

HOLCOFIRE

Behaviour of prestressed hollowcore floors exposed to fire

Flexible supports and fire

Bruno Della Bella

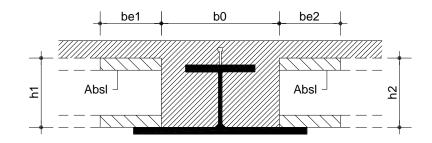
IPHA Technical Seminar 2013 in close co-operation with BIBM hosted by Cerib 30-31 October 2013

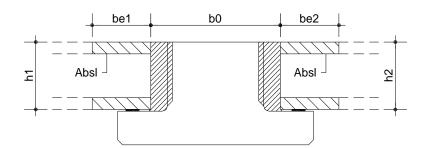
Contents

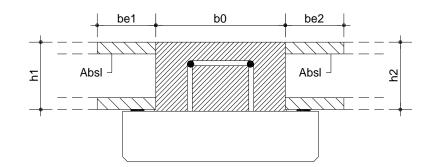
- Introduction
- Reduction of shear capacity with flexible supports under ambient conditions
- Tests on flexible supports at ambient and fire
- Parameters in flexible supports and fire
- Principles for flexible supports and fire
- Conclusions and recommendations
- Calculation example

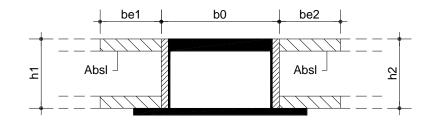
Slim floor structure with hcs

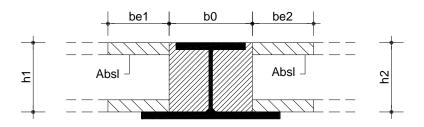
Advantages of slim floors

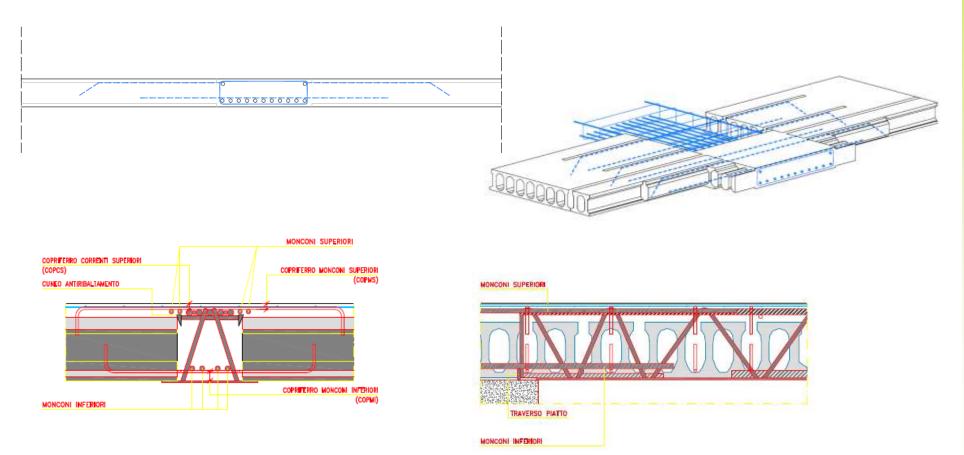

- Developed in 1980s in Scandinavia
 - Fast erection
 - Low self weight
 - High stiffness
 - Low span-to-depth ratio
 - Interior walls can be freely arranged
 - Freedom to arrange ductwork at soffit





