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Abstract—This paper presents a comprehensive multi-voltage
level active distribution network model based on real network
data along with load and generation time-series for over a
year. The network topology is based on a real distribution
network in Denmark. The distribution network is embodied with
a large share of renewable generation sources, with generation
time-series simulated from meteorological data. In recent years,
installations of wind power and photovoltaics along with behind
the meter storage and electric vehicle charging stations have in-
creased at the medium and lower voltage levels. These distributed
generators and modern network assets are gaining traction due to
the global climate change policies and local government initiatives
to support low-carbon technologies in the grid. Utility operated
small scale wind and solar power plants along with consumer
end roof-top solar photovoltaic installations are expected to be
increasingly connected to distribution networks at lower voltage
levels. This situation requires a better understanding of the
impact of high penetration of weather-dependent renewable
energy sources on the operating conditions of the distribution
network at both medium and low voltage levels. Despite the need,
however, a multi-voltage level distribution network model has not
been presented for power system simulation studies based on real
network and weather-dependent renewable energy generation
data.

Index Terms—active distribution network, weather-dependent
generation, time-series, optimization, dynamic time-warping.

I. INTRODUCTION

ACTION against climate change has pushed forward
technological advances in sustainable and carbon-neutral

solutions in all fields of life, encompassing power generation.
The past decade has already seen a massive movement towards
renewable energy sources such as wind and solar energy
installations [1]–[3]. The installed wind power capacity in
Europe achieved a new peak in 2019 at 205 GW [2]. Countries
like Denmark and Scotland with extensive wind resources
have, in the recent years, met 47% (2019) and 97% (2020) of
their electricity demands through Renewable Energy Sources
(RES) especially wind energy. Half of Denmark’s wind power
capacity, about 3 GW, and about 70% of Scotland’s total RES
power capacity is based on onshore wind power. An increasing
amount of RES, such as distributed wind turbines or small
scale concentrated Wind Power Plant (WPP)s and Photovoltaic
(PV)s plants, are also being connected to the lower voltage
levels of the distribution networks. Furthermore, storage units,
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electric vehicle (EV) charging stations, combined heat power
plants are gaining increasing popularity, and have a potential to
become an integral part of the future distribution grid. Thus,
a future distribution network no longer resembles a passive
network with uni-directional flow of energy which creates new
and unfamiliar challenges for the Distribution System Operator
(DSO)s.

The main hurdle behind cost effective operation of distribu-
tion network with large share of weather-dependent RES is due
to their intermittent/fluctuating and non-dispatchable nature as
discussed in [4]–[6]. However, power electronics present in
RES such as PVs and WPPs, electricity storage units, EV
charging stations, imparts these installation with advanced
control capabilities which convert them into active network
assets. It is thus necessary to study, analyze, and develop active
management techniques for the growing number of beneficial
network assets connected in the distribution grid. For this
purpose a benchmark distribution network model is required
which incorporates a large share of RES and other network
assets. Additionally, these assets are connected at different
voltage levels (owing to power carrying capabilities of differ-
ent voltage levels). For example, in distribution networks some
of WPPs are connected at 60 kV network, while the roof-top
PVs are connected at 400 V networks. When the assets are
controlled in each of these different voltage levels, the change
in power flows not only impact that specific voltage level but
also other voltage levels too in terms of voltage profile, power
losses, reactive power flow etc. This has further impact on
the reactive power flow to the transmission network. As a
result, a benchmark distribution network model representing
the characteristics of large share of integrated generations in
each voltage level is of particular interest.

The design of benchmark models in power systems has been
a topic of interest for many research works. The benchmark
models presented by the CIGRE Task force are one the most
commonly used and well known distribution network bench-
mark models. The CIGRE Task Force developed distinct high,
medium and low voltage benchmark networks for studying and
analyzing network behavior in presence of Distributed Energy
Resource (DER) and RES [7]–[9]. Another set of benchmark
models that demand noteworthy attention are the network
models presented by the IEEE Task Force. However, the IEEE
benchmark models are designed to be used for small-signal
studies in the power systems and not for analyzing impact
of RES in the distribution network operation [10]. SciGRID
is also an example of open source network model intended
towards studying congestion management, transmission ca-
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pacity, grid stability in the transmission networks developed
on data from Open Street Maps [11], [12]. Furthermore, to
address the overestimates of grid extension needed due to
increasing DER and storage installations in transmission and
distribution networks, a synthetic open-source medium voltage
distribution network, called the eGo grid model, is presented
in [13]. The eGo grid model is designed using an open
source software called the DIstribution Network GeneratOR
(DINGO) for generating synthetic networks, emphasizing the
growing interest in analyzing distribution network behavior
pertaining to the aforementioned developments. To enhance
understanding of network behavior and characteristics, and
needs of future distribution networks with RES and other low-
carbon technologies, [14] establishes Low Voltage Network
Models and Low Carbon Technology Profiles founded on
the UK distribution network. Examples of works addressing
generation of benchmark models can be found in [15], [16].
SimBench is one of the more recent additions to the library
of open-source benchmark models developed on principles
presented in [16], [17]. The grid data in SimBench is in
accordance with the German DSO’s operation and planning
principle. Furthermore, SimBench also provides load time-
series for about one year for different types of consumer be-
havior. Sarstedt et. al. [18] present an integrated transmission
and distribution network model, wherein the topology for the
lower voltage networks is synthetically generated. More often
the network topology deployed in the present open-source
models is based on synthetic network modeling. Furthermore,
amongst all the distribution network models presented so
far, there are only two multi-voltage network models which
include the low voltage levels [17], [18].

