Holcotors results

- EN 1168 Distribution factors
- EN 11683 line support
- Shear \& torsion interaction

Gösta Lindström, Dr. Sc, Technical Manager, Strängbetong

[^0]Figure C. 1 - Load distribution factors for linear loads

EN 1168 distribution factors

El/GKv = $0.5 \quad$ Line load on edge

Fraction of total bending moment carried by each slab

EN 1168 distribution factors

EN 1168 distribution factors

Fraction of total bending moment carried by each slab

Conclusion for line load

α-factors in EN 1168 defines the fraction of total bending moment using El/GKv = 0.6

Fraction of total bending moment carried by each slab

Key

1 Loading percentage (\%)
2 Span (l) in m
3 Point load
Figure C. 3 - Load distribution factor for point loads at edge

EN 1168 distribution factors

El/GKv $=0.5 \quad$ Point load on edge

000010000100001000010000

Fraction of total bending moment carried by each slab

EN 1168 distribution factors

Fraction of total bending moment carried by each slab

EN 1168 distribution factors

El/GKv = $1.5 \quad$ Point load on edge

000010000100001000010000

Fraction of total bending moment carried by each slab

Conclusion for point load

α-factors in EN 1168 defines the fraction of total load using El/GKv = 1

EI/GKv = $2.0 \quad$ Point load on edge

100010000100001000010000

Fraction of total bending moment carried by each slab

Bending / Torsional stiffness

El/GKv
$G=0.4 E \quad(v=0.25)$

Figure \quad The ratio between bending and torsional stiffness for some X-sections of total width 1200 mm and total depth H in the range 150 to 500 mm .
The flange and web thickness are selected as minimum according to EN 1168.
Shear modulus G $=0.4 \mathrm{E}$
The X -sections curves represents the following from top down:

- Hollow core section with 10 webs
- Hollow core section with 5 webs
- Thin walled box section with 10 webs
- Thin walled box section with 5 webs
- Homogenius cross section

For torsional stiffness of thin walled box only the contribution from outer webs are included

Figure For a constant torsional gardient the relative magnitude of shear stress for different
cross-sections are presented as a function of the cross-section depth H .
The sections from top down are:

- Solid rectangular section, width 1.2 m and depth H , stress on horisontal surface (top or bottom)
- Solid rectangular section, width 1.2 m and depth H , stress on vertical sides
- Thin walled box of const thickness, width 1.2 m and depth H , stress on all walls
- Pipe section of diameter H of any wall thickness

3 line support with line load.
Fraction of total load carried by longitudinal support

Key

1 Reaction force/linear load
2 Span (l) in m
3 Linear load
4 Reaction force

Figure C. 5 - Reaction force at longitudinal support due to linear load

3 line support with point load.
Fraction of total load carried by longitudinal support

Key
1 Reaction force \times span/point load
2 Span (l) in m
3 Point load
4 Reaction force
Figure C. 6 - Reaction force at longitudinal support due to a point load at midspan

Can the improved interaction be utilized without FE analysis ?

Load capacity V (kN) with different eccentricity e due to the two interaction curves

* ${ }^{\text {a }}$ strängbetong

Shear torsion interaction formula

Load capacity V (kN) with different eccentricity e due to the two interaction curves

Capacity for cross-section with 8 or 5 webs

Shear torsion interaction

For Shear capacity calculation a method including the shear stress in the

transfer zone is recommended. HOLCOTORS project, Lin Yang formula was tested

2.5 Comparison with FE-analysis

The case with slab HD/F 380 and prestressing reinforcement $1100 \mathrm{~mm}^{2}$ has also been modelled in a FE-analysis to compare the shear stresses calculated with the suggested model.

