
EDUCATIONAL MATERIAL IN CYBER SECURITY

MEMORY SAFETY AND CODE VERIFICATION IN RUST



WHO IS THE MATERIAL FOR?

• Students and professionals interested in methods and tools for 
eradicating memory safety issues.

• Managers, software developers, and security professionals interested 
in evaluating whether they should use Rust in future projects.

• Students and professionals interested in methods and tools for 
obtaining functional correctness guarantees on top of memory safety.

• This material is primarily about defensive security, that is, how to 
guarantee that certain bugs cannot happen 



WHO MADE THIS MATERIAL?

Christoph Matheja

Technical University of Denmark

chmat@dtu.dk

www.cmath.eu

Supplementary material that will be provided alongside these slides: 
• Source code for examples, exercises, and challenges
• Video lecture covering the slides and live coding for some examples

mailto:chmat@dtu.dk
http://www.cmath.eu/


WHAT ARE THE MAIN TAKEAWAYS FOR THIS 
CONTENT? 

• There is no security without safety.

• Rust‘s ownership and borrowing system statically guarantee safety by ensuring
that references are either mutable or shared; for exceptions, a synchronization
mechanism must enforce safety.

• Flows provide a useful mental model for understanding how the Rust compiler
checks memory safety and, in particular, lifetimes.

• Program verification tools, such as Prusti, can provide stronger functional
correctness guarantees but require additional annotations.

trade-off: writing more annotations è more compile-time guarantees



INTRODUCTION
WHY SHOULD I FOLLOW THIS COURSE?



THERE IS NO SECURITY WITHOUT SAFETY

credits: Matt Miller, Microsoft Security Response Center

Memory safety is the absence of errors related to memory accesses.



THE RUST PROGRAMMING LANGUAGE

Rust is a modern language aiming at 
safe systems programming

“The most beloved programming 
language since 2016”

“Rust is the industry’s best change at 
safe systems programming” 

– Ryan Levic, Microsoft

credits: Stackoverflow



CHARACTERISTIC FEATURES OF RUST

Memory safety
ownership & borrowing

Performance
memory control, zero-

cost abstractions

Ergonomics 
trait system

Build environment 
cargo, good error 

reporting



OUR FOCUS

Reasoning about the safety features of Rust code
• mental models for memory safety

• functional correctness guarantees

This will help you to write safer and more secure code
even if you never use Rust

But: this is not a Rust programming course
• Rust Book

• Rust by Example

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/rust-by-example/


AGENDA

1. High-level overview

2. Memory basics

3. Ownership

4. Borrowing

5. The flow model

6. Prusti: guarantees beyond memory safety



1. HIGH-LEVEL OVERVIEW
A NON-TECHNICAL METAPHOR ILLUSTRATING HOW RUST ENSURES MEMORY SAFETY



METAPHOR: ISSUES WITH VIDEO CONFERENCES

Problem: many participants in a video conference talk at once 

è Data race: multiple agents access the same resource concurrently

How can we rule out such situations?



METAPHOR: ISSUES WITH VIDEO CONFERENCES

Solution 1: one exclusive speaker



METAPHOR: ISSUES WITH VIDEO CONFERENCES

Solution 2: everyone is muted and only listens



METAPHOR: ISSUES WITH VIDEO CONFERENCES

Solution 3: a moderator assigns speaking rights



METAPHOR: ISSUES WITH VIDEO CONFERENCES

Requirements for data races 

1. aliasing

2. mutation

3. lack of synchronization

in video conferences

many agents use the same channel

and all can speak

and there is no moderator

Solution: prevent that all three requirements hold at the same time



HOW RUST PREVENTS MEMORY SAFETY ISSUES

Requirements for data races 

1. aliasing

2. mutation

3. lack of synchronization

Data races and many memory safety 
issues can only arise if these three 
conditions are met

Rust’s high-level approach to safety guarantees
• Enforce that there is either aliasing or mutation
• Require synchronization for exceptions