In spite of the already many existing benchmark models in
the literature so far, there is a lack in a comprehensive multi-
voltage level active-distribution network model, based on real
network topology, incorporating a very high share of weather
dependent RES, with load and generation time-series for a
long duration covering different weather and load conditions.
In this respect, this article proposes and presents such a multi-
voltage level distribution network model, which is needed for
an exhaustive study of the performance, operation and control
of future weather-dependent distribution networks in terms of
grid requirements and specifications, flexibility requirements
for future RES technologies, as well as in developing advanced
control strategies to improve the overall operating conditions
of such distribution networks.

The proposed benchmark distribution network model, en-
titled as the DTU 7k Bus Active Distribution Network, is
an open-source and it can be used in analyzing distribution
networks with large share of distributed generation such as
RES, combined heat and power plants, storage, wide spread
use of electric vehicles, etc. Furthermore, it has the flexibility
to incorporate additional network assests to investigate perfor-
mance of active distribution network. Additional applications
for the DTU 7k Bus Active Distribution network can also be
found in development of control and optimization algorithms
for active management of future distribution network with
aforementioned assets. The network has, at its foundations,
data from a real 60 kV distribution network topology along

with measurement data for load time-series and wind power
generation. Hence, a top down approach is applied in its
development.

The main important novel features of the proposed and
developed benchmark distribution network model are as fol-
lowing:
• Network topology is modeled from geographical layout

of consumer supply points
• 18 different topologies of 10 kV-400 V networks with

different characteristic loads and RES
• Large share of embodied weather-dependent generation,

PV and WPPs
• Weather-dependent generation time-series simulated from

meteorological data
• Load time-series derived from measurement data
• Flexibility to incorporate additional network assets such

as combined heat and power plants, storage units, electric
vehicle charging stations, etc.

• Comprehensive platform for development of coordinated
control between different assets for optimal operation
of distribution network, while incorporating uncertainty
from weather dependent generation and loads.

Section II briefly introduces the DTU 7k Bus Active Dis-
tribution Network along with the publicly available data for
the network. The raw data used to develop the distribution
network model and methodology is described in Section III.
Section IV and Section V shed light upon the results of the
implemented methodology and present a discussion giving an
insight into the DTU 7k Bus Active Distribution Network and
its future applicability respectively.

II. DTU 7K-BUS ACTIVE DISTRIBUTION NETWORK

The DTU 7k-Bus Active Distribution Network is a multi-
voltage network with a high share of weather-dependent
renewable energy generation. It spans across 3 voltage levels,
namely 60 kV, 10 kV and 0.4 kV while being connected to
the transmission grid via a step-up 60 kV/150 kV transformer
at the 0th Bus which serves as the slack bus for the entire
system. This section presents key features of the DTU 7k Bus
Active Distribution Network.

A. The 60 kV Network

The medium voltage (MV) 60 kV network consists of 25
buses out of which 23 buses are connected to 60 kV/10 kV
substations. The 60kV/10kV substations are equipped with on-
load tap changing (OLTC) transformers. A cumulative wind
generation capacity of 45 MW is connected at three different
nodes in the MV network at 60kV. It is important to mention
that the network topology for the MV network originates from
a real Danish distribution network. Table I lists key elements
of the Medium Voltage (MV) network and Fig. 1 illustrates
the network topology.

The maximum power flow from the 150 kV transmission
network to the MV network is ≈ 60 MW while the reverse
power flow from the MV network to the transmission network
is at a maximum of 150MW, which is more than the total
installed wind in the 60 kV network, based on historical
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Fig. 1: 60kV Network

data of 1 year. At the 60kV/10kV substations, 17 of the
23 substations record negative power flows; confirming the
presence of generating sources in the 10 kV-0.4 kV network.
Time-series data of load, aggregated at 10kV and generation
profiles for the 3 WPPs, derived from measurement data in the
network, forms the basis for the development of the presented
multi-voltage network.

TABLE I: The 60kV distribution network

Network Element # Voltage Level
Buses 24 60 kV

23 10 kV
HV/MV substation 1 150 kV / 60 kV
MV/LV substation 23 60 kV / 10 kV
MV/LV substation with controllable
generation

3 60 kV / 10 kV

Type IV controllable WPPs 3 60 kV
Aggregated Loads 6 10 kV
Expanded LV networks 17 10 kV-400 V

B. 10 kV-0.4 kV Networks

The 10 kV-0.4 kV networks connected at 17 different 10 kV
nodes from the 60 kV network extend the principal network
to build the multi-voltage network. A total of 6541 nodes
at 0.4 kV and XXX nodes at 10 kV nodes are distributed
across the 10 kV-0.4 kV networks. The networks also ac-
commodate 291 10 kV-0.4 kV substations with off-load tap
changing transformers. In addition, the 10 kV-0.4 kV networks
have 107 MW of wind and 25 MW of PV installed capacity.
A breakdown of the number of 10 kV-0.4 kV substations,
consumer nodes, wind and PV capacities per 10 kV-0.4 kV
network is provided in Table II. Table II also lists the aggregate
demand of 4 kinds of Standard Load Profile (SLP)s available.
It is important to mention that the 10 kV-0.4 kV network
load profiles are formulated from 27 different SLPs provided
by SimBench which categorizes the SLPs into household,
agricultural, commercial, and miscellaneous profiles as shown
in Fig. 4. The aggregate amount of household, agricultural and
commercial load demand from the 10 kV-0.4 kV networks is
27.9 MW, 18.5 MW and 30.5 MW respectively. The proportion

400V
10kV
Solar
Wind
Misce.

