
EDUCATIONAL MATERIAL IN CYBER SECURITY

MEMORY SAFETY AND CODE VERIFICATION IN RUST

WHO IS THE MATERIAL FOR?

• Students and professionals interested in methods and tools for
eradicating memory safety issues.

• Managers, software developers, and security professionals interested
in evaluating whether they should use Rust in future projects.

• Students and professionals interested in methods and tools for
obtaining functional correctness guarantees on top of memory safety.

• This material is primarily about defensive security, that is, how to
guarantee that certain bugs cannot happen

WHO MADE THIS MATERIAL?

Christoph Matheja

Technical University of Denmark

chmat@dtu.dk

www.cmath.eu

Supplementary material that will be provided alongside these slides:
• Source code for examples, exercises, and challenges
• Video lecture covering the slides and live coding for some examples

mailto:chmat@dtu.dk
http://www.cmath.eu/

WHAT ARE THE MAIN TAKEAWAYS FOR THIS
CONTENT?

• There is no security without safety.

• Rust‘s ownership and borrowing system statically guarantee safety by ensuring
that references are either mutable or shared; for exceptions, a synchronization
mechanism must enforce safety.

• Flows provide a useful mental model for understanding how the Rust compiler
checks memory safety and, in particular, lifetimes.

• Program verification tools, such as Prusti, can provide stronger functional
correctness guarantees but require additional annotations.

trade-off: writing more annotations è more compile-time guarantees

INTRODUCTION
WHY SHOULD I FOLLOW THIS COURSE?

THERE IS NO SECURITY WITHOUT SAFETY

credits: Matt Miller, Microsoft Security Response Center

Memory safety is the absence of errors related to memory accesses.

THE RUST PROGRAMMING LANGUAGE

Rust is a modern language aiming at
safe systems programming

“The most beloved programming
language since 2016”

“Rust is the industry’s best change at
safe systems programming”

– Ryan Levic, Microsoft

credits: Stackoverflow

CHARACTERISTIC FEATURES OF RUST

Memory safety
ownership & borrowing

Performance
memory control, zero-

cost abstractions

Ergonomics
trait system

Build environment
cargo, good error

reporting

OUR FOCUS

Reasoning about the safety features of Rust code
• mental models for memory safety

• functional correctness guarantees

This will help you to write safer and more secure code
even if you never use Rust

But: this is not a Rust programming course
• Rust Book

• Rust by Example

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/rust-by-example/

AGENDA

1. High-level overview

2. Memory basics

3. Ownership

4. Borrowing

5. The flow model

6. Prusti: guarantees beyond memory safety

1. HIGH-LEVEL OVERVIEW
A NON-TECHNICAL METAPHOR ILLUSTRATING HOW RUST ENSURES MEMORY SAFETY

METAPHOR: ISSUES WITH VIDEO CONFERENCES

Problem: many participants in a video conference talk at once

è Data race: multiple agents access the same resource concurrently

How can we rule out such situations?

METAPHOR: ISSUES WITH VIDEO CONFERENCES

Solution 1: one exclusive speaker

METAPHOR: ISSUES WITH VIDEO CONFERENCES

Solution 2: everyone is muted and only listens

METAPHOR: ISSUES WITH VIDEO CONFERENCES

Solution 3: a moderator assigns speaking rights

METAPHOR: ISSUES WITH VIDEO CONFERENCES

Requirements for data races

1. aliasing

2. mutation

3. lack of synchronization

in video conferences

many agents use the same channel

and all can speak

and there is no moderator

Solution: prevent that all three requirements hold at the same time

HOW RUST PREVENTS MEMORY SAFETY ISSUES

Requirements for data races

1. aliasing

2. mutation

3. lack of synchronization

Data races and many memory safety
issues can only arise if these three
conditions are met

Rust’s high-level approach to safety guarantees
• Enforce that there is either aliasing or mutation
• Require synchronization for exceptions

2. MEMORY BASICS
WHAT WE NEED TO TALK ABOUT OWNERSHIP, BORROWING, AND LIFETIMES IN RUST

TERMINOLOGY

• Value: a type and an element of that type

• Place: a location holding the address of a value

• Variable: a “named slot” for a value

• Pointer: a value holding the address of a place

• Reference: a pointer with a specific contract

• here: mutable &mut T and read-only &T

5:u8, 17:i32, 1.4:f64, “hej”:&str

:&str ‘h’ ‘e’ ‘j’

IDENTIFY ALL VALUES, POINTERS, AND VARIABLES

let a = 42;

let b = 43;

let c = &a:

let mut d = &a;

d = &y;

let e = “hello world”;

MEMORY LAYOUT

stack

heap

executable (read only)

static data disposal when
execution ends

disposal left to
programmers

disposal when
running out of scope

dynamic data structures

function frames

string literals,
static variables

WHERE ARE THE PLACES OF THE FOLLOWING
VALUES?

let a = 42;

let b = 43;

let c = &a:

let mut d = &a;

d = &y;

let e = “hello world”;

let tuple = (17, 3.14);

let b = Box::new(tuple);

let v = vec![1,2,3];

WHERE ARE THE PLACES OF THE FOLLOWING
VALUES?