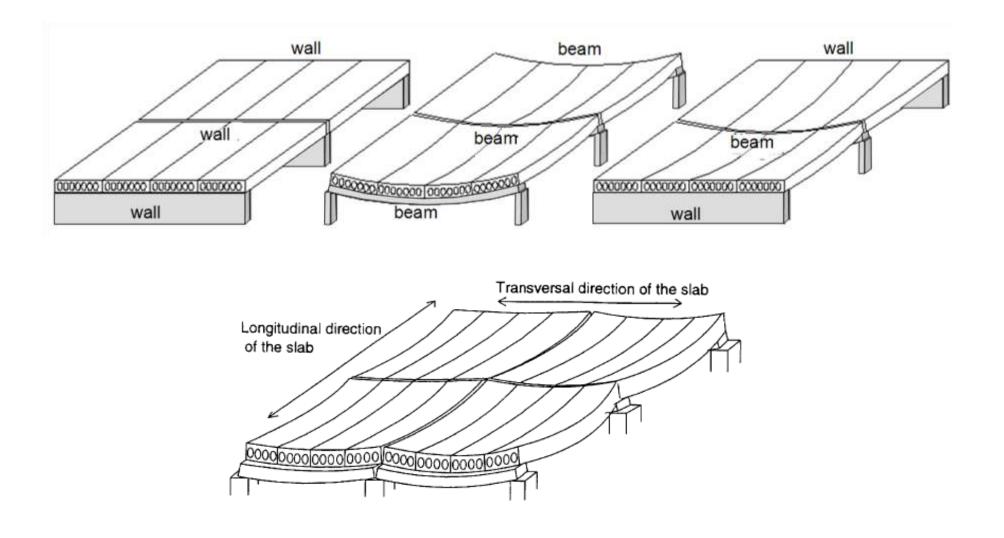

Various types of slender beams

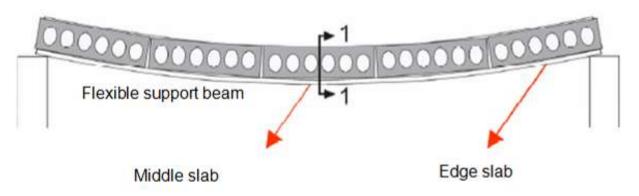

- Steel beams
- Concrete beams



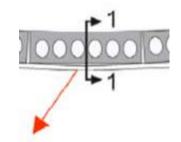
30-31 OCTOBER 2013 | CERIB | FRANCE

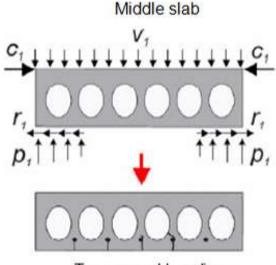
Various types of slender beams


• But also cast in-situ versions


Rigid - flexible support

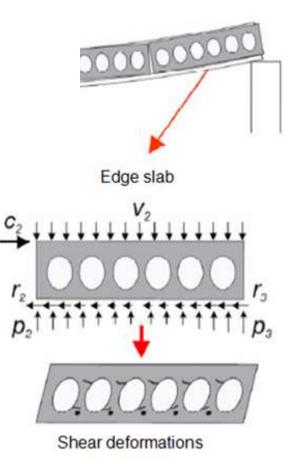
Influence of flexible supports


- Limited stiffness of beam \rightarrow deformation
- Composite action between beam and slabs
- Additional stresses are introduced:
 - At mid span
 - At support



Influence of flexible supports

- At mid span at ambient conditions
 - Additional bending stresses
 - Tensile stresses in soffit
 - Splitting cracks along strands
 - Reduced amount of anchored strands
 - Reduction of shear capacity
- But this phenomenon is not determinir lower shear capacity at flexible suppor


Transversal bending

Influence of flexible supports

- At support at ambient conditions
 - Deflection of the beam
 - Friction at interface
 - Deformation is hindered
 - Horizontal force is introduced
 - Additional transverse shear stresses τ_2 in the webs of slab
 - Reduction of shear tension capacity

Recent flexible support tests

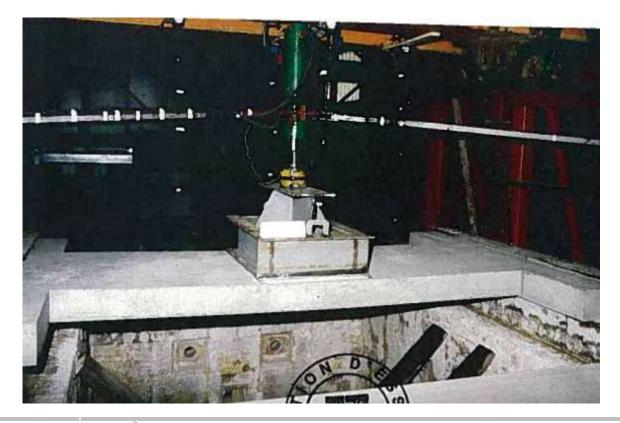
• Roggendorf [RWTH Aachen 2010] at ambient conditions