Commercial
Household
Agricultural
Uncategorized

Fig. 2: 10 kV-400 V Network at Bus 27

of household, agricultural and commercial SLPs in the Low
Voltage (LV) network, which is determined based on the time-
series data derived from measurement data, varies for each
LV network. The composition of different categories of SLPs
in the 10 kV-0.4 kV network gives a further insight into the
loads connected at the network. For example, since Bus 46
contains no share of agricultural load profiles, the 10 kV-0.4 kV
network at Bus 46 can be assumed to be a snap-shot of an
urban residential area. Similarly, it can be said that the 10 kV-
0.4 kV network at Bus 43 is a industrial area due to large
share of commercial load profiles as compared to household
and agricultural loads.

Fig. 2 and Fig. 3 show the network topology for the LV
networks at buses 27 and 46 respectively. These two buses are
chosen for depiction because LV network connected to Bus
27 has one of the least, while LV network at Bus 46 has the
highest number of 400 V and 10 kV nodes. As illustrated in
Fig 2 and Fig. 3 the aggregated household, agricultural and
commercial loads along with weather-dependent generation is
distributed amongst the 400 V and 10 kV nodes. Differentia-
tion of SLPs at different nodes is not indicated in Fig. 2 and 3
due to space constraints. The prosumer nodes in networks 27
and 46 are indicated with an orange or blue box around the
load profile, if applicable, indicating a PV or WPP installation
at that node. In network 46, ≈ 44.7% nodes are connected to a
weather-dependent generation, whereas, in network 27, ≈ 52%
nodes are connected to weather-dependent generating sources.

C. Weather-Dependent Generation

The multi-voltage network presented in this research is
developed with the objective of studying the effect of the
stochastic nature of weather-dependent generation connected
at the medium and lower voltage networks. The proposed
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TABLE II: Key features of 10 kV-400 V distribution networks

Substation Nodes Generation [MW] Loads [MW]
Bus # 10 kV / 400 V 10 kV 400 V PV WPP Household Agricultural Commercial Miscellaneous

26 18 1 329 0.73 0 1.3 1.05 1.3 0.12
27 5 3 134 1.85 0.44 1.95 1.75 1.82 0.16
28 10 1 270 0.57 0 0.52 1.35 1.85 0.10
29 21 1 397 1.42 7.66 1.3 0.71 1.18 0.11
30 17 1 440 1.21 11 2.6 1.58 2.56 0.59
31 15 1 390 1.93 3.34 2.3 1.15 1.42 0.12
34 1 1 387 1.3 2.61 1.16 1.3 1.8 0.14
35 24 1 32 1.66 9.25 1.27 1.83 1.48 0.10
37 22 1 516 1.65 9.61 0.82 0.63 1.73 0.20
38 17 1 477 1.27 5.56 1.42 1 1.6 0.26
39 21 1 408 3.2 8.83 3.54 1.80 1.86 0.08
42 24 1 493 2.32 6.2 2.56 0.12 0.65 0.38
43 16 1 618 0.61 0.32 1.47 1.98 5 0.55
44 21 1 456 0 0 0.56 0.63 1.28 0.08
45 21 1 440 2.1 12.66 1.52 1.08 2.077 0.41
46 17 9 494 3.37 21.44 2.75 0 1.88 0.30
47 18 1 260 0.45 9 0.88 0.474 0.96 0.08∑

291 17 6541 25.56 107.87 27.9 18.5 30.5 3.8

10kV-400V network at bus 46

400V
10kV
Solar

Wind
Misce.
Commercial

Household
Uncategorized

Fig. 3: 10 kV-400 V Network at Bus 46

multi-voltage network has a high volume of installed weather-
dependent generation in the form of wind and PV.

From Table II, it should be noticed that 9 out of 17 10 kV-
0.4 kV networks have a WPP generation capacity of more
than 5 MW and only one 10 kV-0.4 kV network, at Bus 44, is
devoid of any generation capacity. The 10 kV-0.4 kV networks
connected to buses 45, 46 and 47 have high volume of WPP
generation capacities. In addition, the three 10 kV buses i.e.
45, 46, 47, are also connect to WPPs on the 60 kV side of
the substation. Amongst which Bus 46 is connected to one
of the largest LV distribution networks with 494 number of
0.4 kV nodes, 21.44 MW of installed WPPs and 3.37 MW of
installed PV capacity. Whereas Bus 20, connected to Bus 46
with a step down transformer, also has an WPP with installed

capacity of 15 MW, which together accounts approximately
39 MW of weather-dependent generation at a single node.