let a = 42;

let b = 43;

let c = &a:

let mut d = &a;

d = &y;

let e = “hello world”;

let tuple = (17, 3.14);

let b = Box::new(tuple);

let v = vec![1,2,3];

STACK FRAMES

fn foo(x: &i32) -> i32 {
 let a = 100;
 a + *x
}

fn main() {
 let _a: i32;
 let b = -3;
 let c = 1234;
 // let c = _a;
 let _d = foo(&c);
 let _p = &b;
}

return address

_a | ??:i32

b | -3:i32

c | 1234:i32

_p | :&i32

x | :&i32

return address

main()

foo(&c)

Stack-discipline: automatically drop a
frame when it runs out of scope

Accessing uninitialized
places is forbidden a |100 :i32

_d |1334:&i32

HEAP

Disposal of heap-allocated values
is left to the programmer

Memory error: an attempt to access
a place with an illegal value
• uninitialized value

• dangling pointers to deleted values

• corrupted value (due to concurrency)

WHAT COULD POSSIBLY GO WRONG?

Potential memory safety issues

• x might point to an uninitialized
value

• bar might access the value of x

void foo(Struct* x, Struct* y)
{
 bar(x);
 free(x);
 bar(y);
}

C

WHAT ELSE COULD POSSIBLY GO WRONG?

Potential memory safety issues

• bar might access the value of x

• x and y might be aliases, i.e. point
to the same value

• bar(y) attempts to access the
value of y, which has previously
been deleted via free(x)

è use-after-free bug

void foo(Struct* x, Struct* y)
{
 bar(x);
 free(x);
 bar(y);
}

C

WHAT ELSE COULD POSSIBLY GO WRONG? II

Potential memory safety issues

• bar might delete the value of x

• free(x) will attempt to delete the
value of x again

è double-free bug

void foo(Struct* x, Struct* y)
{
 bar(x);
 free(x);
 bar(y);
}

C

WHAT ELSE COULD POSSIBLY GO WRONG? III

Potential memory safety issues

• If x and y point do different
values and bar does not delete
anything, then the value of y
might never be deleted

è memory leak

void foo(Struct* x, Struct* y)
{
 bar(x);
 free(x);
 bar(y);
}

C

MAIN REASONS FOR MEMORY SAFETY ISSUES IN C

1. Manual disposal of heap locations

2. Mutable aliasing

è What are better memory disposal strategies?

void foo(Struct* x, Struct* y)
{
 assert(x == y);
 free(x);
 Struct z = *y
}

C

DISPOSAL STRATEGIES FOR HEAP MEMORY

MANUAL DISPOSAL

• examples: C, C++

• very efficient

• no safety guarantees

è “control first”

GARBAGE COLLECTOR

• examples: Java, C#

• ensures safety at runtime

• expensive

è “safety first”

OWNERSHIP SYSTEM

• examples: Rust

• safety at compile time

• efficient

è both: “clean desk policy”

Metaphor: how to keep the office tidy?

3. OWNERSHIP
HOW RUST ACHIEVES MEMORY SAFETY (FOR CODE WITHOUT POINTERS)

OWNERSHIP RULES – PART 1

1. For every value there is a unique place, called its owner

2. A value is disposed (or “dropped”) when its owner leaves scope

3. Variables own their values

EXAMPLE

fn main() {

 let mut v = vec![1,1,1];

 for i in 3..10 {
 let next = v[i-3] + v[i-2];
 v.push(next);
 }
 println!(“P(1..10) = {:?}”, v);

}

1

1

1

*
16

3

buffer
capacity

length

allocate new vector with owner v

manipulate vector

v runs out of scope è drop vector

stack heap

2

2

3

5

7
9

4

10

OWNERSHIP RULES – PART 2

1. For every value there is a unique place, called its owner

2. A value is disposed (or “dropped”) when its owner leaves scope

3. Variables own their values

4. Composite types (structs, tuples, vectors, ...) own their elements

EXAMPLE

fn main() {
 let point = Box::new((3.14, 17));

 let label = format!(“{:?}”, point);
 assert_eq!(label, “(3.14, 17)”);
}
 // label and point are out of scope
 // drop owned string and tuple
 // drop 3.14:f32, 17:i32
 // and characters of string

3.14

17

‘(‘

‘3’

‘.’

‘1’

‘4’
‘,’

*

*

...

point

label

allocate tuple with owner point

allocate string with owner label

drop label, point, and their
owned values

stack heap

‘1’

‘7’

‘)‘

EXAMPLE

fn main() {

 let mut v = vec![1,1,1];

 for i in 3..10 {
 let next = v[i-3] + v[i-2];
 v.push(next);
 }
 println!(“P(1..10) = {:?}”, v);

}

1

1

1

*
16

3

buffer
capacity

length

allocate new vector with owner v

manipulate vector

v runs out of scope è drop vector

stack heap

2

2

3

5

7
9

4

10

LIMITATIONS

• Memory consists of ownership trees with variables at the root

• All values are dropped when leaving a function’s scope

 è Move ownership to a new owner

struct Person { name: String, age: i32 }

let mut p = Vec::new();
p.push(Person{ name: “Eva”, age: 42});
p.push(Person{ name: “Adam”, age: 23});

// ...