2. MEMORY BASICS
WHAT WE NEED TO TALK ABOUT OWNERSHIP, BORROWING, AND LIFETIMES IN RUST



TERMINOLOGY

• Value: a type and an element of that type

• Place: a location holding the address of a value

• Variable: a “named slot” for a value

• Pointer: a value holding the address of a place

• Reference: a pointer with a specific contract

• here: mutable &mut T and read-only &T

5:u8, 17:i32, 1.4:f64, “hej”:&str

:&str ‘h’ ‘e’ ‘j’



IDENTIFY ALL VALUES, POINTERS, AND VARIABLES

let a = 42;

let b = 43;

let c = &a:

let mut d = &a;

d = &y;

let e = “hello world”;



MEMORY LAYOUT

stack

heap

executable (read only)

static data disposal when 
execution ends

disposal left to 
programmers

disposal when 
running out of scope

dynamic data structures

function frames

string literals, 
static variables



WHERE ARE THE PLACES OF THE FOLLOWING 
VALUES?

let a = 42;

let b = 43;

let c = &a:

let mut d = &a;

d = &y;

let e = “hello world”;

let tuple = (17, 3.14);

let b = Box::new(tuple);

let v = vec![1,2,3];



WHERE ARE THE PLACES OF THE FOLLOWING 
VALUES?

let a = 42;

let b = 43;

let c = &a:

let mut d = &a;

d = &y;

let e = “hello world”;

let tuple = (17, 3.14);

let b = Box::new(tuple);

let v = vec![1,2,3];



STACK FRAMES

fn foo(x: &i32) -> i32 {
  let a = 100;
  a + *x
}

fn main() {
  let _a: i32;
  let b = -3;
  let c = 1234;
  // let c = _a;
  let _d = foo(&c);
  let _p = &b; 
}

return address

_a | ??:i32

b  | -3:i32

c  | 1234:i32

_p |   :&i32

x  |   :&i32

return address

main()

foo(&c)

Stack-discipline: automatically drop a 
frame when it runs out of scope

Accessing uninitialized 
places is forbidden a  |100 :i32

_d |1334:&i32



HEAP

Disposal of heap-allocated values 
is left to the programmer

Memory error: an attempt to access 
a place with an illegal value
• uninitialized value

• dangling pointers to deleted values

• corrupted value (due to concurrency)



WHAT COULD POSSIBLY GO WRONG?

Potential memory safety issues

• x might point to an uninitialized 
value

• bar might access the value of x

void foo(Struct* x, Struct* y)
{
    bar(x);
    free(x);
    bar(y);    
}

C



WHAT ELSE COULD POSSIBLY GO WRONG?

Potential memory safety issues

• bar might access the value of x

• x and y might be aliases, i.e. point 
to the same value

• bar(y) attempts to access the 
value of y, which has previously 
been deleted via free(x)

è use-after-free bug

void foo(Struct* x, Struct* y)
{
    bar(x);
    free(x);
    bar(y);    
}

C



WHAT ELSE COULD POSSIBLY GO WRONG? II

Potential memory safety issues

• bar might delete the value of x

• free(x) will attempt to delete the 
value of x again

è double-free bug

void foo(Struct* x, Struct* y)
{
    bar(x);
    free(x);
    bar(y);    
}

C



WHAT ELSE COULD POSSIBLY GO WRONG? III

Potential memory safety issues

• If x and y point do different 
values and bar does not delete 
anything, then the value of y 
might never be deleted

è memory leak

void foo(Struct* x, Struct* y)
{
    bar(x);
    free(x);
    bar(y);    
}

C



MAIN REASONS FOR MEMORY SAFETY ISSUES IN C

1. Manual disposal of heap locations

2. Mutable aliasing

è What are better memory disposal strategies?

void foo(Struct* x, Struct* y)
{
    assert(x == y);
    free(x);
    Struct z = *y
}

C



DISPOSAL STRATEGIES FOR HEAP MEMORY

MANUAL DISPOSAL

• examples: C, C++

• very efficient 

• no safety guarantees

è “control first”

GARBAGE COLLECTOR

• examples: Java, C#

• ensures safety at runtime

• expensive

è “safety first”

OWNERSHIP SYSTEM

• examples: Rust

• safety at compile time

• efficient

è both: “clean desk policy”

Metaphor: how to keep the office tidy?



