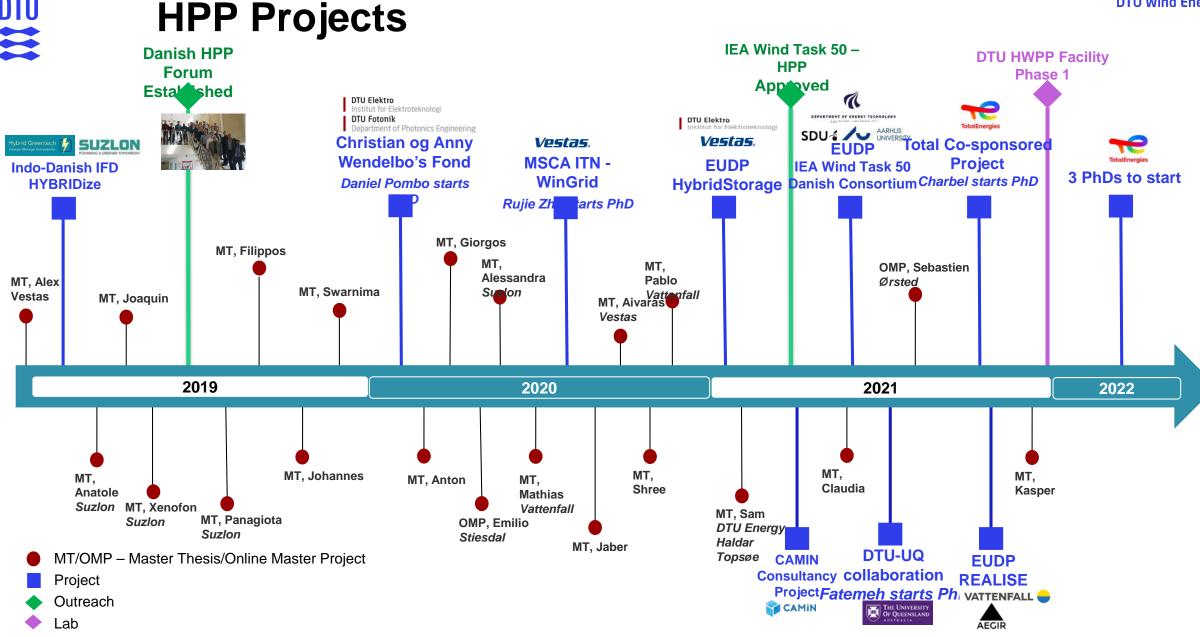
Research at DTU Wind Hybrid Wind Power Plants

Kaushik Das
URC Grid Integration and Hybrid Power Plants
20.12.2021

From wind turbines to wind power plants to hybrid power plants – system integration agenda

Hybrid Wind Power Plants


- HWPP Hybrid Wind Power Plants
 - Wind Power +/ Other RES +/ Storage(s)
 - with common AC point of connection typically connected to MV or HV grid
 - AC or DC or Hybrid collection system is possible
- Driver for design and operational objectives is maximizing the value for owner
 - Market based services
 - Grid code requirements
- Shared land allowing for physical interaction between technologies
- Sector-coupled with other energy productions especially Wind+H2 systems is also included


General Features:

- All the assets are owned by same company so higher controllability
- Motivation is to maximize profit from different energy markets
- Control of electrical load is not of concern of the power plant owner as compared to traditional Hybrid Power Systems
 - Sometime even provide near baseload generation
- Many stakeholders involved

Hybrid power plant – unmet needs and challenges

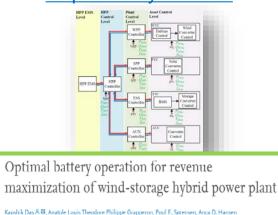


All publications are in Danish Hybrid Power Plant Forum website - https://files.dtu.dk/userportal/?v=4.5.0#/shared/public/_Pn4RJr5-Azu-fhE/HPP%20DTU%20Publications

HYBRIDize

Objective:

