ENERGINET DK

Integration of Wind Power - A National and International Task – Danish Perspective

Antje Orths

Wind Integration Workshop

19th of October 2012, Tokyo, Japan

Antje Orths, 19.10.2012

Agenda

- 1. The Danish Energy System 2012
- <u>The National Plan:</u> The Danish Energy Agreement -Fossile-free Energy Supply 2050 & 50% Electricity from Wind 2020
- <u>National Implementation:</u> Need for Grid- Adaptation and -Expansion / Linking Different Energy Sectors (Heat, Gas, Transport)
- 4. <u>The International Plan:</u> Integration of Offshore Wind Power as multinational Task
- 5. <u>International Implementation:</u> North Sea Grid – Status Quo and Outlook

Denmark – a small part of a large electricity market

Denmark is located between a thermal- and a hydro-dominated power system. This makes Denmark a "transit-corridor". Energinet.dk operates Eastern – and Western Denmark independently in two different synchronous power systems (Nordic and Continental Europe). MA NORDEL **Border between systems** dominated by hydroand thermal power 350 km UPS 350 km DK: ~ 5 mio inhabitants UCTE

2

<u>The national Plan:</u> The Danish Energy Agreement -Fossile-free Energy Supply 2050 & 50% Electricity from Wind 2020

Political Targets: – More Wind Power in Denmark

2020

35 % Renewables in the energy system (el + heat)
50 % of conv. electricity consumption from wind energy

=> + 2000 MW new Wind Power Capacity:
(offshore + 1000 MW; near shore + 500 MW; onshore + 500 MW

12 % Reduction of gross energy consumption (vs. 2006)
Shift from coal to Biomass in central power stations

2035

100 % renewables in electricity and heating systems

2050

100 % of energy supply covered by Renewables = (electricity, heating, industry and transport)

Wind Energy Coverage = 50%: => Wind Capacity ~ Danish Peak Load! ~ 2,5 x min Load

 \Rightarrow Increase from 28% (2011) within 9 years /

 \Rightarrow Increase RES share of consumption from 39% to 78%

ENERGINET

3

National Implementation:

Need for Grid- Adaptation and -Expansion / Linking Different Energy Sectors (Heat, Gas, Transport)

2010..2020 expected investments in new transmission assets ~3 b€

Excluding 0.8 b€ for the purchase of the regional transmission companies (132+150 kV)

Interconnectors – planned and upcoming projects

Strategy for the development of the electricity system

 Generation
 Means

 50% ?
 Flexibility in demand and generation - cooperation with heat/ cooling, transportation and gas sectors

 Somethic for efficient, market based control of the system
 Smart Grids for efficient, market based control of the system

Analysed scenarios for energy system

Gross energy for total energy supply in 2050

Electricity production in windpower scenario

Power system balance 2050 Windscenario

Heating in Denmark ... Increase use of Heat pumps!

Integrating Transportation into the Market...

...is also an issue of data-management

=> Development of a DATA HUB

Assumptions:

15% of Transport by electric cars

=> 25% indiv. cars & 15% of good-transport/ busses

Integration of electricity, gas and heat systems

Conclusions Part 2 & 3

- In order to reach the target, the means are:
 - strong grid + interconnectors, functioning markets,
 - increase of flexibility in the system by integrating heat / transport/ gas sector
 - promotion of smart grid solutions
- Integration of gas sector contributes to <u>flexible</u> integration of variable electricity (wind, solar) with biomass and waste:
- RE-gas is very suited for
 - p<u>eak load electricity capacity</u> and purposes not suited for electrical supply (transport, process heat, fuel cells etc.),
 - RE-gas can be integrated with liquid fuel production (methanol etc)
- The <u>gas system</u> can serve as a very flexible and adaptable storage of hydrocarbons and as a system integrator

4

The International Plan:

Integration of Offshore Wind Power as multinational Task

5

<u>International Implementation:</u> North Sea Grid – Status Quo and Outlook

Some Results (WG1)

Procedure: Grid Configuration

Input for Technical Data / Prices: HVDC Technology Report

Technology

- HVDC
- Cable
- Offshore Platforms

HVDC Projects

Costing Information

- HVDC
- HV Plant
- Cable Systems
- Connecting to AC Land Systems
- Offshore Platforms
- Subsea Cable Installation

Some Conclusions:

Supply chain constraints; limited:

- Factories,
- Installation Vessels
- HR for maintenance and Repair

=> Suppliers need clear marked signals to increase ressources!

2030 Data and Assumptions – Reference Scenario

- Provided by 10 governments
- Demand projections per country
- Installed capacities by type per country
- Locations of new generation facilities including offshore wind parks
- High variety in fuel mixes between countries

Installed capacities in 2030 as confirmed by member states (MW/%)

Status

- Study provides a baseline for the most economic elements of an offshore grid, based on governmental data.
- Initial results indicate a tendency to meshed grid design in some areas,
 - costs: radial > meshed;
 - Meshed provides future flexibility and optimizing opportunities, but more complicated,
 - both need onshore reinforcement;
 - Interactions between mixed HVAC/HVDC systems to be analysed
- results are sensitive to:
 - input parameters (scenarios, investment candidates, technology...) \rightarrow impacts network topology
 - policy parameters (priority access policy, curtailment/penalty costs) \rightarrow impacts network scale
- results are still being challenged and undergoing sanity check

Conclusions Part 4 & 5

- A longer term international coordinated plan is the only way to deliver benefits related to the integration of large international offshore wind generation;
 > NSCOGI = efficient forum.
- Preliminary investigations have shown:
 - potential for responsible use of natural and manufactural resources,
 - cost saving potential,
 - Improvement of SoS,
- Although, the meshed solution is expected to be more complex than classical solutions

Thank you!