3. OWNERSHIP
HOW RUST ACHIEVES MEMORY SAFETY (FOR CODE WITHOUT POINTERS)



OWNERSHIP RULES – PART 1

1. For every value there is a unique place, called its owner

2. A value is disposed (or “dropped”) when its owner leaves scope

3. Variables own their values



EXAMPLE

fn main() {

  let mut v = vec![1,1,1];

  for i in 3..10 {
    let next = v[i-3] + v[i-2];
    v.push(next);
  }
  println!(“P(1..10) = {:?}”, v);

}

1

1

1

*
16

3

buffer
capacity

length

allocate new vector with owner v

manipulate vector

v runs out of scope è drop vector

stack heap

2

2

3

5

7
9

4

10



OWNERSHIP RULES – PART 2

1. For every value there is a unique place, called its owner

2. A value is disposed (or “dropped”) when its owner leaves scope 

3. Variables own their values

4. Composite types (structs, tuples, vectors, ...) own their elements



EXAMPLE

fn main() {
  let point = Box::new( (3.14, 17) );

  let label = format!(“{:?}”, point);
  assert_eq!(label, “(3.14, 17)”);
}
  // label and point are out of scope
  // drop owned string and tuple
  // drop 3.14:f32, 17:i32
  //      and characters of string

3.14

17

‘(‘

‘3’

‘.’

‘1’

‘4’
‘,’

*

*

...

point

label

allocate tuple with owner point

allocate string with owner label

drop label, point, and their 
owned values

stack heap

‘1’

‘7’

‘)‘



EXAMPLE

fn main() {

  let mut v = vec![1,1,1];

  for i in 3..10 {
    let next = v[i-3] + v[i-2];
    v.push(next);
  }
  println!(“P(1..10) = {:?}”, v);

}

1

1

1

*
16

3

buffer
capacity

length

allocate new vector with owner v

manipulate vector

v runs out of scope è drop vector

stack heap

2

2

3

5

7
9

4

10



LIMITATIONS

• Memory consists of ownership trees with variables at the root

• All values are dropped when leaving a function’s scope

 è Move ownership to a new owner

struct Person { name: String, age: i32 }

let mut p = Vec::new();
p.push(Person{ name: “Eva”, age: 42});
p.push(Person{ name: “Adam”, age: 23});

// ...

p

* 8 3 42 * 8 4 23

Eva Adam



OWNERSHIP RULES – PART 3

1. For every value there is a unique place, called its owner

2. A value is disposed (or “dropped”) when its owner leaves scope 

3. Variables own their values

4. Composite types (structs, tuples, vectors, ...) own their elements

5. Ownership can be moved to a new owner

è the old owner becomes an uninitialized place

è accessing the old owner is forbidden until it is initialized again



EXAMPLE

fn main() {

  let mut x = Box::new(17);

  let mut y = x;

  // fails: let z = x

  *y = 42;

  assert!(*y == 42);

}

17
mvdx

*y

17*x

42
mvdx

*y

mvdx
drpy

Operations that move

§ assignments

§ passing values to a function

§ returning values from a function

let x = Box::new(17)

foo(Person { age: 32, ... })

fn bar(n: String) -> Person {
  Person { age: 32, name: n }
}



MENTAL MODELS FOR UNDERSTANDING OWNERSHIP

• Low-level model: “what’s actually happening”
• Variables are places that hold possibly illegal bytes

• Ownership rules guide how long a variable is accessible

• High-level model: “how we can reason about ownership”
• A variables exists as long as there is a capability flow to it

• and parallel flows do not conflict each other



CAPABILITY FLOWS

Idea: annotate programs with flows for each owner

• Taking ownership of a place starts a new flow (color indicates the owner)

• Moving a place stops the flow

• Accessing a place adds a flow from the last access to the current access

• mutable flow for values that can be modified (keyword “mut”)