- minimize levelized cost of energy (LCOE) and levelized cost of storage (LCOS)
- maximize profit for HPP

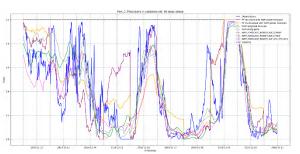

Main Outcomes from DTU: Sizing

	NPV good solar	LCOE good solar	NPV good wind	LCOE good wind	NPV bad solar n wind	LCOE had solar n wind
logitiale	68.542	68.542	77.500	77.500	77.917	77.917
fatitude	23.542	23.542	1.334	8.334	17.292	17.290
elevation	27	27	592	592	620	620
clearance [m]	22	15	59	60	14	66
sp [m2/W]	287	327	203	330	258	330
p rated [MW]	1		1	1	- 1	
Nwt	6	4	295	300	1	
wind density [MW/km2]	8	8	5	5	9	
solar MW [MW]	300	399	304		308	400
Buttery power [MW]	108	- 1	89	0	121	
Buttery energy/power [h]	4	1	3	1	2	
NPV [MEuro]	56.1	31.5	199.3	56.8	39.0	-28.4
IRR	0.079	0.064	0.099	0.087	0.069	0.000
LCOE (Euro/MWh)	43.1	33.5	27.3	19.8	43.8	36.6
CAPEX [MEuro]	299.8	236.5	406.9	144.0	272.9	231.4
OPEX [MEuro]	3.3	3.4	6.3	3.8	3.3	3.3
penalty lifetime [MEuro]	0.1	5.3	0.0	17.9	0.6	10.3
CF	0.23	0.23	0.52	0.29	0.20	0.26
grid [MW]	300	300	300	300	300	300
wind [MW]	6		295	300	. 3	
solar [MW]	399	399	304	0	398	400
Battery Energy [MWh]	412	1	267	. 0	242	(
Battery Power [MW]	200	1	199	0	121	
Total curtailment (GWN)	0.0	0.0	133.3	0.0	0.0	0.0
Ausp [km2]	0.8	1.0	59.0	60.0	0.3	0.0
Rotor diam [m]	82.5	89.6	79.2	62.1	70.2	62.1
Hub height [m]	63.3	59.8	98.6	91.1	49.1	91.1
Number of batteries	2	2	2	0	2	

Hybrid plant sizing for wind, photo-voltaic and Lithium-ion battery storage

Juan Pablo Murcia¹, Kaushik Das¹, Rujie Zhu¹

Supervisory Control


Hierarchical Control Architecture of Co-located
Hybrid Power Plants

Qian Long, Member, IEEE, Kaushik Das, Senior Member, IEEE, and Poul Sørensen, Fellow, IEEE

European and Indian Grid Codes for Utility Scale Hybrid Power Plants

by (② Anca Daniela Hansen 1.* ≅ 0, (② Kaushik Das 1.* ≅ 0, (② Poul Serensen 1 ≅ 0, (② Pukhraj Singh 2 ≅ and

Forecasting

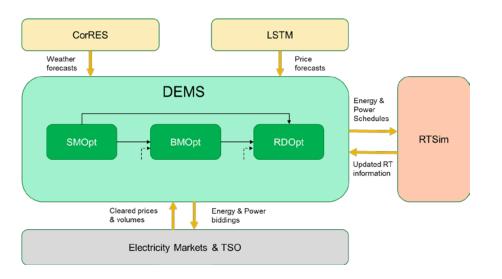
Multi-Horizon Data-Driven Wind Power Forecast:
From Nowcast to 2 Days-Ahead

Daniel Vázquez Pombo^{1,3©}, Tulfie Göcmen^{2©}, Kaushik Dax^{2©}, and Poul Sørensen^{2©}

Data driven probabilistic forecasting for wind-solar hybrid power plants

Tuhfe Göçmen, Kaushik Das, Senier Member, IEEE, Rangaraj A.G., Andrea Gavrilovic, Pukhraj Singh

