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Abstract— This article is a summary of a review journal
article describing some of the recent research into the capacity
value  of  wind  power.  With  the  worldwide  increase  in  wind
power during the past several years, there is increasing
interest and significance regarding its capacity value. This has
a direct influence on the amount of other (non-wind) capacity
that is needed in future power systems. Recent work that
evaluates the impact of multiple-year data sets and the impact
of interconnected systems on resource adequacy. We also
provide examples that explore the use of alternative reliability
metrics for wind capacity value calculations. We show how
multiple-year data sets significantly increase the robustness of
results compared to single-year assessments. Assumptions
regarding the transmission interconnections play a significant
role.  Results  to  date  regarding  which  reliability  metric  to  use
for probabilistic capacity valuation show little sensitivity to
the metric.
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I. INTRODUCTION

As  the  capacity  and  energy  share  of  generation  from
wind and solar energy has become more significant, the
question of how to take variable generation into account in
resource (power) adequacy assessment has received more
attention. Power system planning and investment activities
include assessments of whether the installed level of
generation is sufficient to meet demand at some future date.
Because it is possible that some generation will be
unavailable to help serve system peak demand due to forced
outages, planners adopt a target level of generation that
accounts for this and other uncertainties. They often refer to
firm capacity that can be counted on during peak demand or
other high-risk periods. The difference between the target
level of generation and peak demand is often referred to as
planning reserve. This has often been estimated based on
previous experience, as a fixed percentage margin over peak
load.

The early wind power additions to the grid were
developed primarily as energy resources, providing extra
capacity to the power system that was already adequate. The
issue  of  how  much  of  the  installed  capacity  of  wind  and
solar should count toward planning reserve margins was

more of an academic question. However, there is more
interest to the issue now as wind and solar have started to
displace conventional capacity from the market. Moreover,
properly valuing the firm capacity contribution from wind
and solar will be critical in the future with even higher
shares of renewable power. If wind and solar power can
deliver a high fraction of installed capacity during high-risk
time periods, then the required level of capacity from other
sources would be less than if wind or solar provided little
capacity value.

There is a significant difference between the installed
capacity and the contribution that these variable generation
resources could make toward planning reserve. The most
rigorous methods that are robust against these large
differences between installed capacity and the contribution
to planning reserve are grounded in the well-known loss of
load probability (LOLP) based probabilistic methods. This
is why LOLP and related reliability metrics have been
chosen as the preferred method for assessing the capacity
value of wind and solar generation. This recommendation
was put forward by the IEEE Wind Power Coordinating
Committee Task Force paper for wind power [1], approved
in The North American Electric Reliability Corporation
(NERC) task force report [2], and included in the
Recommended Practices for Wind Integration Studies [3].
Other standard, but less-commonly-used, reliability metrics
include equivalent conventional power (ECP), equivalent
firm power (EFP), and secured capacity [4][5].

In the literature, there are many other, often simplified
ways  to  estimate  capacity  value,  as  described  in  [1].  One
common approximation is to use the capacity factor, ideally
during the highest LOLP hours, as a proxy for capacity
value. Calculating the capacity factor of wind and solar over
some subset of hours when the system may have the greatest
risk of not meeting the load was made for PJM in the United
States [6][7] using three years of wind production data, for
hours ending 3:00–7:00pm. The accuracy of these capacity
factor methods, however, is very sensitive to both the
number of hours used and the methods used to select those
hours [8]. The accuracy is also often system and technology
specific. For instance, considering too many of the peak-
load hours for solar photovoltaic resources [4] or too few of
the peak-load hours for wind [8] can underestimate the
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respective capacity value. Capacity factor approximation
methods that use peak-load hours have also been shown to
have decreasing accuracy with higher penetrations [9].

This paper is a summary of review journal article [9] that
look at capacity value calculation questions raised in [1] and
[2] regarding how many years of data is needed, what is the
impact of transmission interconnections to neighbouring
areas, as well as the choice of underlying reliability metric.

II. SUMMARY OF RESULTS FOR CAPACITY VALUE OF
WIND POWER

An example of results for capacity value for wind power
is presented in Figure 1 [10]. There are two main findings.
First, the capacity value is often close to the average power
produced by wind power (25%–40%) when the share of
wind power in the system is small, but adding a larger share
of wind power results in a decreasing capacity value. This
decrease of capacity value can be seen more dramatically
with a smaller system size and more concentrated wind
(Norway examples). Second, the results can be very
different if there is a systematic correlation of wind with
climatic conditions causing peak demand. For example, the
New York results show that onshore wind resource is often
poor when low temperatures cause the highest loads to
occur, and thus the capacity value is only 10%. However,
the wind resource offshore is strong even in low
temperatures, so the capacity value for offshore wind is as
high as 40%. The Minnesota 2006 study calculated capacity
value for 3 years and found a significant difference in the
annual capacity value of wind among those years.