• immutable flow for values that cannot be modified



EXAMPLE

fn main() {
  let mut x = Box::new(17);

  let mut y = x;

  let z = x; 

  *y = 42;

  assert!(*y == 42);
}

There are two (mutable) flows



RUST’S FLOW-SENSITIVE ANALYSIS FOR OWNERSHIP

Checking ownership: check that all flows are compatible

1. No access after move: no flow from an end-of-flow marker      to a place

2. Parallel flows for the same place (same color) must be immutable



EXAMPLE

fn main() {
  let mut x = Box::new(17);

  let mut y = x;

  let z = x; 

  *y = 42;

  assert!(*y == 42);
}

incompatible flow 
è access after move



ARE ALL FLOWS COMPATIBLE?

let x = vec![1, 2, 3];

if y > 0 {

  f(x); // x is moved to f

} else {

  println!(“blabla”);

}

f(x); // x is moved to f



ARE ALL FLOWS COMPATIBLE? NO!

let x = vec![1, 2, 3];

if y > 0 {

  f(x); // x is moved to f

} else {

  println!(“blabla”);

}

f(x); // x is moved to f

incompatible flow 
è access after move

If a place has been moved 
in one branch of a control 
flow statement and has not 
definitely been given a 
new value, it is 
uninitialized after the 
statement.



ARE ALL FLOWS COMPATIBLE?

let mut x = vec![1, 2, 3];

while y > 0 {

  foo(x); // x is moved to foo

  y = y – 1;
  
  
}



ARE ALL FLOWS COMPATIBLE? NO!

let mut x = vec![1, 2, 3];

while y > 0 {

  foo(x); // x is moved to foo

  y = y – 1;
  
  
}

flow across 
loop iterations!

incompatible flow 
è access after move



ARE ALL FLOWS COMPATIBLE? 

let mut x = vec![1, 2, 3];

while y > 0 {

  foo(x); // x is moved to foo

  y = y – 1;
  
  x = bar() // move to x
}



ARE ALL FLOWS COMPATIBLE? YES!

let mut x = vec![1, 2, 3];

while y > 0 {

  foo(x); // x is moved to foo

  y = y – 1;
  
  x = bar() // move to x
}

OK: x is re-initialized in 
the loop è new flow



IN WHAT LINES CAN WE DETECT INCOMPATIBLE FLOWS?

1 fn main() {
2   let mut ids = P();
3   ids.push(Person { ... });
4   notify(ids); 
5 }

fn notify(v: Vec<Person>) 
    -> Vec<Person> {
  for i in &v { println!(“{}”, i); }
  v
}

11 fn main() {
12   let mut ids = P();
13   notify(ids); 
14   notify(ids);
15 }

6  fn main() {
7    let mut ids = P();
8    ids = notify(ids); 
9    ids.push(Person { ... });
10 }

16 fn main() {
17   let mut ids = P();
18   let x = ids[0];
19   ids = notify(ids);
20   let y = x; 
21 }

fn P() -> mut Vec<Person> { vec![
  Person { name: “Adam”, age: 27 },
  Person { name: “Eva”, age: 42 },
  Person { name: “Chris”, age: 32 },
]}



IN WHAT LINES CAN WE DETECT INCOMPATIBLE FLOWS?

1 fn main() {
2   let mut ids = P();
3   ids.push(Person { ... });
4   notify(ids); 
5 }

fn notify(v: Vec<Person>) 
    -> Vec<Person> {
  for i in &v { println!(“{}”, i); }
  v
}

11 fn main() {
12   let mut ids = P();
13   notify(ids); 
14   notify(ids);
15 }

6  fn main() {
7    let mut ids = P();
8    ids = notify(ids); 
9    ids.push(Person { ... });
10 }

fn P() -> mut Vec<Person> { vec![
  Person { name: “Adam”, age: 27 },
  Person { name: “Eva”, age: 42 },
  Person { name: “Chris”, age: 32 },
]}

16 fn main() {
17   let mut ids = P();
18   let x = ids[0];
19   ids = notify(ids);
20   let y = x; 
21 }