p

* 8 3 42 * 8 4 23

Eva Adam

OWNERSHIP RULES – PART 3

1. For every value there is a unique place, called its owner

2. A value is disposed (or “dropped”) when its owner leaves scope

3. Variables own their values

4. Composite types (structs, tuples, vectors, ...) own their elements

5. Ownership can be moved to a new owner

è the old owner becomes an uninitialized place

è accessing the old owner is forbidden until it is initialized again

EXAMPLE

fn main() {

 let mut x = Box::new(17);

 let mut y = x;

 // fails: let z = x

 *y = 42;

 assert!(*y == 42);

}

17
mvdx

*y

17*x

42
mvdx

*y

mvdx
drpy

Operations that move

§ assignments

§ passing values to a function

§ returning values from a function

let x = Box::new(17)

foo(Person { age: 32, ... })

fn bar(n: String) -> Person {
 Person { age: 32, name: n }
}

MENTAL MODELS FOR UNDERSTANDING OWNERSHIP

• Low-level model: “what’s actually happening”
• Variables are places that hold possibly illegal bytes

• Ownership rules guide how long a variable is accessible

• High-level model: “how we can reason about ownership”
• A variables exists as long as there is a capability flow to it

• and parallel flows do not conflict each other

CAPABILITY FLOWS

Idea: annotate programs with flows for each owner

• Taking ownership of a place starts a new flow (color indicates the owner)

• Moving a place stops the flow

• Accessing a place adds a flow from the last access to the current access

• mutable flow for values that can be modified (keyword “mut”)

• immutable flow for values that cannot be modified

EXAMPLE

fn main() {
 let mut x = Box::new(17);

 let mut y = x;

 let z = x;

 *y = 42;

 assert!(*y == 42);
}

There are two (mutable) flows

RUST’S FLOW-SENSITIVE ANALYSIS FOR OWNERSHIP

Checking ownership: check that all flows are compatible

1. No access after move: no flow from an end-of-flow marker to a place

2. Parallel flows for the same place (same color) must be immutable

EXAMPLE

fn main() {
 let mut x = Box::new(17);

 let mut y = x;

 let z = x;

 *y = 42;

 assert!(*y == 42);
}

incompatible flow
è access after move

ARE ALL FLOWS COMPATIBLE?

let x = vec![1, 2, 3];

if y > 0 {

 f(x); // x is moved to f

} else {

 println!(“blabla”);

}

f(x); // x is moved to f

ARE ALL FLOWS COMPATIBLE? NO!

let x = vec![1, 2, 3];

if y > 0 {

 f(x); // x is moved to f

} else {

 println!(“blabla”);

}

f(x); // x is moved to f

incompatible flow
è access after move

If a place has been moved
in one branch of a control
flow statement and has not
definitely been given a
new value, it is
uninitialized after the
statement.

ARE ALL FLOWS COMPATIBLE?

let mut x = vec![1, 2, 3];

while y > 0 {

 foo(x); // x is moved to foo

 y = y – 1;

}

ARE ALL FLOWS COMPATIBLE? NO!

let mut x = vec![1, 2, 3];

while y > 0 {

 foo(x); // x is moved to foo

 y = y – 1;

}

flow across
loop iterations!

incompatible flow
è access after move

ARE ALL FLOWS COMPATIBLE?

let mut x = vec![1, 2, 3];

while y > 0 {

 foo(x); // x is moved to foo

 y = y – 1;

 x = bar() // move to x
}

ARE ALL FLOWS COMPATIBLE? YES!

let mut x = vec![1, 2, 3];

while y > 0 {

 foo(x); // x is moved to foo

 y = y – 1;

 x = bar() // move to x
}

OK: x is re-initialized in
the loop è new flow

IN WHAT LINES CAN WE DETECT INCOMPATIBLE FLOWS?

1 fn main() {
2 let mut ids = P();
3 ids.push(Person { ... });
4 notify(ids);
5 }

fn notify(v: Vec<Person>)
 -> Vec<Person> {
 for i in &v { println!(“{}”, i); }
 v
}

11 fn main() {
12 let mut ids = P();
13 notify(ids);
14 notify(ids);
15 }

6 fn main() {
7 let mut ids = P();
8 ids = notify(ids);
9 ids.push(Person { ... });
10 }

16 fn main() {
17 let mut ids = P();
18 let x = ids[0];
19 ids = notify(ids);
20 let y = x;
21 }

fn P() -> mut Vec<Person> { vec![
 Person { name: “Adam”, age: 27 },
 Person { name: “Eva”, age: 42 },
 Person { name: “Chris”, age: 32 },
]}

IN WHAT LINES CAN WE DETECT INCOMPATIBLE FLOWS?