Figure 1. Summary of results for capacity value of wind power for
several regions as a function of the share of wind power installed in

the system [10].

The results presented in Figure 1 for capacity value of
wind power are from the following studies: Germany [11];
Finland [12]; Ireland [13][14]; Canada Quebec [15];
Norway [16]; UK [17]; US New York [18]; US Eastern
Wind Integration and Transmission EWITS study [19]; US
Minnesota [20][21]; US California [22].

III. IMPACT OF NUMBER OF YEARS OF DATA

Many capacity value studies have used a single year of
data; however as there is considerable inter-annual variation
in many of the inputs for capacity value evaluation, multi-
year data sets are required for robust results.

When conventional resource data is input into LOLP
models, one of the relevant variables is the unit’s forced
outage rate. These are typically determined by size and type
of unit and take into account many years of data. Solving the

resource adequacy assessment is determining the level of
installed generation needed for a time period that may cover
many years in the future.

The key question here is: how many years of wind
production data are necessary to produce a reasonable long-
term  result  that  is  consistent  with  what  is  already  done  for
conventional generators?

A. Examples of multi-year analyses
Wind turbine forced outage rates are very low

(approximately 1% to 2%) and statistically independent of
each other. The primary influence on wind production is
wind speed. The question of how many years of wind data
are necessary for stable capacity value has begun to be
explored. Below, we highlight several studies examining
this question.

Zachary et al. claim that the 25 years of data they
analyzed for Great Britain is not enough and they present an
analysis of prevalent weather patterns during high demand
situations to demonstrate the statistical difficulties [23].

Hasche et al. analyzed the question of how many years
of data should be used for capacity value in the Irish power
system [24]. Using a 10-year data set of demand and wind
power production data, they calculated the effective load-
carrying capability (ELCC) for various subsets of the data
and then compared them to the 10-year ELCC. The
objective was to estimate the number of consecutive years of
data needed to approximate the long-term average.
Therefore, each single year of data was run separately with
1,000 MW of installed wind capacity, and the capacity value
(in MW) is calculated and plotted in the first column of
Figure 2. Next, all possible consecutive two-year sequences
were used to calculate the two-year capacity values, which
are plotted in the same graph in Column 2. This process was
repeated for 3, 4, … , 10 years. The results show that
increasing the number of consecutive years of data improves
the results, which tend to converge to the long-term value.
Using 8 years of data, the range of capacity value is within
approximately 2% of the 10-year value whereas using a
single year has a wide spread of results and can under- or
over-estimate the result by 10-20%.

Figure 2. Multiple-year ELCC results for 1000 MW wind power in
Ireland [23].

Wind power capacity value for Finland was calculated
using 9 years of measured wind power production data [12].
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The same data set was employed for [9] to replicate and
extend the work by [24]. Similar to the results shown in
Figure 2, Figure 3 shows how the capacity value of wind
power evolves with increasing number of years. However,
the figure uses 35 years of data from National Aeronautics
and Space Administration MERRA  ReAnalysis. The data
set has been trained using real wind power and electricity
demand  time  series  with  9  year  overlap  (see  more  in
Milligan et al 2016). The last (rightmost) set has only two
temporally independent 17-year periods (left gray lines).
They are still approximately 1.2% from each other.
Therefore, even with 17 years of data, there is still
considerable uncertainty surrounding the capacity value of
wind power. This gives only a lower bound, because using
more decades of data could show more variation. Using
ReAnalysis wind data for wind power has significant
shortcomings, even when the data is scaled to match average
historical wind power generation. Consequently, the
resulting capacity values are not reliable. However,
ReAnalysis data should still give a relevant demonstration
for using multiple years in the capacity value calculation.
The spread in the ReAnalysis-based capacity value is
somewhat higher than it is in the real data, but it shows
similar decrease as more years are added.

Figure 3. Capacity value of wind power using different number of
years for evaluation and based on 35 years of NASA/MERRA data.

Grey markers signify independent time series and black markers have
partial overlap with some of the other time series.

