

IEAWIND Task 25 Design and Operation of Power Systems with Large Amounts of Wind Power

Operating Agent Hannele Holttinen VTT Technical Research Centre of Finland

Challenges to power systems with large share of wind power

§ Variability and prediction errors of wind power production

- § Currently variable load –more predictable patterns
- § Variability and uncertainty from single turbine and wind power plant is large, but will smooth out when distributed wind power plants
- § Grid to connect and transfer the power
 - § Currently the grid transferring power from existing units
- § Impacts will depend on the share of wind power and power system:
 - § The variability of load
 - § The flexibility of power generation fleet
 - § Possibilities to increase flexible production and consumption
 - § The adequacy of grid (wind resource versus load centers)

iea wind

Design and Operation of Power Systems with

Large Amounts

Experience from wind power integration is growing

- § There is already experience from several countries in Europe integrating 15-28 % of their electricity consumption from wind energy
- § In US: states in Mid West and Texas have > 10 % penetration levels
- § There are targets to reach 40-50 % in one country (Ireland and Denmark) and 14 % EU wide in 2020

Penetration level: share of electricity consumption by wind power production

Wind integration today

- § TSOs use updated information of on-line production and forecasts as well as possibility to curtail in critical situations
- § TSOs see increase in use of short term reserve/load following
- § Technical capabilities of wind power plants used more, and evolving
- § Existing constraints to reinforce the transmission network can delay reaching 20% wind penetration on the European/North American scale
- § Operation strategies to cope with wind generation from a high to a very high level (>20 %) are still being developed. New tools are needed.

TSO: Transmission System Operator

5/27/13

Wind Integration Studies

- § Integration studies are made for various reasons. System impact studies are often first steps towards defining wind penetration targets
- § Wind integration study results and methodologies used vary
- § IEA WIND Task 25 is working on providing best available information on how to perform a wind integration study: for research institutes, consultants and system operators

5/27/13

iea wind

Design and Operation of Power Systems with

Large Amounts

IEA WIND Task 25

5/27/13

OBJECTIVE:

to analyse and further develop the methodology to

assess the impact of wind on power systems

1st phase 2006-08, 11 countries + EWEA participate

2nd phase 2009-11, 14 countries + EWEA participate

3rd phase 2012-14, 15 countries + EWEA participate.

§ Provide an international forum for exchange of knowledge

§ State-of-the-art: review and analyse the studies and results so far

§ methodologies and input data, system operation practices

§ Final report 2006-08 in July 2009, 2009-11 in November 2012

§ Formulate guidelines:

§ recommended methodologies and input data when estimating impacts and costs of wind power integration

§ Quantify the impacts of wind power on power systems

§ range of impacts/costs; rules of thumb

www.ieawind.org/AnnexXXV

IEA WIND Task 25: Design and operation of power systems with large amounts of wind power

www.ieawind.org

		Country	Institution
		Canada	Hydro Quebec (André Robitaille); Manitoba Hydro (Tom Molinski);
**		China	SGERI (Bai Jianhua, Hu Bo)
		Denmark	Risø-DTU (Poul Sørensen); Energinet.dk (Antje Orths)
	- are	EWEA	European Wind Energy Association (Frans van Hulle)
		Finland OA	VTT (Hannele Holttinen, Juha Kiviluoma)
		Germany	ISET (Bernhard Lange); TSO Amprion (A.Gesino)
		Ireland	ECAR/UCD (Mark O'Malley); TSO EirGrid
		Italy	TSO Terna (Enrico Maria Carlini, Chiara Vergine)
		Japan	AIST (Junji Kondoh); University of Kansai (Yoh Yasuda)
		Norway	SINTEF (John Olav Tande, Atle Rygg Årdal)
		Netherlands	we@sea, ECN (Jan Pierik); TUDelft (M. Gibescu)
		Portugal	LNEG (Ana Estanquiero); TSO REN (Jose Osario); INESC-Porto (J. Pecas Lopes); UTL-IST (Ferreira Jesus)
		Spain	University of Castilla La Mancha (Emilio Gomez Lazaro)
		Sweden	KTH (Lennart Söder)
	ZN	UK	DG&SEE (Goran Strbac)
		USA	NREL (Michael Milligan); UVIG (Charles Smith)

Flexibility and reserves

§ Different time scale impacts of wind power

- § Wind power impacts flexibility of conventional production units a lot at longer time scales (4...12...24 hours)
- § Reserves are operated during the operating hour, can be allocated some hours ahead

5/27/13

§ Integration costs 0.5 – 4.5 €/MWh up to 20 % penetration level

Experience from Denmark/Spain/NL, cost of balancing from electricity markets for wind power producers allocating investment for new reserve; interconnection taken into account or not; assumptions on thermal power costs

Design and Operation of Power Systems with

5/27/13

- Based on increase to load variability/uncertainty due to wind power Ş increasing impact at increasing penetration level
- Sub-hourly variability impacts on reserve requirements small: 1 % of installed 8 wind capacity at 10 %, 2-5 % at 30 % penetration level. Different time scales for estimating the reserve requirement for others - 4 hours ahead, day-ahead

iea wind

10

Design and Operation of Power Systems with

Capacity value of wind power - key points

§ Wind power has a considerable impact on generation adequacy – reducing value as penetration increases

- § Larger areas more value highlights the need for transmission
- § Full LOLP calculations needed approximations not wise

5/27/13

LOLP – Loss of Load Probability

iea wind

Design and Operation of Power Systems with Large Amounts of Wind Power

Impacts to transmission network

§ Wind capabilities evolving to give support to grid

- § Requiring FRT capability is an industry standard, however, many different grid codes; voltage and frequency support
- § Transmission has is a key enabler to reach renewable energy and carbon reduction goals, and to help manage variability
 - § Wind energy different from conventional energy and requires different approach to transmission planning and transnational efforts (interconnection-wide transmission planning)
 - § Building grid for the total wind power amount more cost effective than upgrading bit by bit
 - § Can be very difficult/lengthy to get building permits for lines ⊠ improving the existing network utilization can help for short term:
 - § Using online monitoring (temperature,..); upgrading degraded components and introducing FACTS and phase shift transformers;
 - § Accepting occasional wind curtailements

Summary

§ Power systems face new challenges when integrating wind power
§ Larger areas help smoothing variability and uncertainty
§ Experience from wind integration has shown the problems can be overcome to reach 20 % shares of wind power (of yearly energy)
§ New tools will be needed to achieve higher targets
§ Keys to wind integration
§ Transmission planning and operational methods

- § Larger balancing areas to decrease the uncertainty challenge
- § Flexibility needs to be enhanced
 - § Future power plants need to be designed to be flexible
 - § Other means to increase flexibility from demand side and storages may also be needed in future

5/27/13

13