1 fn main() {
2 let mut ids = P();
3 ids.push(Person { ... });
4 notify(ids);
5 }

fn notify(v: Vec<Person>)
 -> Vec<Person> {
 for i in &v { println!(“{}”, i); }
 v
}

11 fn main() {
12 let mut ids = P();
13 notify(ids);
14 notify(ids);
15 }

6 fn main() {
7 let mut ids = P();
8 ids = notify(ids);
9 ids.push(Person { ... });
10 }

fn P() -> mut Vec<Person> { vec![
 Person { name: “Adam”, age: 27 },
 Person { name: “Eva”, age: 42 },
 Person { name: “Chris”, age: 32 },
]}

16 fn main() {
17 let mut ids = P();
18 let x = ids[0];
19 ids = notify(ids);
20 let y = x;
21 }

MOVES AND DATA STRUCTURES

One cannot move values out of data structures that do not permit
holes in their representation, e.g. vectors or arrays

16 fn main() {

17 let mut ids = P();

18 let x = ids[0];

19 ids = notify(ids);

20 let y = x;

21 }

p

moved 42 * 8 4 23

Eva Adam

problem: vector id represents a
contiguous area of memory

MOVING IN AND OUT OF VECTORS

Approach 1: Only move the last value and resize the vector

Approach 2: Swap a value with the last value before move

Approach 3: Swap in another value for the one we take out

Approach 4: Create a new copy of an element instead of moving it

let x = ids.pop().expect(“vector empty”);

let x = ids.swap_remove(0);

let x = std::mem::replace(&mut ids[0], Person { ... });

let x = ids[0].clone();

EXCEPTION: COPY TYPES

• Main advantage of ownership: safe & efficient disposal of resources

• No advantage for simple types that only manage their own bits
è These types are always copied bitwise instead of moved

• Custom copy types may only consist of other copy types

f32, f64, char, bool, usized, u8, i8, i32, ...

#[derive(Copy, Clone)]
struct Point { name: i32, age: i32 }

let mut ids = vec![1,2,3];
let x = ids[0]; // x is a copy of ids[0]
notify(ids); // nothing has been moved out of ids

EXCEPTION: REFERENCE COUNTING

• Ownership enforces tree data structures

è It may be unclear who should own a resource

• Escape hatch: reference-counted pointers (Rc)
• Clone only increments reference count

• Resources are dropped once count falls to zero

• Safety: Rc pointers can only be immutable

Who should own A,B,C,D?

let a = Rc::new(“hej”.to_string());
let b = a.clone();
let c = a.clone();

a

3 *

hej

b c

4. REFERENCES
HOW RUST CHECKS MEMORY SAFETY FOR CODE WITH POINTERS

WHAT COULD POSSIBLY GO WRONG?

We move a table into print(…) but never give it back

è printing a table also destroys it!

use std:collections::HashMap;

// table of authors and their books
type Table = HashMap<String, Vec<String>>;

fn print(table: Table) {
 for (author, books) in table {
 println!(“works by {}”, author);
 for book in books {
 println!(“ {}”, book);
 }
 }
}

WHY BORROWING?
Pointer: value holding the address of a place

// so far: owning pointers
let x = Box::new(Person {...});
// drop x => drop person on the heap

fn average_age(a: Person, b: Person)
 -> (Person, Person, f32)
{
 (a, b, (a.age + b.age) / 2)
}

let alice = Person { ..., age: 42 };
let bob = Person {..., age: 23 };

let (alice, bob, avg) =
 average_age(alice, bob);

unergonomic solution:
move values back to
their original owner

let (alice, ???, avg) =
average_age(alice, alice)

error: can move only once!

REFERENCES (OR BORROWS)

Shared references &T

• Create as many as you want
• Read-only
• Copy type

• On creation: stop mutable flow
 è owner cannot modify its value
• All dropped: mutable flow returns to owner

• Compiler may assume that the pointed to value
does not change until the reference is dropped

Mutable references &mut

• Create one with exclusive access for each place
• Read and write
• not a copy type

• On creation: stop all flows from borrowed place
è owner cannot access its value

• All dropped: flow returns to owner

• Compiler may assume exclusive access to the immediate
location pointed to (accessible via *)

References: pointers with a specific contract
that temporarily borrow ownership.

PRINTING A TABLE WITHOUT DESTROYING IT
use std:collections::HashMap;

// table of authors and their books
type Table = HashMap<String, Vec<String>>;

fn print(table: &Table) {
 // implicitly dereferenced to *table
 for (author, books) in table {
 println!(“works by {}”, author);
 for book in books { // implicitly uses &Table
 println!(“ {}”, book);
 }
 }
}

print(&table);
table.insert(“Nichols”.to_string(),
 vec![“Rust Book”.to_string()]);

use shared reference

ownership returns to callee

WHAT COULD POSSIBLY GO WRONG?

fn caching(input: &i32, sum: &mut i32) {

 // *input is the value input points to
 *sum = *input + *input;

// can this fail?
 assert_eq!(*sum, 2 * (*input));

}

The assertion never fails. The compiler is in its rights to read the value
behind a shared reference only once.

In particular, we know that input and sum point to different values!

DO THESE PROGRAMS BEHAVE THE SAME?

fn fun(input: &i32, sum: &mut i32) {
 if *input == 1 {
 *sum = 2
 }
 if *input != 1 {
 *sum = 1
 }
}

fn fun(input: &i32, sum: &mut i32) {
 if *input == 1 {
 *sum = 2
 } else {
 *sum = 1
 }
}

Yes, the compiler can exploit that sum and input do not alias

è modifying the value of sum does not affect the value of input

WHICH STATEMENTS ARE LEGAL?

let mut a = 42;

let b = 23;

let mut y = &a;

a = 19;

*x = 17;

*y = &b;

a = b;

let z = &mut y;

*z = &a;

**z = b;

WHICH STATEMENTS ARE LEGAL?

let mut a = 42;

let b = 23;

let mut y = &a;

a = 19; //illegal: a is borrowed

*y = 17; //illegal: y is a mutable shared borrow

y = &b; //ok: y is mutable

a = b; //ok: a is not borrowed

let z = &mut y; //ok: mutable borrow of shared b.