B. Other data recommendations
Another important recommendation of calculating

capacity value of wind power is that hourly demand data
and wind data should be paired chronologically [1], to create
net demand time series. This is motivated by the concern
that there is an underlying weather driver that influences
both demand and wind (and solar) energy. For systems with
significant hydropower, it is also important to ensure that the
underlying weather—and thus its combined influence on
demand, wind power and hydro power—is preserved. This
may be especially important if the system is energy
restricted more than capacity restricted.

When using multiple years of synchronized time series,
it should be taken into account that electricity demand does
not stay constant throughout the years. Historical time series
data for demand contains the impact of economic activity,
changes in energy efficiency, and other drivers of demand
for electricity—for example, increased use of air source heat

pumps for heating instead of direct electric heating. If these
changes are not removed, the LOLP is not comparable
throughout the years and the capacity value calculation may
be mainly based on those years that have had highest non-
weather induced consumption. To distinguish the economic
or technical changes, it is necessary to have a proxy for their
impact. This can be some measure of economic activity like
GDP, industrial output for energy-intensive sectors, number
of installed new devices, etc. The data can then be used to
perform a statistical operation such as regression analysis to
estimate how different factors influence consumption along
with non-changing signals such as time of day, day of week,
temperature, and possibly wind and solar irradiation (e.g.
[25][12]). The correlation coefficients can then be used to
normalize the changes that should not influence the capacity
value evaluation. Finally, expected future changes in
electricity demand and wind power can be overlaid on the
processed historical data when analyzing future years.

IV. IMPACT OF TRANSMISSION INTERCONNECTION

Modern power systems are generally combinations of
networks that are interconnected. This means that if one
balancing region experiences shortfalls in generation, this
may not result in disconnecting load but could induce an
unplanned import from a neighboring system as inertial and
governor response increase output from units responding to
frequency drops. In other cases, a given system may be short
on capacity but has made plans to import capacity from a
neighboring system. A situation such as this would likely be
handled by including the import in the LOLP calculation.
Generally LOLP may not necessarily refer to disconnecting
load but may mean that some combination of the following
occur: (1) operating reserve margins are not maintained, (2)
neighboring capacity is planned to alleviate shortfalls, or (3)
unanticipated imports may occur.

Numerous studies have demonstrated the interconnection
benefit of reducing LOLP. Interconnecting two non-
identical systems will increase reliability (decrease LOLP)
in both systems. This is because of the principle of
diversity—demand in different areas is only partially
correlated. However, the degree of this benefit for a given
area depends on its location in the system, the system load
level, and the transmission limitations [26].

Multi-area generation reliability analyses can consider
tie line and/or transmission line constraints and inter-
regional cooperation in addition to the regular reliability
considerations. Proposed methods for calculating the multi-
area reliability include the “system failure mode” approach
that accounts for each failure mode probability and expected
capacity [27], Monte Carlo simulations to account for
uncertainty (e.g., [28]), modifications to the capacity outage
probability table to account for uncertainties and capacity
limitations of both the generators and transmission lines
[29], and more advanced algorithms that explicitly consider
individual components in the network (e.g., minimal cuts
method in [30]). This multi-area issue is widely known, and
in NERC [2] one of the key recommendations for adequacy
studies is to clarify the assumptions regarding transmission
interconnections to neighboring system.

Ibanez and Milligan [32] undertook an analysis in the
Western Interconnection in the United States to analyze the
upper-bound role that transmission could play in resource
adequacy assessments. They analyzed alternative wind/solar
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build-outs in the West that were taken from the Western
Wind and Solar Integration Study Phase 2 (WWSIS-2) [31].
A reference case had 8% annual energy from wind and 3%
from solar (29 GW of installed wind and 14 GW of solar).
Alternative cases had 33% of annual demand supplied by
wind and solar, split evenly, and high wind/ low solar and
high solar/low wind combinations.

The analysis compared the ELCC of the full
transmission system with three different levels of
geographic aggregation that represent alternative levels of
interconnectedness: (a) business as usual, in which each
balancing authority area operator is constrained by
transmission to the neighboring system, (b) regional
transmission is a copper sheet but each region is isolated
from the remaining system, and (c) perfect transmission
exists throughout the interconnection (full copper sheet).
The  objective  of  the  study  was  to  determine  how  much
effective installed capacity could be replaced by
transmission using loss of load expectation (LOLE)
analysis. Key results are presented in Figure 4. The graph
shows the reduction in required ELCC made possible by
perfect transmission within each sub region and by perfect
transmission across the interconnection—with Balkanized
system planning the total required ELCC needed to achieve
1  day/10  years  LOLE  is  244  GW,  whereas  with  copper-
sheet planning the levels of ELCC needed for 1 day/10 years
is 184 GW. Although copper sheet transmission is unlikely
to ever be built, the example does show the trade-off
between transmission and generation and the impact that
transmission can potentially have on the need for new
resource additions.