It should also be mentioned that all WPPs in the 10 kV-
0.4 kV network have a capacity of 300kW and above, being
connected to 10 kV nodes. In contrast to WPP, the PV genera-
tors are connected to both 10 kV and 400 V nodes. This makes
part of the 400 V nodes prosumers. The term prosumer means
that these nodes both produce as well as consume electricity.

D. Possible Applications
The shift in the role of distribution system from a passive

entity to an active entity is the primary impetus behind this
research. Since the distribution network model presented in
this research is derived majorly from actual network data, it
serves uniquely as a benchmark model to study the effects of
various weather-dependent energy sources along with storage,
EV and other modern applications in the distribution grid.
Some of the possible areas of application are as follows,
• Investigate impact of a large share of weather-dependent

RES on distribution network operations
• Develop advanced control strategies to improve the oper-

ating conditions of an Active Distribution Network with
a large share of RES

• Analyze performance of network assets, such as on-load
tap changers, voltage regulators, switching capacitors and
reactors, supporting the distribution grid operation

• Quantify the flexibility requirements for future RES tech-
nologies

• Design active control for hybrid power plants in the active
distribution network

• Evaluate impact of altered distribution network charac-
teristics on the TSO/DSO interface

• Explore co-ordination opportunities between transmission
and distribution network, re-introducing distribution net-
work as an active asset to the transmission network

• Assess the impact of limited observability of RES con-
nected at the consumer end

• Inspect opportunities arising from negatively correlated
generation sources such as PVs and WPPs
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E. How to access the data?

The distribution network described in this section is an
open-source dataset and available in an online repository
ADD DATA REPO. The dataset in the repository is the first
version of the DTU 7k-Bus Active Distribution Network and
is expected to undergo modifications as the work progresses.

All the network files in the dataset are csv files suitable
to be directly used in MatPower, PandaPower or Pypower.
Further description of the data can be found in the readme file
included.

III. NETWORK MODELING METHODOLOGY

This section briefly describes the methodology used to
generate the DTU 7k Active Distribution Network. First, an
insight is provided into the raw data used to generate the
network. After that, an optimization algorithm to estimate the
share of various standard load profiles and weather-dependent
renewable energy sources is outlined. The heuristics based on
statistical information about 10kV networks deployed for the
profile assignment to each 400V node are then elaborated.

A. Raw Data

60 kV Network: The network topology, line and trans-
former data for the 60 kV network are based on a real Danish
distribution network. The aggregated load time-series at 10 kV
and the WPP generation data are measurement data provided
by Eniig Forsyning A/S [19]. This data forms the basis on
which the entire DTU 7k-Bus Active Distribution Network is
developed.

10 kV Network Topology: The network topologies for all
the LV networks are generated from an online tool, Distri-
bution Network Models module (DiNeMo), provided by the
European Commission, Joint Research Centre [20]. DiNeMo
takes as input an area of interest from Open Street Map [12]
and reproduces a representative distribution grid. The inputs
to DiNeMo for generating LV networks in this work are based
on an approximate geographical area for the location of the
60 kV / 10 kV substations indicated in Fig. 1. In addition to
the geographical location of the distribution network DiNeMo
also takes as input, population / consumer density, probability
of consumers per building [%], Minimum LV demand [kW],
Minimum MV demand [kW], Voltage level [kV], and trans-
former capacity for the location.

The National Denmark Statistics [21] provides references
for inputs such as the population density and probability
of consumers per building. The maximum demand for each
node is determined based on the aggregated load profile at
10 kV provided by [19], hence, the minimum demand was
set arbitarily to 10 kW while generating the LV networks
in DiNeMo. It should be mentioned that the inputs the LV
networks are derived from the Danish Statistics to generate
network which are as realistic as possible in terms of energy
consumption patterns in each network. Thus, even though the
network topology and DiNeMo inputs originate primarily from
Denmark, the DTU 7k-Bus Active Distribution Network serves
as a generic distribution grid model consisting of LV networks
with diverse consumption patterns as highlighted in Table II.

As outputs, DiNeMo also provides line, MV/LV substation
data, switches in the network, and load data at each node.
The line and MV/LV substation data is used directly and
provided in the MatPower or PyPower format. The load data
from DiNeMo lists a demand in kVA for each node based on
the maximum demand input provided at the time of network
generation. The demand in kVA provided by DiNeMo is then
used to scale and assign SLPs at every node in the network.

Standard Load Profiles: The method used in this work to
allocate share of specific load and generation profiles, is to
decompose the aggregated load profile at 10 kV into various
SLPs. The SLPs are provided by SimBench, which is an open-
source database for power load, generation and storage time-
series [22]. However, the generation time-series for WPPs
and PVs used for developing the network model is based on
meterological data, hence, only 27 load-time series for the LV
networks provided in SimBench are used.

The SLPs are grouped into 4 categories such as household
(H), agricultural (L), commercial (G) and miscellaneous (B).
There are 15 commercial, 6 household, 4 agricultural and 2
miscellaneous SLP. The SLPs are also classified according to
level of consumption into low, medium, and high as illustrated
in Fig. 4.
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Fig. 4: Standard Load Profiles from SimBench

Wind and Photovoltaic generation profiles: All the wind
power generation profiles and photovoltaic profiles provided
with the data set are generated using DTU Correlations in
Renewable Energy Sources (CorRES) simulation tool. The
weather-dependent generation profiles are simulated using
meteorological time-series and stochastic simulations [23].