test	V _{fl} /V _r	deflection of IFB		
1	0.66	<i>u_{max}</i> [mm] 56.2		
- 50 		(L/107) 31.4		
2	0.61	(L/191)		
3	0.68	31.5 (L/190)		
4	0.60	29.1 (L/206)		
5	0.52	26.8		
6	0.78	(L/224) 34.9		
7	0.71	(L/172) 32.5		
8	0.57	(L/185) 29.8		
0	0.57	(L/201)		

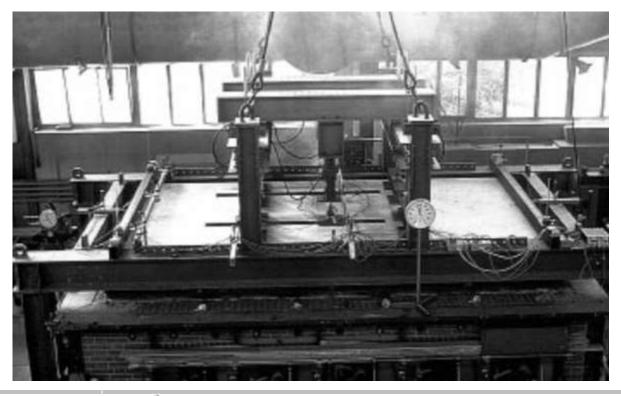
All flexible support tests at fire

• Holcofire database 1966-2010

- 18 test results of 162 fire test results
- Flexibility of support doubtful due to short spans


Holcofire fire test #	Fire test name	test year	Fire curve	Slab depth [mm]	topping [mm]	slab width [mm]	total web width [mm]	Total area of strand [mm2/slab]	Axis distance [mm]	Expo sed length of test set up, [m]	width of test set-up [m]	no of slabs	time [min]	Failure after fire
H80	CTICM 93-G-127	1993	ISO 834	160	0	1200	558	416	45	6,4	6	5	32	SB
H81	EMPA 95-1	1994	ISO 834	160	80	1200	526	624	30	4,7	2,4	3	122	R-NO
H82	EMPA B2-1	1995	ISO 834	200	0	1200	472	624	30	4,7	2,4	3	122	R-NO
H83	EMPA B2-2	1995	ISO 834	200	0	1200	472	624	30	4,7	2,4	3	49	SA
H84	EMPA B2-3	1995	ISO 834	200	0	1200	472	624	30	4,7	2,4	3	74,6	OT
H85	EMPA B2-4 PL	1995	ISO 834	200	0	1200	472	624	30	4,7	2,4	3	75,4	SA
H86	EMPA B3-1	1995	ISO 834	200	0	1200	472	624	30	4,7	2,4	3	96,6	SA
H87	EMPA B3-1 PL	1995	ISO 834	200	0	1200	472	624	30	4,7	2,4	3	97,4	R-NO
H88	CTICM 95-E-467	1995	ISO 834	160	50	1197	530	624	50	4	2,4	2	50	SB
H89	CTICM 95-E-533	1995	ISO 834	160	50	1197	530	624	30	4	2,4	2	100	R-DF
H90	CTICM 96-U-349	1996	ISO 834	160	50	1197	530	624	30	4	1,2	1	71	R-DF-SB
H91	CTICM 96-U-350	1996	ISO 834	160	0	1197	530	624	30	4	1,2	1	42	DF-SB
H143	BRE test1	2007	parametric	200	0	1200	330	651	31	7	17,76	15	60	R-NO
H144	BRE test2	2007	parametric	200	0	1200	330	651	31	7	17,76	15	60	R-NO
H145	SPTRI Peikko P802216A	2009	ISO 834	270	0	1200	286	930	35	5,8	3,6	4	60	R-NO
H146	SPTRI Peikko P802216B	2009	ISO 834	270	0	1200	286	930	35	5,8	3,6	4	60,4	R-NO
H147	SPTRI Peikko P802216C	2009	ISO 834	270	0	1200	286	930	50	5,8	3,6	4	120	R-NO
H148	SPTRI Peikko P802216D	2009	ISO 834	270	0	1200	286	930	50	5,8	3,6	4	180	R-NO

