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Abstract – Due to the stochastic nature of wind and clouds, 
the integration of wind and PV generation in the power 
system poses serious challenges to the long-term planning of 
transmission systems. Grid reinforcements always involve 
relevant direct costs while the average load factor of the wind 
and solar PV dedicated transmission lines is usually low. 
Additionally, in very windy sites, the same high wind 
resource that produces large amounts of wind generation and 
may congest the transmission lines transporting it to distant 
consumption centres may also have a beneficial effect in 
increasing the transmission capacity of those lines. In fact, the 
occurrence of wind not only contributes to the loading of the 
connecting line, but also increases the line capacity, via the 
convective cooling of the cables - one of the main heat 
transfer mechanisms in conductor heat balance; in other 
words, higher winds speeds contribute to faster cooling of 
conductor and therefore higher conductor’s capacity 
potential. In this paper the existing methodologies to 
characterize those thermal effects in electrical cables - usually 
referred as dynamic line rating (DLR) - are applied to several 
IEA Task 25 countries case studies to characterize the 
technical value of the dynamic operation of thermally 
congested lines, as well as its potential economic benefits.  
 

Keywords - Wind power integration, DLR, VRE, 
Cable thermal balance, smart grids. 
 
1. INTRODUCTION 
 
Electric grid capacity is a very scarce “product” whereas 
the construction of supporting transmission and 
distribution network is highly time and resource 
consuming. The purpose of using the “in real-time 
methodology” usually referred as dynamic line rating 
(DLR) is to enable power system operations with higher 
thermal ratings than the ones specified by nominal 
conditions without compromising the physical operating 
limits of overhead lines on existing transmission and 
distribution networks.  
The use of DLR in conjunction with the integration of 
variable renewable energies (VRE) mainly wind and PV 
systems, is especially relevant due to the lower capacity 
factor (and high investments) associated with the 
transmission lines serving these renewable power plants. 

DLR provides the possibility of using “hidden” capacity 
of existing transmission lines to accommodate additional 
wind (PV or other VRE) power generation.  
The physical and operational limits of electrical lines 
hinge on two main criteria: maximum conductor 
temperature, and minimum distance above ground – or 
clearance. Using a dynamic line rating (DLR) approach 
one may compute a realistic set of values for the line 
capacity, thus it can be used as a cost-effective solution 
to alleviate line congestion problems and achieve both an 
optimal loading of the grid for different weather 
conditions, while minimizing the cost of new VRE 
connection to the grid. 
A few operational DLR analysis systems were recently 
developed and applied by research and academic 
organizations  - e.g. LNEG [1], [2]; KTH [3], [4] and 
INL [5], [6], among others - all based on CIGRE and/or 
IEEE methods for thermal rating calculation of overhead 
lines [7]–[9]. Some of the tools also associate the DLR 
analysis to the calculation of an optimized power flow 
with variable renewable generation, e.g. [2], while others 
are focused on reliability aspects and risk analysis of the 
electrical network [10]. Presently, a common objective of 
these R&D groups is the analysis of the benefits of DLR 
use and the identification of risks and constraints.  
The present paper compares static line ratings (SLR) and 
Dynamic Line Ratings (DLR) results, demonstrates the 
value of using DLR at the planning phase of new 
transmission lines (in areas with high wind probability) 
and implements DLR operational real time tools with 
wind forecast systems. It allows to assess the lines’ added 
ampacity available (or not) given the meteorological 
conditions present, and to estimate the lines capacity 
values, thus showing the value added by using a DLR 
approach when operating transmission lines in different 
regions.  
This work presents the DLR case studies for four IEA 
Task 25 countries: Portugal, Sweden, Germany and 
United States, makes a brief description of the 
methodologies and approaches used, mostly previously 
published. The case studies addressed demonstrate the 
potential of DLR on different scales and highlight the 
precautions when using it. 
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When implementing DLR and connecting additional DLR 
devices to the grid it is important to adjust the protection 
system to the new needs. The DSO experience tells us that 
the installation challenge often lies not in the installation 
of the DLR device itself, but in the triggering the control 
and protection system to communicate with new 
technology. 
On the positive side is the long term investment plan for 
wind farms. Since building new lines for integration of 
wind farms is associated with high investment costs, 
offering additional capacity of the existing lines as the 
primary grid connection becomes an economically 
effective solution. In the case of the Swedish DSO, the 
predicted curtailment of the wind farm was calculated to 
be only about 8 hours per year, due to line ampacity issues, 
plus additional hours due to non-DLR related issues, such 
as maintenance. 
Germany: In Germany a lot of expensive down regulations 
of wind power plants are necessary to keep the electrical 
grid stable as it is not able to transport the energy [17]. 
With the results shown it is very likely that using DLR 
reduces the amount of down regulations. Besides the 
method discussed here also methods looking at the whole 
grid at once instead of transmission lines are under 
investigation in Germany. Another approach called 
ASTROSE® measures the inclination of the transmission 
line and determines from that the conductor temperature. 
The operational use of DLR techniques is increasing. 
United States: Weather data was collected over a year-
long span and used to calculate the DLR ampacity for a 
mountainous region. The data was coupled with CFD 
results to provide corrections to account for terrain effects 
causing slow wind speeds. It was shown for this particular 
instance that not account for local wind fields could cause 
a significant change in the ampacity headroom of the 
transmission line. 
In fact, without accounting for the local slow-down of 
wind speeds due to the terrain, the DLR calculations can 
significantly over-predict the headroom available on the 
transmission line. This effect occurred in US case study for 
all 5 line segments, with the most dramatic effect 
occurring with the segment-68 line. This is due to the high 
wind speed recorded at this location at the top of a ridge, 
while several associated midpoints are in a valley where 
much lower wind speeds occur. 
To summarize, Table III presents a synthesis of the 
modelling approaches used by Portugal, Sweden, Germany 
and United States, to apply the case the four  case studies 
presented and described in this paper IEA Task 25 as well 
as the maximum added ampacity observed by using a DLR 
approach.  
 