*z = &a; //ok

**z = b; //illegal: write through shared borrow

TAKING OWNERSHIP VS. MUTABLE REFERENCES

• Mutable references are not responsible for dropping resources

• Otherwise, having a mutable reference is almost identical to owning a value

• Exception: moving values behind mutable references

fn moves(x: &mut Box<i32>) {

 let y = *x;

} Bad: when the flow returns to
the owner, we might attempt
to drop a value twice!

fn moves(x: &mut Box<i32>) {

 let y = std::mem::take(x);

 let mut z = Box::new(17);
 std::mem::swap(x, &mut z);
}

Ok: leave another value in place

Ok: swap mut. refs without
owning them

5. THE FLOW MODEL FOR REFERENCES
A MENTAL MODEL FOR CHECKING MEMORY SAFETY USING BORROWS AND LIFETIMES

HOW RUST VALIDATES REFERENCES

• Rust’s borrow checker ensures that references are safe
• No reference is used after it has been dropped

• Shared references are read-only

• Mutable references give exclusive access

• Analysis matches our mental model of capability flows
• Check that the flow of every reference we access does not conflict with parallel flows

• Moves and borrows create new and may block other flows

• Flow of reference ends: unblock flow of borrowed-from place

• Rust assigns a name to flows and calls them lifetimes

Lifetime constraint: a variable’s lifetime must contain the lifetime of its borrows.

EXAMPLE I

let r;
{

 let x = 1;

 r = &x;

}

assert_eq!(*r, 1);

lifetime ‘x

lifetime ‘r

conflicting flows è reject

Lifetime constraint: a variable’s lifetime
must contain the lifetime of its borrows.

EXAMPLE II
Lifetime constraint: a variable’s lifetime
must contain the lifetime of its borrows.

let r;
{

 let x = 1;

 r = &x;

 assert_eq!(*r, 1);

}

lifetime ‘x

lifetime ‘r

flow unblocked

flow blocked

no conflicting flows è accept

EXAMPLE III
Lifetime constraint: a variable’s lifetime
must contain the lifetime of its borrows.

no conflicting flows è accept
even though lifetime appears to have “holes”

let mut x = Box::new(42);

let r = &x;

if rand() > 0.5 {

 *x = 84;

} else {

 println!(“{}”, r);

}
println!(“{}”, x);

lifetime ‘a

lifetime ‘a

r is not needed in this branch
è expire and unblock x

r is needed in this branch
è x still blocked

EXAMPLE IV
Lifetime constraint: a variable’s lifetime
must contain the lifetime of its borrows.

let mut x = Box::new(42);

let r = &x;

if rand() > 0.5 {

 *x = 84;

} else {

 println!(“{}”, r);

}
println!(“{}”, r);

lifetime ‘a

conflicting flows è reject

What happens if we replace
x by r in the last line?

EXAMPLE V
Lifetime constraint: a variable’s lifetime
must contain the lifetime of its borrows.

let mut x = Box::new(42);

let mut z = &x;

for i in 0..100 {

 println!(“{}”, z);

 x = Box::new(i);

 z = &x;

}

println!(“{}”, z);

lifetime ‘z

lifetime ‘z

no conflicting flows è accept

LIFETIMES IN CUSTOM TYPES
struct S {
 r: &i32
}

// ...

let s;
{
 let x = 10;
 s = S { r : &x };
}

// bad: reads from dropped x
assert_eq!(*s.r, 10);

error: missing lifetime specifier
 |
 | r: &i32
 | ^ expected lifetime parameter

How does the borrow checker validate the lifetimes
of references inside of structs?
è lifetime annotations

struct S {
 r: &’static i32
}

struct S<’a> {
 r: &’a i32
}

r can only refer to
values that live until
program termination

each instance of S gets
a new lifetime
constrained by usage

’a must not outlive ’x

conflicting flow!

‘x ‘a

EXPLICIT LIFETIME PARAMETERS

Explicit lifetime parameters reveal whether there are non-static references and
how their lifetimes are related

struct S<’a> {
 r: &’a i32
}

struct D {
 s: S<‘static>
}

Restrictive:
D can only borrow
values that live for the
entire program

struct S<’a> {
 r: &’a i32
}

struct D<’a> {
 s: S<‘a>
}

Permissive:
D can borrow any
values, including those
in local scope

read <‘a> as
for any lifetime ‘a

LIFETIMES OF FUNCTIONS
fn g<’a>(p: &’a i32) { ... }

let x = 10;
g(&x) // ok: x flows into the call

read as: any lifetime that contains g works for ’a

fn g(p: &’static i32) { ... }

let x = 10;
g(&x) // fail: &x does not
 // live until termination

read as: parameter must live until termination

fn parse<’a>(input: &’a [u8]) -> Record<’a> { ... }

“whatever (non-static) references the returned record contains, they
must point into the input buffer”