/nnovation Fund Denmark



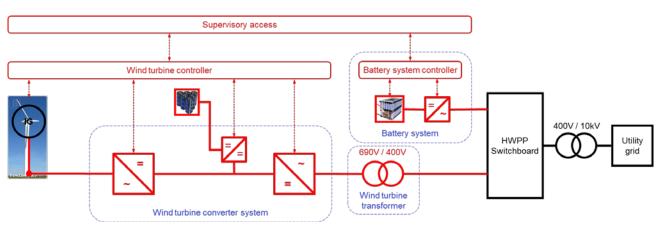
WinGrid

Objective:

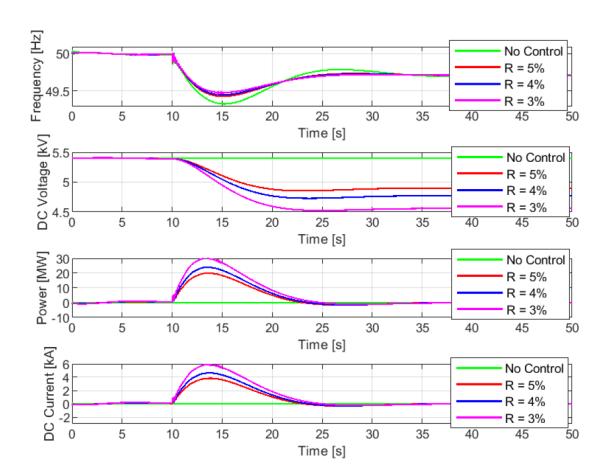
Optimization and Control of Wind, Solar and Storage in Hybrid Power Plants in different electricity markets

Optimal Energy Management of Renewable Hybrid Power Plants in Spot Market considering Battery Degradation Rujie Zhu, Kaushik Das, Poul Sørensen, and Anca Hansen

Assets	Operation stratergy							k€					
	SMOpt+ BMOpt+ RDOpt	Wind			Market			SM	BM revenue			Dogradation	
		DA	НА	5min_ah ead	SM	reg	Remark		regulation	imbalance	BM total	Degradation Cost	Profits
		✓	✓	✓	✓	✓	Perfect forecast	6868	580	-517	63	409	6522
							Real forecast	6723	131	-1007	-876	626	5221
WPP+BESS BI	SMOpt+ BMOpt	✓	✓	-	✓	✓	Perfect forecast	6868	582	-513	68	410	6527
				-			Real forecast	6731	120	-1030	-910	630	5191
	SMOpt+	✓		✓	✓	✓	Perfect forecast	6783	0	-163	-163	342	6278
	RDOpt		•	-			Real forecast	6676	0	-899	-899	325	5452
	SMOpt ·	✓	-	-	✓	-	Perfect forecast	6865	0	-212	-212	579	6074
			-	-		-	Real forecast	6732	0	-994	-994	293	5445
WPP	MPPT	-	-	-	-	-	-	6597	-	-	-	-	6597



Hybrid Storage


Objective:

Frequency services from Wind Turbine with Hybrid Storage

Fast Frequency Support from Hybrid Wind Power Plants Using Supercapacitors

by
Qian Long 1...
Qian Long 1...

Projects just started

- DTU+Univ. of Queensland PhD project
 - Control of Hybrid Power Plants connected to weak grids
- Total funded HPP project: Focus- Design and Control of Renewable Energy Park including P2X
 - 4 PhD projects on
 - Component Sizing of HPP
 - Physical Design of HPP
 - Electrical Design and control of HPP
 - Energy management system and control of HPP
- REALISE
 - Design tool for renewable energy parks based on HyDesign, Balancing Tool Chain, CorRES, TopFarm