MOVES AND DATA STRUCTURES

One cannot move values out of data structures that do not permit 
holes in their representation, e.g. vectors or arrays

16 fn main() {

17   let mut ids = P();

18   let x = ids[0];

19   ids = notify(ids);

20   let y = x; 

21 }

p

moved 42 * 8 4 23

Eva Adam

problem: vector id represents a 
contiguous area of memory



MOVING IN AND OUT OF VECTORS 

Approach 1: Only move the last value and resize the vector

Approach 2: Swap a value with the last value before move

Approach 3: Swap in another value for the one we take out

Approach 4: Create a new copy of an element instead of moving it

let x = ids.pop().expect(“vector empty”);

let x = ids.swap_remove(0);

let x = std::mem::replace(&mut ids[0], Person { ... });

let x = ids[0].clone();



EXCEPTION: COPY TYPES

• Main advantage of ownership: safe & efficient disposal of resources

• No advantage for simple types that only manage their own bits
è These types are always copied bitwise instead of moved

• Custom copy types may only consist of other copy types

f32, f64, char, bool, usized, u8, i8, i32, ...

#[derive(Copy, Clone)]
struct Point { name: i32, age: i32 }

let mut ids = vec![1,2,3];
let x = ids[0]; // x is a copy of ids[0]
notify(ids); // nothing has been moved out of ids



EXCEPTION: REFERENCE COUNTING

• Ownership enforces tree data structures

è It may be unclear who should own a resource

• Escape hatch: reference-counted pointers (Rc)
• Clone only increments reference count

• Resources are dropped once count falls to zero

• Safety: Rc pointers can only be immutable

Who should own A,B,C,D?

let a = Rc::new(“hej”.to_string());
let b = a.clone();
let c = a.clone();

a

3 *

hej

b c



4. REFERENCES
HOW RUST CHECKS MEMORY SAFETY FOR CODE WITH POINTERS



WHAT COULD POSSIBLY GO WRONG?

We move a table into print(…) but never give it back

è printing a table also destroys it!

use std:collections::HashMap;

// table of authors and their books
type Table = HashMap<String, Vec<String>>;

fn print(table: Table) {
  for (author, books) in table {
    println!(“works by {}”, author);
    for book in books {
      println!(“    {}”, book);
    }
  }
}



WHY BORROWING?
Pointer: value holding the address of a place

// so far: owning pointers
let x = Box::new(Person {...});
// drop x => drop person on the heap

fn average_age(a: Person, b: Person) 
  -> (Person, Person, f32) 
{
  (a, b, (a.age + b.age) / 2)
}

let alice = Person { ..., age: 42 };
let bob = Person {..., age: 23 };

let (alice, bob, avg) = 
    average_age(alice, bob);

unergonomic solution: 
move values back to 
their original owner

let (alice, ???, avg) =
average_age(alice, alice)

error: can move only once!



REFERENCES (OR BORROWS)

Shared references &T

• Create as many as you want
• Read-only
• Copy type

• On creation: stop mutable flow 
 è owner cannot modify its value
• All dropped: mutable flow returns to owner

• Compiler may assume that the pointed to value 
does not change until the reference is dropped

Mutable references &mut

• Create one with exclusive access for each place
• Read and write
• not a copy type

• On creation: stop all flows from borrowed place
è owner cannot access its value

• All dropped: flow returns to owner

• Compiler may assume exclusive access to the immediate 
location pointed to (accessible via *)

References: pointers with a specific contract 
that temporarily borrow ownership. 



PRINTING A TABLE WITHOUT DESTROYING IT
use std:collections::HashMap;

// table of authors and their books
type Table = HashMap<String, Vec<String>>;

fn print(table: &Table) {
  // implicitly dereferenced to *table
  for (author, books) in table {
    println!(“works by {}”, author);
    for book in books { // implicitly uses &Table
      println!(“    {}”, book);
    }
  }
}

print(&table);
table.insert(“Nichols”.to_string(), 
             vec![“Rust Book”.to_string()]);

use shared reference

ownership returns to callee



WHAT COULD POSSIBLY GO WRONG?

fn caching(input: &i32, sum: &mut i32) {

  // *input is the value input points to
  *sum = *input + *input;

// can this fail?
  assert_eq!(*sum,  2 * (*input)); 

}

The assertion never fails. The compiler is in its rights to read the value 
behind a shared reference only once.