result must live at
least as long as
input

Rust can often infer
lifetimes for functions
automatically

EXAMPLE

let s;
{
 let values = [7, 4, 1, 0, 1, 4, 7];
 s = min(&values)
}
assert_eq!(*s, 0);

fn min<’a>(values: &’a [i32]) -> &’a i32 {
 let mut s = &v[0];
 for r in &v[1..] {
 if *r < *s {
 s = r;
 }
 }
 s
}

result must live at least as
long as values

conflicting flow from values to s

add flow from values to
result

error: `values` does not live
long enough

EXAMPLE CONTINUED

let s;
{
 let values = [7, 4, 1, 0, 1, 4, 7];
 s = min(&values);
 assert_eq!(*s, 0);
}

fn min<’a>(values: &’a [i32]) -> &’a i32 {
 let mut s = &v[0];
 for r in &v[1..] {
 if *r < *s {
 s = r;
 }
 }
 s
}

result must live at least as
long as values

no conflicting flows

add flow from values to
result

error: `values` does not live
long enough

MULTIPLE LIFETIME PARAMETERS

One lifetime is sufficient unless a method returns a subset of a type’s references

struct StrSplit<’s, ’p> {
 delimiter: &’p str,
 document: &’s str,
}

impl<’s, ’p> Iterator for StrSplit<’s, ’p> {
 type Item = &’s str;
 fn next(&self) -> Option<Self::Item> { ... }
}

fn str_before(x: &str, c: char) -> Option<&str> {
 StrSplit {
 document: x, delimiter: &c.to_string()
 }.next()
}

we get a reference into the original document

for ’s = ’p, result
would be constrained
by the document and a
local variable
è not possible

CHECKING LIFETIME PARAMETERS

Lifetimes parameters are types that interact with the borrow checker

A type’s variance describes which types can be used in its place
• Covariance

• Invariance

• Contravariance ’static subtype of ’a

read: outlives

COVARIANT LIFETIMES

• Allow subtypes instead of the actual type

• T subtype S implies C<T> subtype C<S>

• &’a T is covariant in ’a and T

’static subtype of ’a

read: outlives

fn foo(x: &Vec<&’a str>) { ... }
let y: &Vec<&’static str> = ...;
foo(y) // ok

INVARIANT LIFETIMES

• Allow only the exact type

• &mut T is invariant

’static subtype of ’a

read: outlives

fn foo(x: &Vec<&’a str>) { ... }
let y: &Vec<&’static str> = ...;
foo(y) // ok

CONTRAVARIANT LIFETIMES

• Allow supertypes instead of the actual type

• T subtype S implies Fn(S) subtype Fn(T)

• Fn(T) is contravariant in T

// &’static str outlives &’a str
fn f(&’static str) // admits only ‘static
fn g(&’a str) // admits any lifetime ‘a

’static subtype of ’a

read: outlives

LIFETIME PUZZLE

• Should the Rust compiler accept this?
• Are both lifetime parameters needed?

struct MutString<‘a, ‘b> {
 s: &’a mut &’b str
}

fn main() {
 let mut s = “hello”;
 *MutString { s: &mut s }.s = “world”;
 println!(“{}”, s);
}

PUZZLE SOLUTION
struct MutString<‘a, ‘b> {
 s: &’a mut &’b str
}

fn main() {

 let mut s = “hello”;

 *MutString { s: &mut s }.s = “world”;

 println!(“{}”, s);

}

‘a: lifetime of &mut s

‘b = ‘static, lifetime of “hello”

covariance: ’static str shortened
to ‘a str such that print can
borrow from s

‘b ‘a

No conflicting flows è accept

PUZZLE SOLUTION II
struct MutString<’a> {
 s: &’a mut &’a str
}

fn main() {

 let mut s = “hello”;

 *MutString { s: &mut s }.s = “world”;

 println!(“{}”, s);

}

’a: lifetime of &mut s

’a = ‘static, lifetime of “hello”
‘a ‘a ‘a

conflicting flows:
attempt to borrow
while there is a
mutable reference
 è reject

One lifetime is insufficient

&’static mut str is invariant and
cannot be shortened

EXCEPTION: INTERIOR MUTABILITY

• Some types allow sharing and mutation

• Those types maintain the abstraction

“exclusive read-write access XOR shared read-only access”

• These types are safe but rely on external safety mechanisms (e.g. locks)

• Two main kinds of interior mutability
• Mutex, RefCell: get a mutable reference through a shared reference

• Cell, sync::Atomic: replace an immutable value

EXAMPLE: MUTEX

fn critical(mutex: &Mutex<Data>) {

 // get mutable reference
 // block read access from others
 let mut data = mutex.lock();

 data.payload = 23;

 // drop data => drop exclusive access
 // => release lock
}

EXAMPLE: CELL

struct Robot { count: Cell<u32>, ... }
impl Robot {
 fn add_error(&self) {
 let n = count.get();

self.count.set(n+1); // why ok?
 }
 fn has_errors(&self) -> bool {

self.count.get() > 0
 }
}

WRAP-UP: RUST’S MEMORY SAFETY GUARANTEES

Components
• Ownership system: for every value a unique owner is in charge of disposal

• Borrow checker: references are only used when they are valid

• Reference contracts: exclusive write-access XOR shared read-only access

Rust enforces aliasing XOR mutation
 and requires synchronization for exceptions

6. PRUSTI
OBTAINING GUARANTEES BEYOND MEMORY SAFETY

WHAT COULD POSSIBLY GO WRONG?