For generating PV profiles, the input provided to CorRES
is the geographical location of the PV plant, installed capacity
[MW], surface azimuth angle and surface tilt. The location
for the PV installation is approximately at at the center of the
geographical area of the LV network whereas, the installed
capacity is set to 1 MW for all the PV installations. By setting
the installed capacity to 1 MW, the PV generation profile from
CorRES can be used as a p.u. profile and scaled according
to the installed capacity for each LV network. Since, the
geographical span of any of the LV networks is constrained to
a small area, only one PV profile is generated per LV network,
i.e. there is one unique LV profile for every LV network. The
Global Solar Atlas [24] provides optimal inputs for the surface
azimuth angle and tilt for the chosen geographical location.
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Similar to PV installations, the geographical locations for
WPP installations are assumed closer to the 60 kV / 10 kV
substation. The data register for wind power plants provides a
comprehensive list of WPP installations across Denmark [25].
Thus, WPP installations closer to the 60 kV /10 kV substation
are chosen for simulation and generating wind power profile
for each LV network. Consequently, there are multiple WPP
generation profiles for some of the LV networks. In contrast to
PV profiles, simulating WPP profiles from CorRES requires a
number of inputs, such as, the hub height, installed capacity,
number of turbines, turbine rated power, turbine diameter, etc.
All of the input data for simulating WPP profiles is taken from
the data register of wind power plants, and thus represents real
WPP installations at the location of the LV network.

B. Optimization Algorithm

The goal of the optimization is to decompose/categorize an
aggregated load time-series into SLPs and weather-dependent
generation profiles (PV and Wind) as shown in Fig. 5. The
basis of this decomposition is the aggregated load time-series
at 10 kV or at the LV side of the 60 kV/10 kV substations in
the 60 kV network. SimBench SLPs and weather-dependent
generation profiles obtained from CorRES are assumed con-
stant and known during the optimization. The optimization
then defines the share of each SLP and weather-dependent
generation profile for one particular LV network. Thus the
output of the optimization for the SLPs is the aggregate
demand of each SLP in the LV network, while for the weather-
dependent generation is the aggregate generation from each
generation profile. The uncategorized profile in Fig. 5 refers to
the part/behavior of the aggregated 10 kV profile which could
not be captured using the given SLPs and weather-dependent
generations.

Commercial Household

Agricultural Other

Standard Load Profiles

Solar PVWind

Weather-dependent generation

t Uncategorized

Fig. 5: Decomposition of Load Profile

To formulate an optimization problem to determine the cu-
mulative maximum demand and generation in an LV network,
the following notations are defined,
• Pt: aggregated load at 10 kV at time t in MW
• S: set of all SLPs from SimBench
• li,t: power demand for the ith SLP at time t in p.u., i ∈ S
• di: aggregated demand from the ith SLP in MW, i ∈ S
• R: set of all generation profiles from CorRES
• wj,t: power generated from the jth weather-dependent

generation profile at time t in p.u., j ∈ R

• gj : aggregated generation from the jth generation profile
in MW, j ∈ R

It is assumed that the di and gj reflect additive effect of several
nodes and weather-dependent generation installations in the
LV network. Hence, it is often called the aggregate value for
an LV network. Let Lt be the vector of load demands in p.u.
for all SLPs at time t,

Lt =
[
l1,t l2,t . . . l27,t

]
(1)

whereas, Wt is the vector of generation for each solar and
wind profiles in p.u. at time t,

Wt =
[
w1,t w2,t . . . wk,t

]
(2)

Note that there is only one PV profile per LV network.
Therefore, pg1,t is the per unit value of solar generation in the
network. As mentioned earlier, it is possible to have multiple
WPP profiles for one LV network referring to [25]. It is thus
assumed that there are k − 1 WPP profiles available, which
implies that,

wj,t . . . ∀j ≥ 2 (3)

denotes the WPP generation at time t in per unit.
Let D be the vector with cumulative maximum demand for

all SLPs,
D =

[
d1 d2 . . . d27

]
(4)

and vector G contains the maximum weather-dependent gen-
eration for solar and wind profiles,

G =
[
g1 g2 . . . gk,a

]
(5)

Let εt denote the difference between aggregated load at 10 kV
and SLPs along with weather-dependent generation, at time
t, namely uncategorized load profile. This is given by the
following equation,

εt = Pt − LtD
T +WtG

T (6)

The objective function for the optimization is to reduce the
root-mean square error of εt, e.g.:

min
D,G

√√√√ 1

Tf

Tf∑
t=1

ε2t (7)

where Tf is the length of the available time-series. The
output of the optimization is aggregate demand for all
SLPs, D, and aggregate solar and wind power generation,
G, for any LV network. The control variables for the
optimization problem are unconstrained and unbounded.
Furthermore, the equations stated above indicate a non-linear
optimization problem which is solved in Python using CPLEX.