HyDesign

Design tool for Hybrid Wind Power plants

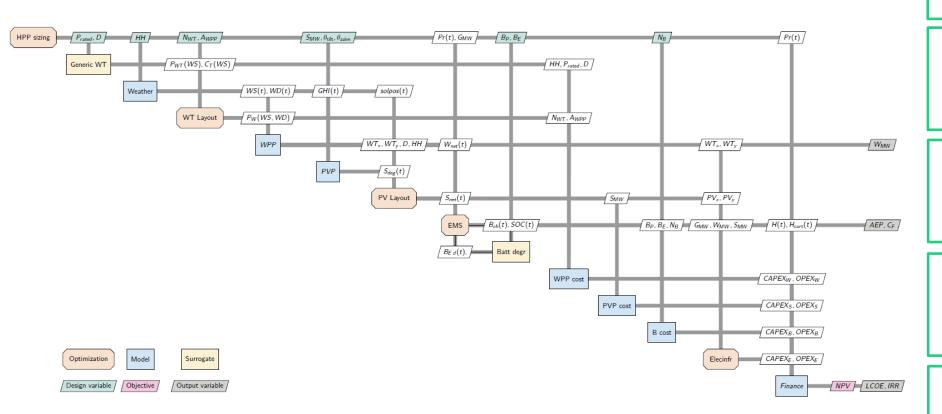
Developed in OpenMDAO platform

Sizing of components Physical

Grid Codes

Energy Management System

Balancing Tool Chain


Interactions

Power2X

Forecasts

Reliability

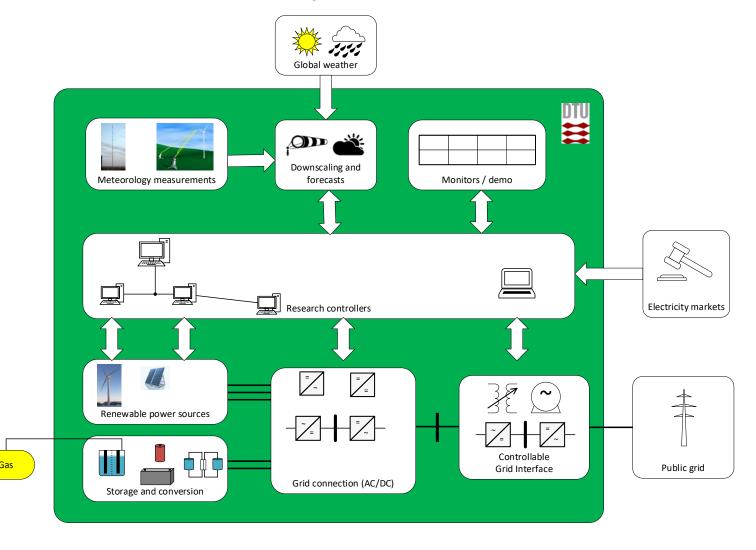
Electrical system Design

Tuesday, 04 January 2022 **DTU Wind Energy** [Division / Section]

Design

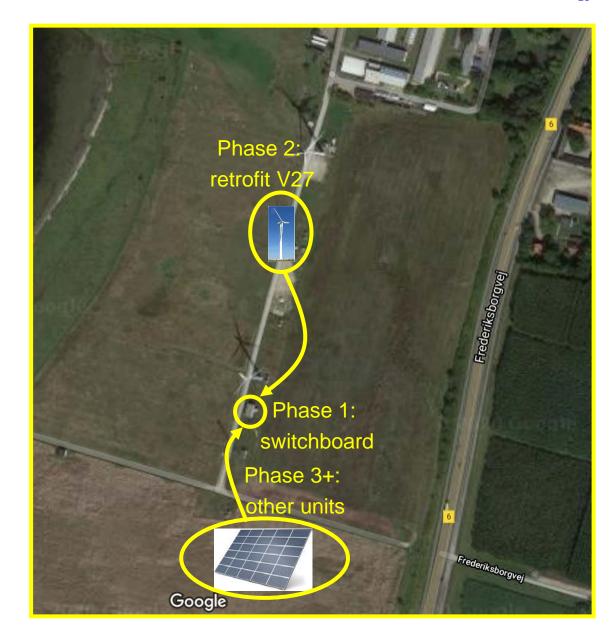
AC/DC WindPowerLab: Converter-based laboratory