In particular, we know that input and sum point to different values!



DO THESE PROGRAMS BEHAVE THE SAME?

fn fun(input: &i32, sum: &mut i32) {
  if *input == 1 {
    *sum = 2
  }
  if *input != 1 {
    *sum = 1
  }
}

fn fun(input: &i32, sum: &mut i32) {
  if *input == 1 {
    *sum = 2
  } else { 
    *sum = 1
  }
}

Yes, the compiler can exploit that sum and input do not alias

è modifying the value of sum does not affect the value of input



WHICH STATEMENTS ARE LEGAL?

let mut a = 42;

let b = 23;

let mut y = &a;

a = 19;

*x = 17;

*y = &b;

a = b;

let z = &mut y;

*z = &a;

**z = b;



WHICH STATEMENTS ARE LEGAL?

let mut a = 42;

let b = 23;

let mut y = &a;

a = 19; //illegal: a is borrowed

*y = 17; //illegal: y is a mutable shared borrow

y = &b; //ok: y is mutable

a = b; //ok: a is not borrowed

let z = &mut y; //ok: mutable borrow of shared b.

*z = &a; //ok

**z = b; //illegal: write through shared borrow



TAKING OWNERSHIP VS. MUTABLE REFERENCES

• Mutable references are not responsible for dropping resources

• Otherwise, having a mutable reference is almost identical to owning a value

• Exception: moving values behind mutable references

fn moves(x: &mut Box<i32>) {

  let y = *x; 

} Bad: when the flow returns to 
the owner, we might attempt 
to drop a value twice!

fn moves(x: &mut Box<i32>) {

  let y = std::mem::take(x); 

  let mut z = Box::new(17);
  std::mem::swap(x, &mut z);
}

Ok: leave another value in place

Ok: swap mut. refs without 
owning them



5. THE FLOW MODEL FOR REFERENCES
A MENTAL MODEL FOR CHECKING MEMORY SAFETY USING BORROWS AND LIFETIMES



HOW RUST VALIDATES REFERENCES

• Rust’s borrow checker ensures that references are safe
• No reference is used after it has been dropped

• Shared references are read-only

• Mutable references give exclusive access

• Analysis matches our mental model of capability flows 
• Check that the flow of every reference we access does not conflict with parallel flows

• Moves and borrows create new and may block     other flows

• Flow of reference ends: unblock     flow of borrowed-from place

• Rust assigns a name to flows and calls them lifetimes

Lifetime constraint: a variable’s lifetime must contain the lifetime of its borrows.



EXAMPLE I

let r;
{

  let x = 1;

  r = &x;

}

assert_eq!(*r, 1);

lifetime ‘x

lifetime ‘r

conflicting flows è reject

Lifetime constraint: a variable’s lifetime 
must contain the lifetime of its borrows.



EXAMPLE II
Lifetime constraint: a variable’s lifetime 
must contain the lifetime of its borrows.

let r;
{

  let x = 1;

  r = &x;

  assert_eq!(*r, 1);

}

lifetime ‘x

lifetime ‘r

flow unblocked

flow blocked

no conflicting flows è accept



EXAMPLE III
Lifetime constraint: a variable’s lifetime 
must contain the lifetime of its borrows.

no conflicting flows è accept
even though lifetime appears to have “holes”

let mut x = Box::new(42); 

let r = &x;

if rand() > 0.5 {

 
 *x = 84;

} else {

  println!(“{}”, r);

}
println!(“{}”, x);

lifetime ‘a

lifetime ‘a

r is not needed in this branch 
è expire and unblock x

r is needed in this branch 
è x still blocked



EXAMPLE IV
Lifetime constraint: a variable’s lifetime 
must contain the lifetime of its borrows.

let mut x = Box::new(42); 

let r = &x;

if rand() > 0.5 {

 
 *x = 84;

} else {

  println!(“{}”, r);

}
println!(“{}”, r);

lifetime ‘a

conflicting flows è reject

What happens if we replace 
x by r in the last line?