V. IMPACT OF RELIABILITY METRIC CHOSEN

Alternative metrics that are based on LOLE analysis but
represent different ways of capturing the risk of inadequacy
include loss of load hours (LOLH) and expected unserved
energy (EUE). LOLH improves upon the daily LOLE
metric, because it evaluates LOLP at every hour of the year,
discarding those hours during which there is zero LOLP. In
contrast to this hourly treatment, daily LOLE is based on the
single peak hour of the day.

A. Comparison of reliabiltiy metrics
Ibanez and Milligan [33][34] undertook some analysis to

shed light on the use of LOLH and EUE using models of the
U.S. Western Interconnection. These analyses were based
on either the WWSIS-2 reference case with 8% wind and
3% solar energy penetration (2014b) or the WECC’s
Transmission Expansion Planning Policy Committee
(TEPPC) 2024 data set with roughly 9% wind and 5% solar
capacity penetration [34]. For alternative values of LOLE,
the reliability model was run, and a trace was developed to
show how LOLH or EUE varied as a function of LOLE.
This was performed for several balancing authority areas,
subregions, and the entire interconnection. In all cases, the
relationship between LOLH or EUE and LOLE is log-linear,
with parallel curves for all regions [34]. The differences
among the regions depends both on the number and size of
the generators (smaller areas tend to have larger slopes), as
well as the net load shape (profiles that show higher relative
peaks tend to have larger slopes) [33].

Ibanez and Milligan [33] also calculated the impact of
these same reliability metrics on capacity value, using
equivalent levels of reliability for each metric. The resulting

curves had similar shapes, which further confirmed that the
various reliability metrics are capturing the same
phenomena. The results of this work indicate that the
capacity value of wind and solar is relatively robust against
the underlying reliability metric, if LOLE, LOLH or EUE
are used.

B. Impact of reliability level
LOLE of 0.1 days/year is a common use of the 1 day/10

year standard, but these are not necessarily equivalent since
an average annual reliability performance does not capture
inter-annual variability among individual years. There has
been little if any development of similar LOLH targets or
characterizations of the relationship between these metrics
for systems with significant wind and solar energy.

Amelin  et  al.  [35]  show  that  the  capacity  value  of  a
resource is dependent upon the initial system reliability
level. It is important to note that if a system is extremely
reliable with LOLE ~= 0, then virtually no generator will
have any meaningful capacity value. This is because there is
essentially no LOLE, and thus there is no way that any
generator could meaningfully contribute to lowering LOLE.
In many systems, LOLH is 0 for most hours of the year,
becoming significantly greater than 0 for a relatively small
number of days or hours. The specific days/hours of
potential reliability shortfall is dependent on the reliability
target that is chosen. It is therefore common to adjust
demand or other system parameters so that the LOLE
represents a desired target level. An example of this type of
adjustment can be found in [32].

VI. CONCLUSIONS AND DISCUSSION

This paper summarizes results and methodology from
recent  work  on  the  capacity  value  of  wind,  based  on  a
WIREs journal article [9]. Areas of analysis and research
have continued to show differences in capacity value by
location.

Single-year estimates of wind ELCC are not likely to
represent the long-term value, and thus decisions regarding
overall resource needs will not be well informed. Two
studies have shown that eight to nine years of data are
needed to provide a robust estimate of wind capacity value.

The contribution of transmission to resource adequacy
and the related impact on wind capacity value is critical. It is
clear that assumptions concerning interconnections with
neighboring systems will be critical to assessing overall
resource adequacy and also the contribution that can be
made by wind energy.

Alternative LOLE-related metrics appear to make little
difference whether daily LOLE, hourly LOLH, or EUE are
used as the basis of wind ELCC calculations.

Multi-area methods as well as simplified methods are a
research topic that is timely, as wind and solar power start to
impact the adequacy of the power systems. At present, there
is ongoing work to develop capacity value methods for
larger interconnected systems in Europe by ENTSO-E.
There is also considerable interest in evaluating new
capacity market structures and questions about how this type
of market can incorporate the reliability component of
capacity value.
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Anticipation of large quantities of wind and solar energy
on the future grid drives an interest in developing methods
to assess flexibility. Work from [36] points toward the
development of flexibility-adequacy metrics and, by
implication, metrics that can quantify the contribution of
different resources to the flexibility target.
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