Dynamic Time Warping: One of the earliest works in
Dynamic Time Warping (DTW) is in the area of speech
recognition [26], [27]. Authors in [26] introduce DTW as a
pattern matching algorithm wherein the time-axis fluctuation is
modeled with a nonlinear warping function. The time-warping
function is then applied to eliminate time differences between
two signals for maximum coincidence. The problem is drafted
as an optimization problem, or more specifically a dynamic
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programming problem, with the time-warping function being
the optimization variable [26], [28], [29]. The dtw package in
Python is used to implement DTW algorithm on the available
time-series.

DTW is used to match the aggregated 10 kV load time-
series and the solution obtained via the optimization problem
in Equation. (7). This step reduces temporal mismatch between
the SLPs and the aggregated load time-series at 10 kV. The
dtw function generates a time warping vector Ft given the
reference time-series and the preliminary solution time-series
obtained after optimization.

Ft = dtw(Pt, LtD
T −WtG

T ) (8)

The time-warping vector is then used to warp Lt only, since
the weather-dependent generation depends on meteorological
data at the same geographical location as the LV network.
Hence, the solution time-series after DTW is given by the
expression,

Lt(Ft)D
T −WtG

T (9)

C. Profile assignment

After obtaining the aggregate load demand for each SLP for
an LV network, the next step is to assign every node in the
LV network obtained from DiNeMo with a unique SLP and
installed capacity.

DiNeMo generates a consumer data statistics highlighting
maximum demand, termed Dem kVA, at each node, along with
the network topology. The Dem kVA value at any node is an
integer multiple of the minimum kVA demand input provided
while generating the distribution network in DiNeMo. Assume
that the minimum demand in the LV network at any node
is smin and that there are N nodes (400 V and/or 10 kV) in
the LV network. Thus, load demand for any nth node in the
network provided by DiNeMo is given by,

xn = hnsmin (10)

where h is an integer within minimum and maximum bounds
of 0 and hmax.

The total maximum simultaneous demand, according to
DiNeMo, for the LV network, with N nodes, is thus,

X =

N∑
n=1

xn = smin

N∑
n=i

hn (11)

The results from the optimization suggest that the total
maximum simultaneous demand for the LV network is sum
of installed capacities for all the SLPs, termed Y , as follows:

Y =

27∑
i=1

di (12)

The goal of designing a profile assignment algorithm is to
assign every node in the LV network, with an unique SLP
with capacity yn such that yn can be denoted by an integer
multiple of s′min,

yn = hns
′
min hn ∈ 0, hmax (13)

where s′min is the scaled minimum demand for the LV network
also satisfying the following equation,

Y = s′min

N∑
n=1

hn (14)

Thus, s′min can be calculated as follows,

s′min = smin
Y

X
(15)

Subsequently assume that the aggregated demand for the ith

SLP, denoted by di, is equally distributed amongst ki nodes,
which implies,

di = tis
′
minki (16)

where, ti is an integer multiple assigned for ith SLP. Therefore
ki can be calculated as follows,

ki = round(
di

tis′min

) (17)

Note that the RHS in Eq. (17) is rounded off to the nearest
integer since the number of nodes with ith SLP must be an
integer. Notice that there are still two unknowns in the above
equation namely, ti and ki. A heuristics based approximation
is used to determine the value of ti for the network supported
statistical data from SimBench. SimBench classifies all the
SLPs into broadly 3 level of consumption categories, low,
medium, and high, as shown in Fig. 4. Let, si, denote the
power demand for any SLP of class i assigned to one node.
This imposes an additional condition on demand for each
profile which will aid is assignment of the standard load
profiles to the nodes. The following thus makes the foundation
of the heuristic approximation,

sH ≥ sM ≥ sL ≥ sG ≥ sC ≥ sB ≥ sA (18)

where H,M,L,G,C,B, and A are the SLP categories as
indicated in Fig. 4. Note that Eq. (18) is not implemented
as a hard constraint. Thus, from Eq. (16) and Eq. (18) the
following condition can be accepted for the order of ti,

tH ≥ tM ≥ tL ≥ tG ≥ tC ≥ tB ≥ tA (19)

while,
ti ∈ [1, hmax] (20)

The above stated problem is solved heuristically. The principal
idea is to begin profile assignment from the nodes with
maximum demand, Dem kV A value, according to DiNeMo
and allocate number of nodes for each SLP in the network, i.e.
ki, corresponding with cumulative capacity for each SLP di
and an appropriate multiplying factor ti. The heuristic profile
allocation algorithm assigns a single SLP to each node, hence,

N =

27∑
i=1

ki (21)

Let, K be the vector with the number of nodes assigned to
each SLP,

K =
[
k1 k2 . . . k27

]
(22)
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The maximum demand for the SLPs is thus given by the
following element-wise division,

si = di/ki . . . ∀i ∈ [1, 27] (23)

Finally, the maximum demands at each node along with the
corresponding SLP are assigned to the nodes in the 10kV-400V
network, starting from the max(S) in a descending order of
maximum demands at nodes given by DiNeMo.