FRANCE


- CTICM [France, 1993-1996] at fire
 - Not very positive results

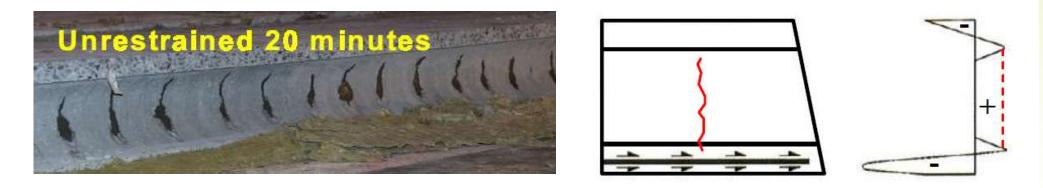
- Borgogno & Fontana [EMPA, 1994-1995] at fire
 - Good results
 - B2-2, B2-4PL and B3-1 failed in shear at 49, 75, 97 minutes

- Bailey [Cardington, 2007] at fire
 - Not indended at flexible support test
 - Good results, in both tests 60 minutes natural fire

- Peikko tests [Sweden SP, 2009] on Dealtabeam
 - Short spans of slabs (2.4 m)
 - Good results: 60, 120 and 180 minutes of fire

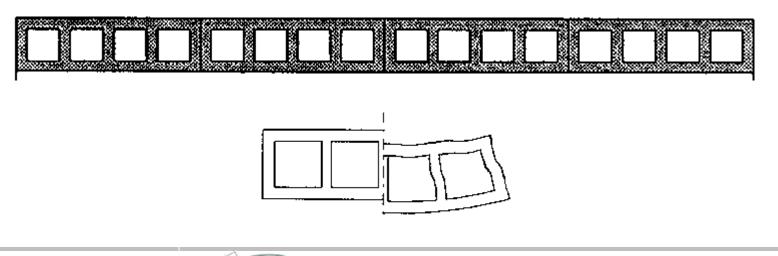
Conclusions from fire tests

- Although some studies do exist with bad and good result, flexible supports and fire has not been comprehensively studied
 - Size of furnaces, maximum 4 x 6 m
 - Short spans of slabs
 - Too costly
- But a new Holcofire experiment would most probably not yield to new insights or new information → "desk study"


- a. Induced thermal stresses and vertical web cracking
- b. Thermal expansion of underflange
- c. Deflection of the supporting beam
- d. Continuous supporting beam
- e. Imposed loading
- f. Web width
- g. Tensile strength of the concrete
- h. Type of connection with the supporting beam
- i. Structural topping

a. Induced thermal stresses and vertical web cracking

- After 15 minutes vertical cracking at regular distances
- By definition shear tension cannot occur anymore
- Same as in rigid supports and fire
- Significantly different than flexible support at ambient conditions



b. Thermal expansion of underflange

- Compressive stresses in underflange
- Additional curvature of hollow cores
- At support compressive stresses
- At mid span lower compressive stresses which results in lower spalling chances

d1. Continuous supporting beam

- Due to fire point of zero moment moves
- Shear load at zero moment point is lower
- Significant decrease of shear stresses

D2. Floor continuity

- reduce floor deflection
- Reduce beam deflection by enlarging beam compression flange
- reduce transversal shear flow and increase compression at upper flange at cold and also at fire

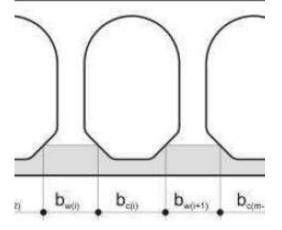
ending in fire situation

M Rd.fi,Span

MEd,n = WEd,n /en / 8

Free moment diagram for uniformly distributed load under fire conditions M Rd2.fi