EXAMPLE V
Lifetime constraint: a variable’s lifetime 
must contain the lifetime of its borrows.

let mut x = Box::new(42);

let mut z = &x;

for i in 0..100 {

  println!(“{}”, z);

  x = Box::new(i);

  z = &x;

}

println!(“{}”, z);

lifetime ‘z

lifetime ‘z

no conflicting flows è accept



LIFETIMES IN CUSTOM TYPES
struct S {
  r: &i32
}

// ...

let s;
{
  let x = 10;
  s = S { r : &x };
}

// bad: reads from dropped x
assert_eq!(*s.r, 10); 

error: missing lifetime specifier
  |
  | r: &i32
  |    ^ expected lifetime parameter

How does the borrow checker validate the lifetimes 
of references inside of structs?
è lifetime annotations

struct S {
  r: &’static i32
}

struct S<’a> {
  r: &’a i32
}

r can only refer to 
values that live until 
program termination

each instance of S gets 
a new lifetime 
constrained by usage

’a must not outlive ’x

conflicting flow!

‘x ‘a



EXPLICIT LIFETIME PARAMETERS

Explicit lifetime parameters reveal whether there are non-static references and 
how their lifetimes are related

struct S<’a> {
  r: &’a i32
}

struct D {
  s: S<‘static>
}

Restrictive:
D can only borrow 
values that live for the 
entire program

struct S<’a> {
  r: &’a i32
}

struct D<’a> {
  s: S<‘a>
}

Permissive:
D can borrow any 
values, including those 
in local scope

read <‘a> as
for any lifetime ‘a



LIFETIMES OF FUNCTIONS
fn g<’a>(p: &’a i32) { ... }

let x = 10;
g(&x) // ok: x flows into the call

read as: any lifetime that contains g works for ’a

fn g(p: &’static i32) { ... }

let x = 10;
g(&x) // fail: &x does not
      //       live until termination 

read as: parameter must live until termination

fn parse<’a>(input: &’a [u8]) -> Record<’a> { ... }

“whatever (non-static) references the returned record contains, they 
must point into the input buffer”

result must live at 
least as long as 
input

Rust can often infer 
lifetimes for functions 
automatically



EXAMPLE

let s;
{
  let values = [7, 4, 1, 0, 1, 4, 7];
  s = min(&values)
}
assert_eq!(*s, 0); 

fn min<’a>(values: &’a [i32]) -> &’a i32 {
  let mut s = &v[0];
  for r in &v[1..] {
    if *r < *s {
      s = r;
    }
  }
  s
}

result must live at least as 
long as values

conflicting flow from values to s

add flow from values to 
result

error: `values` does not live 
long enough



EXAMPLE CONTINUED

let s;
{
  let values = [7, 4, 1, 0, 1, 4, 7];
  s = min(&values);
 assert_eq!(*s, 0); 
}

fn min<’a>(values: &’a [i32]) -> &’a i32 {
  let mut s = &v[0];
  for r in &v[1..] {
    if *r < *s {
      s = r;
    }
  }
  s
}

result must live at least as 
long as values

no conflicting flows

add flow from values to 
result

error: `values` does not live 
long enough



MULTIPLE LIFETIME PARAMETERS

One lifetime is sufficient unless a method returns a subset of a type’s references

struct StrSplit<’s, ’p> {
  delimiter: &’p str,
  document: &’s str,
}

impl<’s, ’p> Iterator for StrSplit<’s, ’p> {
  type Item = &’s str;
  fn next(&self) -> Option<Self::Item> { ... }
}

fn str_before(x: &str, c: char) -> Option<&str> {
  StrSplit {
    document: x, delimiter: &c.to_string()
  }.next()
}

we get a reference into the original document

for ’s = ’p, result 
would be constrained 
by the document and a 
local variable
è not possible