In addition to load profiles, the aggregated PV and WPP
generation capacities are assigned to appropriate nodes in the
network. The following assumptions are considered while al-
locating the weather-dependent generation in any LV network:
• Minimum installed PV capacity: 1 kW
• PV generation can be installed at 400 V or 10 kV nodes
• Minimum installed WPP capacity: 300 kW
• WPPs are installed only at 10 kV
• Installed generation at any consumer node is less than its

maximum demand
Statistics for solar installations in the Danish grid, provided
in [1], show that the self-consumption via PV generation is
in the range of 20-30% for the residential sector and about
40% for the commercial sector, for the years in question.
Residential PV plants, i.e. rooftop plants, have an installed
capacity of 7 kW or less, in particular 3 kW PV installations
being greatly preferred, while for the commercial sector PV
installed PV capacity is 7 kW or higher. Taking into account
the statistics described in [1], the aggregated PV capacity for
an LV network is assumed to supply 25% of the simultaneous
maximum demand for household SLPs and 40% of the simul-
taneous maximum demand for commercial and agricultural
SLPs combined. Note that the simultaneous maximum demand
for the household SLPs is sum of the aggregated demands
(di), calculated by the optimization, for all the household
SLPs (HX-X).

In order to assign WPPs at the 10 kV node, wind installation
statistics from [25] are used as a reference. For the geograph-
ical area of the LV networks, the maximum onshore wind
installation is in the range of 3.6 MW-4 MW. However, a large
number of WPPs have installed capacities of 1 MW. Note that,
the number of 10 kV nodes in the network is significantly less
than the number of 400 V nodes. Hence, for assigning WPPs to
the 10 kV nodes, a maximum to minimum approach is adopted.
This implies that the aggregated wind power generation is
divided into groups of 3.6 MW WPPs and a remainder value if
applicable. If the aggregated wind power generation for an LV
network is less than 3.6 MW, the entire aggregated wind power
generation is assigned to one single 10 kV node. Exception to
this is the LV network at Bus-35, which accommodates only
one 10 kV node. Thus, this 10 kV node in the LV network
at Bus-35 is connected to a WPP with installed capacity of
9.25 MW.

IV. RESULTS

The optimization results are depicted and described for LV
network at bus 27 which serves as representative network for
all the LV networks. A power flow analysis is also performed
for this network.

A. Optimization for network modeling

The optimization algorithm described in the previous section
is designed with an intention to categorize, to a maximum
amount, the aggregated load profile at 10 kV into available
SLPs and weather-dependent generation profiles. In princi-
pal, the aggregated load profile at 10 kV is expected to be
represented by a sum of varying proportions of theSLPs and
weather-dependent generation. Thus, the objective function for
the optimization is designed to represent and minimize the
mismatch between the aggregated load profile at 10 kV and
cumulative sum of the SLPs and weather-dependent genera-
tion, by a root mean square value.

The first step in the optimization methodology is to obtain
a preliminary solution of the optimization problem given in
Equation (7). The solution of the optimization problem without
DTW is given by the following expression and will henceforth
be referred to as the preliminary solution,

LtD
T −WtG

T (24)

The root mean square error for the preliminary solution is
0.31 MW. It is important to mention that, the maximum active
power demand at bus no. 27 is 3.51 MW and the minimum
active power demand is 0.26 MW. Thus, the root mean square
error is ≈ 8.8% of the maximum load at bus no. 27.

The next step is to perform DTW on the preliminary
solution. For DTW, the aggregated load profile at 10 kV
serves as the reference time-series and the preliminary solution
as the target. A time-warping vector is calculated to align
the preliminary solution to reference time-series. DTW is
performed using the dtw package in Python. The root mean
square error between the solution time-series after DTW is
0.28 MW, ≈ 8.1% of the maximum load at bus no. 27. Thus,
DTW reduces the root mean square between the reference
time-series and the solution.
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Fig. 6: Reference and solution time-series for 250 time-steps

Fig. 6 shows a snapshot of the aggregated 10 kV time-series,
preliminary solution, and the final solution with DTW for 250
time-steps. It is observed from Fig. 6 that, neither the solution
time-series after DTW nor the preliminary solution replicate
the reference time-series entirely. This implies that available
SLPs and weather-dependent generation profiles fail to com-
pletely categorize the characteristic behavior of the reference
time-series. The difference between the solution with DTW
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and the reference time-series is the un-categorized portion of
the reference time-series. Note that the un-categorized time-
series may or may not represent a load-only profile. Hence,
it can be further categorized using a different set of SLPs
representing variety of load/generation profiles such as electric
vehicles, storage units, combined-heat cycle plants, etc.
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Fig. 7: Scatter plot for the solution time-series with and
without DTW with respect to reference time-series

Another measure used to analyze the quality of the solution
is the correlation between the reference and the solution time-
series. Fig. 7 exhibits a scatter plot of the two solution profiles
on the y-axis, i.e. with and without DTW, against the reference
time-series on the x-axis. The scatter plot suggests that the
solution profile with DTW is better aligned with the reference
time-series in comparison to the preliminary solution without
DTW. This is also evident from the fact that the correlation
of the preliminary solution without DTW with the aggregate
load profile is 0.78. DTW improves the correlation between
the reference time-series and the solution time-series to 0.83.
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Fig. 8: a. Probability distribution for solution without DTW;
b. Probability distribution for solution with DTW

The positive effect of performing DTW on the preliminary
solution is most noticeable on the un-categorized time-series.
Fig. 8 captures the probability distribution of the preliminary
solution without DTW and the solution with DTW. After
DTW the solution profile is more concentrated around 0
value compared to the preliminary solution without DTW.
The 95th percentile value for the probability distribution of
the preliminary solution is 0.523 while the 95th percentile for

the probability distribution with DTW is 0.47 which further
suggests a reduction in the mismatch between the reference
and the solution.