Bending in

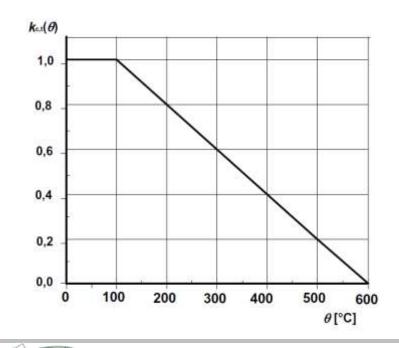

Shear

e. Imposed loading

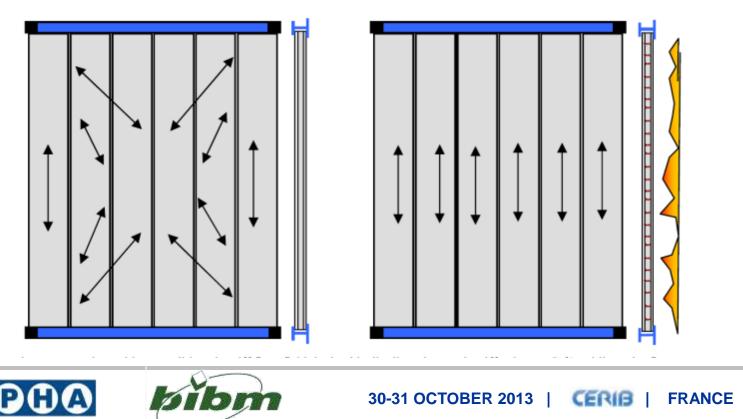
- Design value of imposed loading is much smaller frequent load value $\ \psi 1$

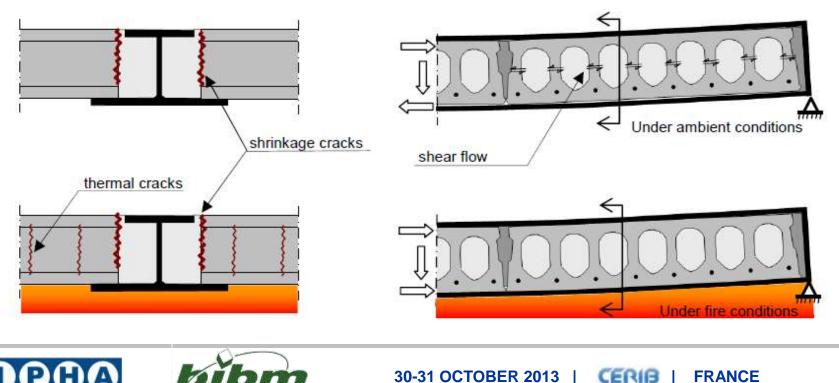
f. Web width

- Same for rigid and flexible support
- Same for ambient and fire conditions

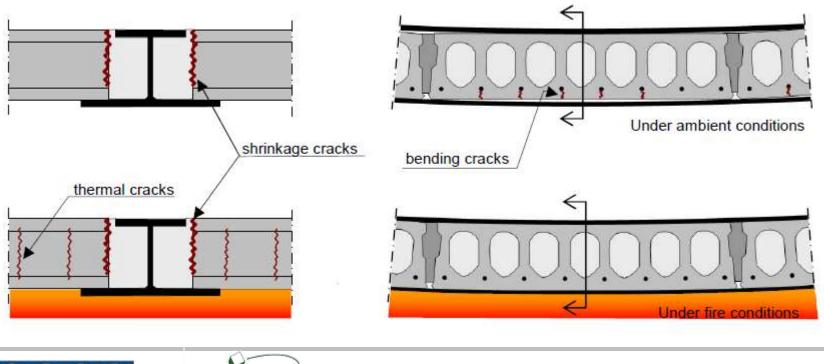


g. Tensile strength of the concrete


- No differences between rigid or flexible support
- Decrease during fire according to EN1992-1-2 Figure 3.2