Task: write a Rust program that returns the
absolute value of an integer (type: i32) x

fn abs(x:i32) -> i32 {
 if x >= 0 {
 x
 } else {
 -x
 }
}

This is a safe Rust program

But: it’s also logically wrong!

i32: 32-bit integers in two’s complement!

i32::MIN is -2_147_483_648i32
i32::MAX is 2_147_483_647i32
abs(i32::MIN) == ???

è Rust does not guarantee functional
correctness

BEYOND MEMORY SAFETY

• Rust comes with compile-time safety guarantees
• no uninitialized values, no dangling pointers, no data races

• no double-free, null pointer, or use-after-free bugs

• prevents many (but not all) memory leaks

• Memory safety is enforced by checking privileges and obligations
• Ownership, borrowing, lifetimes

• The Rust compiler requires annotations to check safety

è Can we trade writing more annotations for stronger correctness guarantees

 to also avoid logical security flaws?

THE PRUSTI VERIFIER

• Tool for checking functional correctness
of Rust functions

• Implemented as a compiler plugin

• Checks may require contract
annotations written in a subset of Rust

• Open-source VSCode plugin
• Can be installed via marketplace

• Search for “Prusti Assistant”

• Needs Java runtime

ABSOLUTE VALUE REVISITED

ASSERTIONS

• Prusti checks that no Rust assertion fails

• Conservative approach: compilation fails if correctness cannot be proven

è Requires annotations about inputs and outputs of functions

CONTRACTS

• Constrain inputs and results of functions
• requires keyword constrains inputs

• ensures keyword constrains outputs

• Constraints must be side-effect-free,
terminating Rust expressions

• Function implementors
• Privilege: assume inputs comply with contract

• Obligation: results must comply with contract

• Function clients
• Privilege: assume results comply with contract

• Obligation: inputs must comply with contract

#[requires(x != i32::MIN)]
#[ensures(result >= 0)
#[ensures(result*result == x * x)]
fn abs(x:i32) -> i32

Precondition:
all 32-bit integers but the
smallest one are ok

Postcondition:
the function’s result will be the
absolute value of x

MEANING OF CONTRACTS

#[requires(x != i32::MIN)]
#[ensures(result >= 0)
#[ensures(result*result == x * x)]
fn abs(x:i32) -> i32

Precondition (before call):
all 32-bit integers but the
smallest one are ok

Postcondition (after call):
the function’s result will be the
absolute value of x

Whenever we execute a function whose parameters satisfy the precondition
and execution terminates, then no run-time error occurs (e.g. an assertion failure)
during execution and the postcondition holds upon termination.

ABSOLUTE VALUE WITH CONTRACT

Needed for using contract annotations

Precondition (“requires”):
assume x is not the smallest integer

Postcondition (“ensures”):
Prusti proves that the returned result is the
absolute value of x

OK: precondition of abs allows this value

A CLIENT OF ABS

OK: precondition of abs allows this value

assertions are known to hold due to
postcondition of abs

ERROR: precondition of abs does not allow
passing the smallest integer!

MODULAR CONTRACT VERIFICATION

• Prusti proves that every function meets its contract

• Default: pre- and postcondition are true

• Modular verification

• To check calls, Prusti relies solely on the called
function‘s contract

• Pros: Implementation changes è clients do not have to
be re-checked

• Cons: Possible false negatives if we do not write
sufficiently strong contracts

#[requires(x != i32::MIN)]
#[ensures(result >= 0)
#[ensures(result*result == x * x)]
fn abs(x:i32) -> i32 {
 x * sign(x)
}

#[requires(x != i32::MIN)]
#[ensures(result >= 0)
#[ensures(result*result == x * x)]
fn abs(x:i32) -> i32 {
 if x >= 0 { x } else { -x }
}

EXAMPLE: SWAP BY REFERENCE

old(*y) refers to the value y points to before
calling the swap function

EXAMPLE: CLIENT OF SWAP

EXAMPLE: FAULTY CLIENT OF SWAP

IGNORING OVERFLOWS

We sometimes do not care about
overflows for a given contract

To disable overflow checks, add a
file Prusti.toml with

check_overflows=false

From now on, we disable overflow
checks to focus on other features

PURE FUNCTIONS

• Pre- and postcondition can contain arbitrary Rust code as long as it is pure
• i.e. specifications must have no side effects

• Functions marked with the annotation #[pure]

• can be called in pre-and postconditions

• are checked to have no side effects

• are not modular, i.e. their implementation is inspected during contract verification

#[pure]
#[requires(x != i32::MIN)]
fn abs(x:i32) -> i32 {
 if x >= 0 { x } else { -x }
}

#[requires(y != i32::MIN)]
#[requires(abs(y) > 5)]
fn client(y:i32) -> i32 {
 y*y + 5
}