Fig. 9: Aggregate demand for SLPs and aggregated
generation capacity for weather-dependent generation profiles

Fig. 9 shows the aggregate demands for all SLPs and
aggregate generation for PV and WPP for LV network at
Bus-27. Note that the PV generation in this network is
≈ 1.85MW and wind generation is ≈ 0.44MW. However,
the maximum and minimum demand at Bus-27 is 3.51 MW
and 0.26 MW. Thus, the weather-dependent generation in the
LV grid was previously unobservable at the 60 kV/10 kV
substation. Furthermore, aggregate share of household, agri-
cultural and commercial loads in the network is 1.95 MW,
1.75 MW and 1.82 MW respectively. Population density of
the geographical area for this LV network qualifies it to be
a semi-urban/rural network. This justifies the presence of
the agricultural load in an approximately equal proportion to
commercial load. Also notice that, not all the SLPs have a non-
zero aggregate load. Thus, the aggregated load time-series at
10 kV is not characterized by all of the SLPs.

The final step in generating the LV network, shown in Fig. 2,
is to distribute all the SLPs amongst individual 400 V nodes
using the heuristic algorithm described in Section III-C.

B. Power Flow

The result of the power flow calculation for one timestamp
is provided in this section for the LV network at Bus-27. The
power flow calculations are computed using Newton Rapson
method in PyPower. Note that all the data-sets provided for
the DTU 7k-Bus Active Distribution Network are in the
format which can directly be used via PyPower, MatPower
or PandaPower libraries.

A random timestamp is chosen to perform power flow cal-
culations to establish the plausibility of the load and generation
time-series along with the LV networks. All the 10 kV/400 V
transformers are assumed to be equipped with off-load tap-
changers and 60 kV/10 kV transformers are equipped with
on-load tap-changers. Note that all the tap-settings in the
network are set to the nominal position during the power flow



JOURNAL OF IEEE POWER SYSTEMS CLASS FILES, VOL. 14, NO. 8, MARCH 2021 10

calculations. Fig. 10 depicts the voltages at all the nodes in
the LV network for this timestamp. The load demand from

400V
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0.95

1.00

1.05

1.10

1.15

Fig. 10: Voltage

the network at this time-stamp is 2.1 MW, whereas the PV
and WPP generation is 49 kW and 226 kW respectively. Fig.
?? highlights and grades distribution lines in the LV network
according to the active power loss at this timestamp. The total
active power loss for the network at this timestamp is 83 kW.

V. DISCUSSION

This paper proposes and presents the development of a
multi-voltage active distribution network model with a large
share of weather-dependent generation, developed using a top-
down approach. The foundation of the distribution network
presented is a real Danish 60 kV distribution network along
with measurement data for load and generation time-series
for a period of about 10 months. The 60 kV network is
expanded with 10 kV-400 V distribution networks generated
from a publicly available Distribution Network Modeling tool
(DiNeMo) [20]. Furthermore, standard load profiles (SLPs) are
employed from an open-source data set called SimBench [22],
whereas, the weather-dependent generation time-series for PV
and WPPs are simulated from CorRES using meteorological
data.

The presented results exhibit an uncategorized load profile
for the presented example. This uncategorized profile is due
to the mismatch between solution time-series with SLPs and
weather-dependent generation and the aggregated load profile
at 10 kV. The root mean square error for the optimization is
an indicator of the degree of mismatch, which for the LV
network at Bus-27 is about 9 % of the maximum demand
at the 60 kV/10 kV substation. The root mean square error
observed, while generating other LV networks, is in the range
of 6 %-20 % of the absolute maximum demand at 60 kV/10 kV

substation, while the correlation between the solution profile
and the aggregated load time-series at 10 kV is in the range
from 0.76-0.93.

One of the major sources of errors is the discrepancy in
provenance of the aggregated load time-series and the standard
load profiles (SLPs) used. The aggregated load time-series at
10 kV represent measurement data for a distribution network
in Denmark, while the SLPs from SimBench are derived
from distribution network measurement data in Germany. In
addition, the aggregated load time-series at 10 kV are based on
the year 2015, while the SLPs used for its decomposition are
from the year 2016. Since, weather conditions deeply affect
the load consumption behavior, the aggregated load time-series
at 10 kV fails to be completely categorized using the available
SLPs. Yet another major sources of mismatch are the simulated
wind and photovoltaic generation profiles. Even though, the
generation profiles are simulated from meteorological data for
the same time-period as the aggregated load time-series at
10 kV, the simulation model in CorRES does not account for
shut-down periods, storm-shut down, maintenance periods, etc.
of the WPP and PV installations. All of the above mentioned
differences in the raw-data are intractable.

However, despite the characteristic differences in the raw
data, the solution presented to categorize the aggregated
load time-series combined with the uncategorized load profile
provides satisfactory representations of diverse generic LV
networks.
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