• Ambient vs fire situation

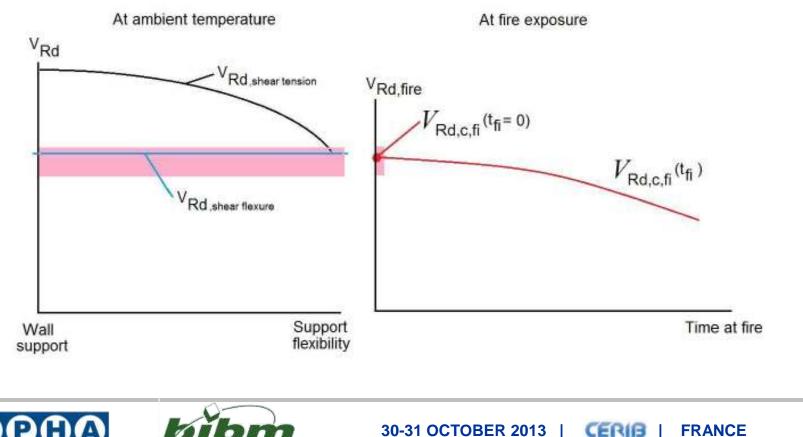
- Stiff floor field with load to stiff columns
- Less stiifness with load in longitudinal direction


• At support

- Due to expansion of soffit another compression force is introduced that compensated additional shear stresses
- Due to vertical web cracking by definition no shear tension

• At mid span

- Additional bending stresses are compensated by the expansion of the underflange
- Strands remain well anchored during the fire



30-31 OCTOBER 2013

CERIB

FRANCE

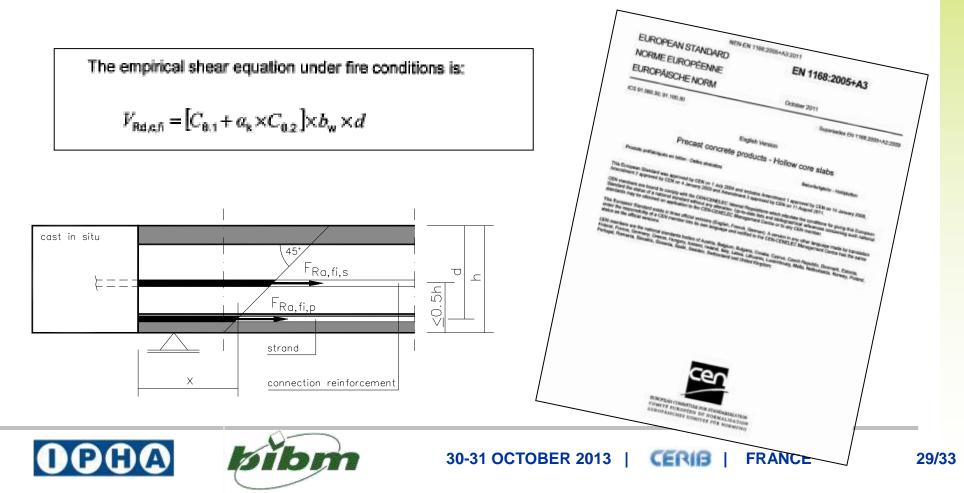
 Due to thermal gradient vertical cracks initiate and shear capacity "drops" from shear tension to shear flexure which is dependent on time at fire → use EN1168 Annex G !!

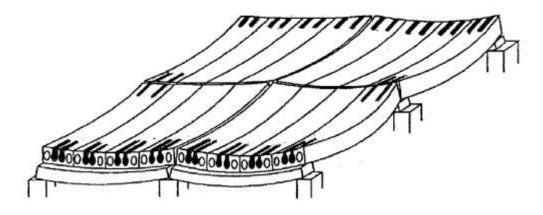
Validation with fire tests

- In 3 tests shear failure observed
- Analysis from database study show > 100%

		Fire test		EN1168	1		
TES	T ID	Shear load	Time to failure [minutes]	Shear capacity [kN/m ¹]	Time to failure [minutes]	Test/ Annex G	
		[kN/m ¹]	[[//]	[]	[%]	
H83	EMPA B2-2 [1995]	35.1	49	32,9	36	106.7%	L/330
H85	EMPA B2-4 PL [1995]	35.8	75	29.6	37	121,4%	L/320
H86	EMPA B3-1 [1995]	28.6	97	15.1	30	189,4%	L/1200