Table III. Summary of the approaches and results of DLR 
application for four IEA Task 25 countries case studies. 
  
 

 

DLR 
Method 

Meteo 
data 

Case study 
tipology 

Added 
ampac.  

Max.added 
ampacity[%] 

Pt CIGRE+IEEE Historic 
+mesoscale 

Numerical Yes 68/133 

Se CIGRE Historic 
+mesoscale 

Hybrid Yes 40/156 

Ge CIGRE Historic 
+mesoscale 

Experimental Yes 56 

US IEEE Historic 
+CFD 

Hybrid Yes n.a. 

 

6. FINAL REMARKS 
 
The results presented in this paper are based on 
independently constructed case studies from four IEA 
Wind Task 25 countries: Portugal, Sweden, Germany and 
United States.  
These countries have developed and applied similar 
methodologies - using CIGRE and/or IEEE approaches - 
to assess the dynamic ampacity of the transmission lines 
under study. Although there are some differences in the 
identification of the electric line’s critical sectors (or “hot 
spots”) all the results are coherent and in accordance to 
previous research by indicating an interesting potential 
(both technical and economic) in the application of the 
dynamic line rating, especially for operational purposes, 
when integrating VRE generation, characterized by very 
low average capacity factors of the connecting electric 
lines. For the design of new transmission lines, a 
conventional static approach of the network is still 
privileged, unless a high penetration of VRE is planned 
within  a region served by constant and strong wind 
regimes. 
It should be highlighted that there are some risks 
associated with DLR applications. Great care is 
recommended when assessing the improvement that DLR 
can bring to specific systems, especially when located in 
complex terrain regions. Long lines in complex terrains 
may experience sharp (and fast) variations in the weather 
conditions that strongly affect its ampacity when in DLR 
operation. Since the wind velocity parameters (both 
horizontal speed and direction) are strongly dependent on 
local surface and orographic conditions, it is likely that in 
complex terrain some sections of the lines lie in valleys, 
shadowed from the major convective and cooling effects 
of the wind and heated by the solar irradiation during the 
warmer hours of the day, that consequently do not 
experience improvement of their transmission capacity 
by weather dynamic effects. That limitation may be 
addressed by a careful use of CFD detailed models, a 
deep knowledge of the terrain, both associated with real-
time monitoring of the weather conditions and 
temperature of the electric lines. 
Another aspect was pointed out by the Swedish case 
study: the operation of protections for DLR networks is 
challenging and needs to be designed with great care.  
In overall, hybrid systems, using both numerical and 
experimental approaches - as the one presented in Fig. 3 
appear to be the most encouraging nowadays.  
Notwithstanding eventual risks, the approach of 
dynamically rating the ampacity of overhead 
transmission lines is a promising area, both economic and 
technically for optimizing the use of existing overhead 
transmission lines. Its application may also be considered 
when designing new electric lines in regions with large 
penetration of VRE, particularly wind energy.  
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