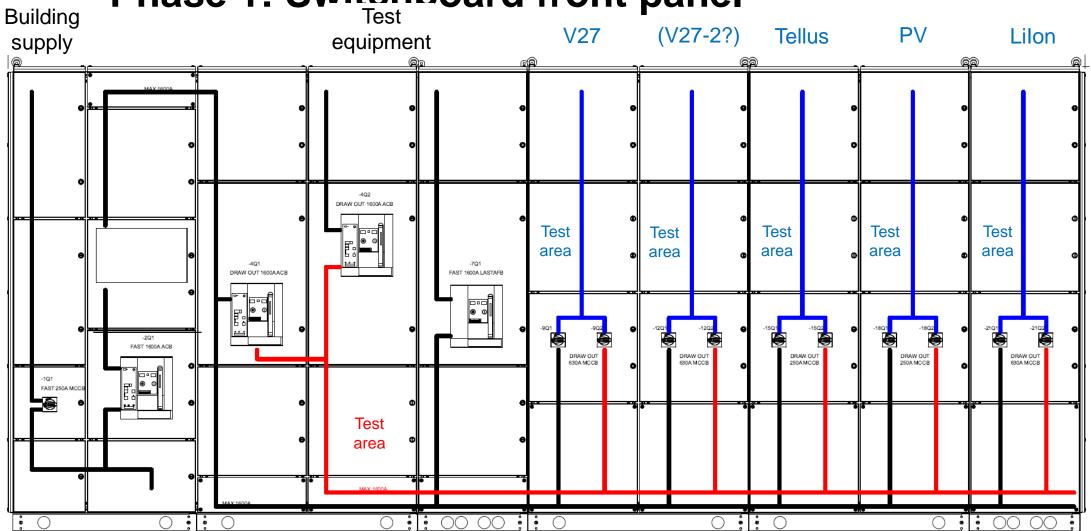
- 4 x 10 kW voltage source converters (VSCs):
 - -2 two-level converters (2LCs)
 - -2 modular multilevel converters



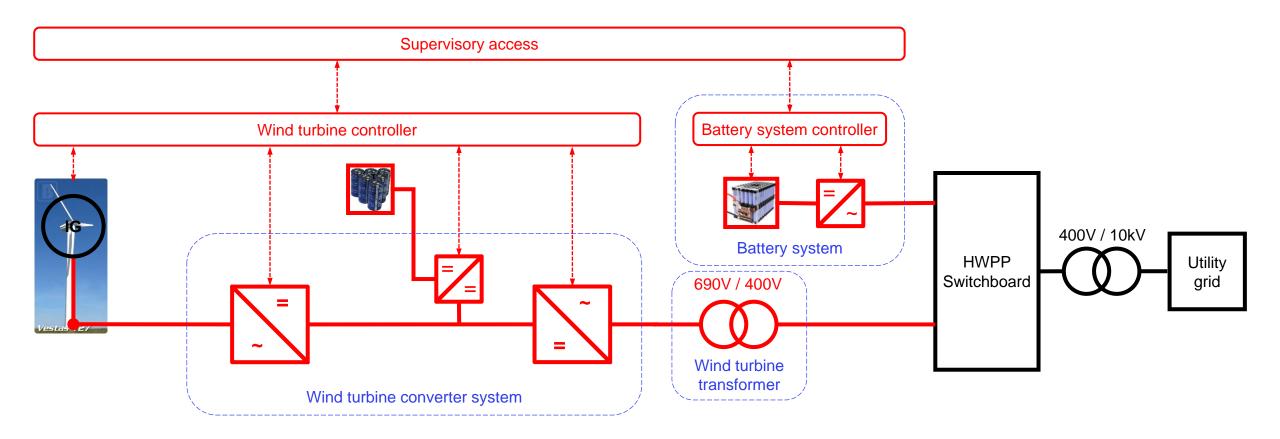
12

DTU Wind Hybrid Power Plant Facility – vision

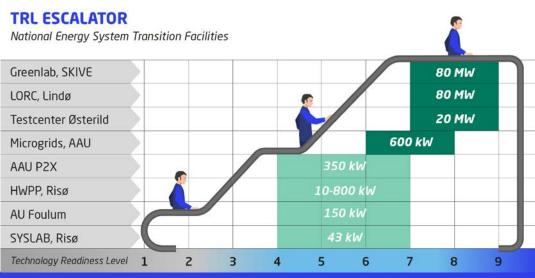

- Grid connected wind-hybrid power plant (wind / solar / storage)
- Open research controllers
- Power collection and gird connection (AC / DC)
- Controllable grid interface
- Connection to external information (weather forecasts, markets)