• Use of EN1168 Annex G is safe

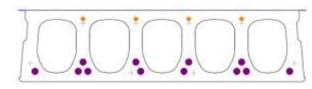

 Walraven/Vrouwenvelder: "It is a widely accepted procedure to put only one single specimen of a product to a fire test and approve it if the required time of fire duration is met without failure. The consequence is that the models of Annex G are considered as being confirmed if the mean value of the ratio between experimentally obtained and predicted results is at least equal to one".

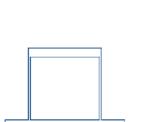

Conclusion and recommendation

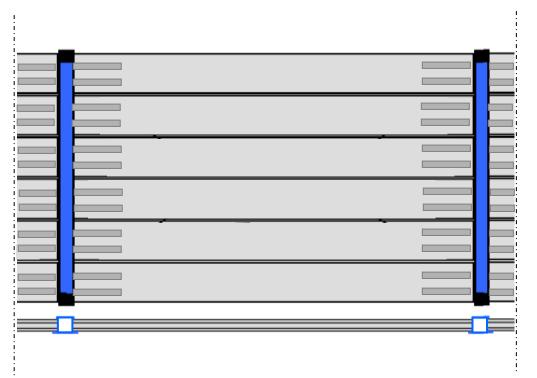
• EN1168:2005+A3:2011 is recommended for hollow core slabs at fire on rigid and flexible supports

Conclusion and recommendation

- The fire resistance of structures with hollow core slabs is improved by [ECCS/IPHA, 1998]:
 - The use of tying reinforcement to provide alternative load paths
 - A reinforced concrete topping to control the effect of cracking and to provide additional tying action for integrity reasons
 - Infilling of the hollow cores to strengthen the slab locally, and to permit placement of tie reinforcement
 - The effect of protection of the beam support to the hollow core slabs.






Calculation example

- Consider a floor field with module of 7,20 m x 12,60 m
- Hollow core 315 mm

• THQ320

• No structural topping

Calculation example

Hollow cores

- depth 315 mm with 5 cores cast in C45/55
- 12 strands 12,5 mm at 46 mm and 87 mm axis distance and 4 upperstrands at 277 mm (X8X4-D4)
- The span of the slabs is 12180 mm with 80 mm support length and filled cores for 50 mm
- Total web width 316 mm
- Thickness of upperflange / underflange 40 mm,
- Connection reinforcement $2 \varnothing 16$ per slab in 2 cores
- Support:
 - beam THQ 320 with 7200 mm support length
- Loads:
 - self weight plus live load = 5,0 kN/m2
 - finishing = 1,0 kN/m2

Calculation example

	Rigid support	Flexible support				
Ambient conditions	Uncracked situation = shear tension V _{Rd,c} = 185,0 kN (EN1168)	Uncracked situation = shear tension V _{Rd,c} = 170,9 kN (fib 6)				
	Cracked situation = shear flexure $V_{Rd,c} = 147,5 \text{ kN} (EN1992)$ $V_{Rd,c,min} = 124,2 \text{ kN} (EN1992)$	Cracked situation = shear flexure $V_{Rd,c} = 147,5 \text{ kN} (EN1992)$ $V_{Rd,c,min} = 124,2 \text{ kN} (EN1992)$				
Fire situation	Cracked situation (thermal vertical web cracks) = shear flexure $V_{Rd,c,fi,30} = 106.8 \text{ kN} (EN1168 \text{ Annex G})$ $V_{Rd,c,fi,120} = 92.9 \text{ kN/slab} (EN1168 \text{ Annex G})$ In capacity under fire 2@16 connection reinforcement is taken into account					