The figure below shows the principal stresses over the cross section height. The transfer of prestress is assumed linearly along the transfer length 403 mm .

```
C SERFEM 1.03-HC-380_7.SRF

\section*{Huvudspänning \\ Lastfall 1 \\ \(\sigma_{10.1} \sigma_{2-m a x}\) \\ Skala "E1 \\ \(\lessdot \stackrel{\text { Tryck }}{ }{ }_{\text {Drag }}\)}

\(K^{40}\) K
363 547 \(\qquad\)
- x
\(\Gamma_{Y}\)
Figure 2.5:1 Principal stress in the transfer region. The slab are loaded with point load at a distance 2.5 H from the support. The shear load are set equal to the capacity calculated using the suggested model.


Figure 1.3:3 Cross section HD/F \(380, \mathrm{Ap}=1100 \mathrm{~mm}^{2}, \mathrm{zp}=37 \mathrm{~mm}\)


Analytical calculation gives very good agreement with FE-analysis


Figure 2.5:3 Comparison between the suggested model and EF-analysis, for the case HC 380 mm and 1100 mm 2 . Initial prestress 1100 MPa and during analysis the prestress 850 MPa has been used for both cases. Max shear stress in FE-model is 2.89 MPa , which is almost identical with the suggested model.

Principal stress \(\sigma_{I}\) due to nomal stress, torsion and or shear
\(\sigma_{c} \quad=\quad\) Normal stress in the HC section (positive in tension)
\(\tau_{T_{\text {_top }}}=\quad=\quad\) Shear stress in top flange due to torsion
\(\tau_{T_{\text {_web }}} \quad=\quad\) Shear stress in outer web due to torsion
\(\tau_{\text {T_bot }} \quad=\quad\) Shear stress in bottom flange due to torsion
\(\tau_{\mathrm{v}_{-} \text {web }} \quad=\quad\) Shear stress in outer web due to shear

Top flange of box
\[
\begin{equation*}
\sigma_{\text {I_top }}:=\frac{\sigma_{\mathrm{c}}}{2}+\sqrt{\left(\frac{\sigma_{\mathrm{c}}}{2}\right)^{2}+\left(\tau_{\mathrm{T}_{-} \text {top }}\right)^{2}} \tag{1}
\end{equation*}
\]

Outer web of box
\[
\sigma_{I_{-} w e b}:=\frac{\sigma_{c}}{2}+\sqrt{\left(\frac{\sigma_{c}}{2}\right)^{2}+\left(\tau_{T_{-} w e b}+\tau_{V_{-} w e b}\right)^{2}}
\]
\[
\begin{equation*}
\sigma_{\text {I_bot }}:=\frac{\sigma_{\mathrm{c}}}{2}+\sqrt{\left(\frac{\sigma_{\mathrm{c}}}{2}\right)^{2}+\left(\tau_{\text {T_bot })^{2}}^{2}\right.} \tag{3}
\end{equation*}
\]

For pure torsion normally the top flange is critical with a failure condition \(\sigma_{I_{-} \text {top }}=f_{\text {ct }} \quad\) inserted in eq 1 gives

Top flange shear stress at cracking

Torsion capacity at cracking on top flange
\[
\mathrm{T}:=\mathrm{W}_{\text {top }} \cdot \mathrm{f}_{\mathrm{ct}} \sqrt{1-\frac{\sigma_{\mathrm{c}}}{\mathrm{f}_{\mathrm{ct}}}}
\]

Which can be expressed
where
\(B_{m}=b-t_{\text {web }}\)
\[
\mathrm{T}:=2 \cdot \mathrm{~B}_{\mathrm{m}} \cdot \mathrm{H}_{\mathrm{m}} \cdot \mathrm{t}_{\mathrm{fl}} \mathrm{top} \cdot \mathrm{f}_{\mathrm{ct}} \sqrt{1-\frac{\sigma_{\mathrm{c}}}{\mathrm{f}_{\mathrm{ct}}}}
\]
\(H_{m}=H-\left(t_{\text {fl_top }}+t_{\text {fl_bot }}\right) / 2\)
\[
{ }^{\tau_{\mathrm{T}_{-} \text {top }}}:=\mathrm{f}_{\mathrm{ct}} \sqrt{1-\frac{\sigma_{\mathrm{c}}}{\mathrm{f}_{\mathrm{ct}}}}
\]


Using the above eq. for \(T\) results in Pure torsional capacity:
\(\mathrm{T}=111 \mathrm{kNm}\)
\(\mathrm{T}=28.7 \mathrm{kNm}\)
for HC 200 using \(f_{c t}=3.45 \mathrm{MPa}\)

By including the compression stress in the top flange the torsional capacity is increased.




Provided pure Shear and Torsional capacity is calculated in a proper way. The interaction formula as indicated with green lines could be utilized.

This can be used independent of Eurocode or the product standard, as it is well supported by the documented results of HOLCOTORS

Refinement can be done by:
- If top flange is critical for torsional capacity the margin not used in outer web could be included in Vo
- Calculation of V0 should be based on the sum of web thickness in inner and outer webs
- Including compression stress in top flange which increases with increased shear (has to be used case by case for proper stress analysis and X -section change in the end due to grouting)


The expression in EN 1168 today
\[
\begin{aligned}
& V_{\mathrm{Rdn}}=V_{\mathrm{Rd}, \mathrm{c}}-V_{\mathrm{ETd}} \\
& \text { with } V_{\mathrm{ETd}}=\frac{T_{\mathrm{Ed}}}{2 b_{\mathrm{w}}} \times \frac{\Sigma b_{\mathrm{w}}}{b-b_{\mathrm{w}}}
\end{aligned}
\]

Gives an indication on how the shearing force is reduced but it makes no check of torsional capacity. For the present sections
\[
\mathrm{T}_{\max \mathrm{H} 200}=0.298 \times \mathrm{V}=44.7 \mathrm{kNm}
\]
\[
\mathrm{T}_{\operatorname{maxH} 400}=0.458 \times \mathrm{V}=158 \mathrm{kNm}
\]
\[
\mathrm{V}(\text { Lin Yang })=339.2 \mathrm{kN} \text { for H400 }(\mathrm{Lp}=0.48 \mathrm{~m})
\]

\section*{Thanks for the attention}```


[^0]:    Key
    1 Loading percentage (\%)
    2 Span (l) in m
    3 Linear loads
    4 Edge
    5 Centre