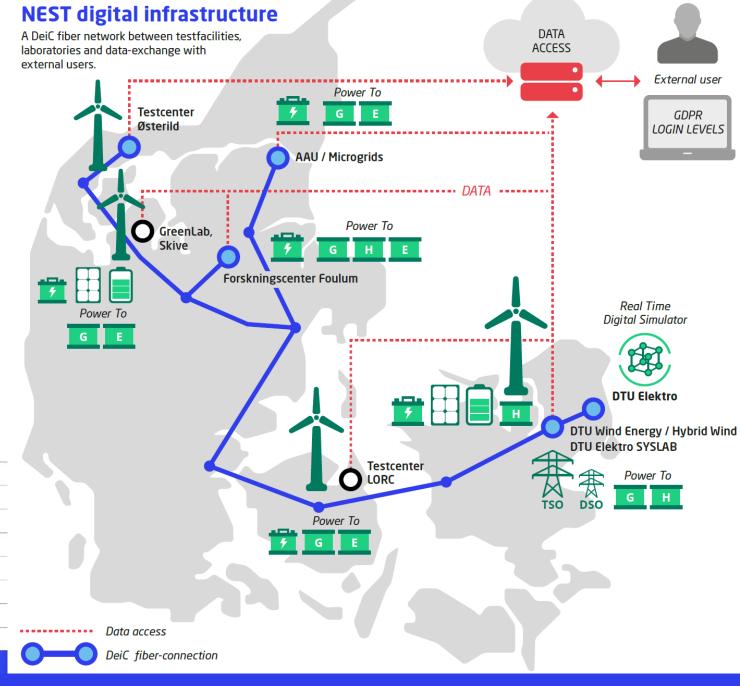

Hybrid Wind Power Plant (HWPP) Facility

- Location:
 - DTU Wind Energy's wind turbine row in Risø Campus
- Phase 1:
 - Establish Hybrid Wind Power Plant (HWPP) switchboard
 - Time: Done 2020
- Phase 2:
 - Retrofit to variable speed
 - Connect existing 225 kW V27 to HWPP switchboard
 - Add hybrid storage to V27 DC link
 - Time: 2021-22
- Phase 3+:
 - Other power units (PV, additional storage, power2x)
 - Plant level control
 - Controllable grid interface
 - Time: 2022 and ahead



Phase 1: Switchboard front panel


Phase 2: – Retrofit and connection of V27



National Energy System Transition Facilities
On the national research infrastructure roadmap

Future prospects

Danish Wind Hybrid Power Plant Forum

Stiesdal

DTU Fotonik
Department of Photonics Engineering

DTU Energy
Department of Energy Conversion and

IEA Wind Task 50: Hybrid Wind Power Plants

Operating agents:

- Kaushik Das, DTU (DK)
- Jennifer King, NREL (US)

Highest Impact Tasks for IEA Task

- Maximize the value of wind energy in systems and markets
- Accelerate the development and deployment of hybrid systems
- Determine the viability of other **end-use products** by wind-based hybrids
- Foster collaborative research and exchange best practices
 Expected to be a four-year effort.

Future Hybrid Power Plants

Design Considerations:

- Number, type, and operation of turbines
- Number, type, and operation of solar panels
- Number and type of storage
- Overall layout of all assets and topology and sizing of collection system

Annual, seasonal, daily variations in market prices

Optimization objectives include plant profitability(net present value, payback period, etc)

18

#