EXAMPLE

pure function
length allows
referring to list
length in
specifications

EXAMPLE

Postcondition:
zipping two
lists into one
yields a list
whose length is
equal to the
sum of the two
input lists

TERMINATION

Prusti verifies contracts for
partial correctness

è Non-terminating
executions (via loops or
recursion) are allowed

è Termination can be shown
separately (e.g. with ranking
functions)

TRUSTED FUNCTIONS

• Some code cannot be checked at compile time

• Examples: unsupported features, foreign code, unsafe Rust, libraries

• Pragmatic workaround: mark such functions as #[trusted]
• Prusti uses the contracts of #[trusted] functions

• Prusti does not check the implementation of #[trusted] functions

èAll results are only valid if trusted functions really adhere their contract

èPut unverifiable code into trusted wrappers and check them by other means

EXAMPLE
A wrapper for an unsafe function from the standard library

#[trusted]
#[requires(src.is_empty())]
#[ensures(dest.is_empty())]
#[ensures(old(dest.len()) == result.len())]
fn replace(dest: &mut Link, src: Link) -> Link {

 // library function that cannot be verified
 // because it needs unsafe Rust code
 mem::replace(dest, src)

}

LOOP INVARIANTS

• To verify loops, Prusti needs invariants

è Property that holds whenever reaches the annotation body_invariant!(…)

SUMMARY: PRUSTI SPECIFICATIONS

• Specifications: pure fragment of Rust’s Boolean expressions

• #[requires(B)]: B must hold right before a function call

• #[ensures(B)]: B must hold after a function call
• old(x) refers to the value of x at the beginning of a function

• result refers to a function’s returned value

• #[pure] marks a function as usable in specifications
• Needs to be free of side effects

• #[trusted] lets Prusti ignore checking a function’s implementation

• In implementations: body_invariant!(B), assert!(B), unreachable!()

EXERCISE
Consider the following Rust implementation
of Bank accounts. Add annotations such that
Prusti can prove that no money is illegally
redirected from an account.

use prusti_contracts::*;

struct Account {
 bal: u32,
}

impl Account {

 // # TODO
 fn balance(&self) -> u32 {
 self.bal
 }

// # TODO
fn deposit(&mut self, amount: u32) {
 self.bal = self.bal + amount;
}

// # TODO
fn withdraw(&mut self, amount: u32) {
 self.bal = self.bal - amount;
}

// # TODO
fn transfer(&mut self,
 other: &mut Account, amount: u32) {
 self.withdraw(amount);
 other.deposit(amount);
 }
}

fn main() {}

SOLUTION
#[pure]
fn balance(&self) -> u32 {
 self.bal
}

#[ensures(self.balance() == old(self.balance()) + amount)]
fn deposit(&mut self, amount: u32) {
 self.bal = self.bal + amount;
}

#[requires(amount <= self.balance())]
#[ensures(self.balance() == old(self.balance()) - amount)]
fn withdraw(&mut self, amount: u32) {
 self.bal = self.bal - amount;
}

#[requires(amount <= self.balance())]
#[ensures(self.balance() == old(self.balance()) - amount)]
#[ensures(other.balance() == old(other.balance()) + amount)]
fn transfer(&mut self, other: &mut Account, amount: u32) {
 self.withdraw(amount);
 other.deposit(amount);
}

SUMMARY

WHAT ARE THE MAIN TAKEAWAYS FOR THIS
CONTENT?

• There is no security without safety.

• Rust‘s ownership and borrowing system statically guarantee safety by ensuring
that references are either mutable or shared; for exceptions, a synchronization
mechanism must enforce safety.

• Flows provide a useful mental model for understanding how the Rust compiler
checks memory safety and, in particular, lifetimes.

• Program verification tools, such as Prusti, can provide stronger functional
correctness guarantees but require additional annotations.

trade-off: writing more annotations è more compile-time guarantees

FURTHER READING

• The Rust programming language

• Gjengset, J. Rust for Rustaceans: Idiomatic Programming for
Experienced Developers. No Starch Press, 2021.

• www.prusti.org

https://doc.rust-lang.org/book/
http://www.prusti.org/

WHO IS BEHIND

Partners behind the project

Collaborators

Supported by

CHALLENGES

CHALLENGES

Challenges will be similar to the examples and exercises on the slides:

1. Use the flow model to identify memory safety issues in Rust code.
• To capture the flag, one has to provide a unique solution consisting of a flow annotation for

every line of source code and a judgment of whether there is a conflict.

• We will have three challenges of this form covering ownership, borrows, and lifetimes

2. Provide Prusti annotations at the marked places of a program to verify a
functional correctness property, similar to the Bank account.
• We will have three challenges, including recursive and loopy code

3. Use Prusti to implement a proven-correct program
• We fix the function signatures and Prusti annotations and ask participants to write Rust

implementations that satisfy the given contracts.

COMMENTS ON CHALLENGES

A fourth challenge would ask participants to write a proven-correct Rust code by
themselves. While this would be the most challenging and arguably most intriguing task,
we cannot guarantee that we can automatically provide a flag for all correct solutions.

We thus opted to fix either the code or the annotations to simplify checking whether a
solution is correct.