CHECKING LIFETIME PARAMETERS

Lifetimes parameters are types that interact with the borrow checker

A type’s variance describes which types can be used in its place
• Covariance

• Invariance

• Contravariance ’static subtype of ’a

read: outlives



COVARIANT LIFETIMES

• Allow subtypes instead of the actual type 

• T subtype S  implies  C<T> subtype C<S>

• &’a T is covariant in ’a and T

’static subtype of ’a

read: outlives

fn foo(x: &Vec<&’a str>) { ... }
let y: &Vec<&’static str> = ...;
foo(y) // ok



INVARIANT LIFETIMES 

• Allow only the exact type

• &mut T is invariant

’static subtype of ’a

read: outlives

fn foo(x: &Vec<&’a str>) { ... }
let y: &Vec<&’static str> = ...;
foo(y) // ok



CONTRAVARIANT LIFETIMES

• Allow supertypes instead of the actual type 

• T subtype S  implies  Fn(S) subtype Fn(T)

• Fn(T) is contravariant in T

// &’static str outlives &’a str
fn f(&’static str) // admits only ‘static
fn g(&’a str) // admits any lifetime ‘a

’static subtype of ’a

read: outlives



LIFETIME PUZZLE

• Should the Rust compiler accept this?
• Are both lifetime parameters needed?

struct MutString<‘a, ‘b> {
  s: &’a mut &’b str
}

fn main() {
  let mut s = “hello”;
  *MutString { s: &mut s }.s = “world”;
  println!(“{}”, s);
}



PUZZLE SOLUTION
struct MutString<‘a, ‘b> {
  s: &’a mut &’b str
}

fn main() {

  let mut s = “hello”;

  *MutString { s: &mut s }.s = “world”;
  
  println!(“{}”, s);

}

‘a: lifetime of &mut s

‘b = ‘static, lifetime of “hello”

covariance: ’static str shortened 
to ‘a str such that print can 
borrow from s

‘b ‘a

No conflicting flows è accept 



PUZZLE SOLUTION II
struct MutString<’a> {
  s: &’a mut &’a str
}

fn main() {

  let mut s = “hello”;

  *MutString { s: &mut s }.s = “world”;
  
  println!(“{}”, s);

}

’a: lifetime of &mut s

’a = ‘static, lifetime of “hello”
‘a  ‘a  ‘a

conflicting flows: 
attempt to borrow 
while there is a 
mutable reference
 è reject

One lifetime is insufficient

&’static mut str is invariant and 
cannot be shortened



EXCEPTION: INTERIOR MUTABILITY

• Some types allow sharing and mutation

• Those types maintain the abstraction

“exclusive read-write access XOR shared read-only access”

• These types are safe but rely on external safety mechanisms (e.g. locks)

• Two main kinds of interior mutability
• Mutex, RefCell: get a mutable reference through a shared reference

• Cell, sync::Atomic: replace an immutable value 



EXAMPLE: MUTEX

fn critical(mutex: &Mutex<Data>) {

  // get mutable reference
  // block read access from others
  let mut data = mutex.lock();

  data.payload = 23;

  // drop data => drop exclusive access
  //           => release lock
}



EXAMPLE: CELL

struct Robot { count: Cell<u32>, ... }
impl Robot {
  fn add_error(&self) {
    let n = count.get();

self.count.set(n+1); // why ok?
  }
  fn has_errors(&self) -> bool {

self.count.get() > 0
  }
}



WRAP-UP: RUST’S MEMORY SAFETY GUARANTEES

Components
• Ownership system: for every value a unique owner is in charge of disposal

• Borrow checker: references are only used when they are valid

• Reference contracts: exclusive write-access XOR shared read-only access

Rust enforces aliasing XOR mutation
 and requires synchronization for exceptions



6. PRUSTI
OBTAINING GUARANTEES BEYOND MEMORY SAFETY



WHAT COULD POSSIBLY GO WRONG?

Task: write a Rust program that returns the
absolute value of an integer (type: i32) x

fn abs(x:i32) -> i32 {
  if x >= 0 {
    x
  } else {
   -x
  }
}

This is a safe Rust program

But: it’s also logically wrong!

i32: 32-bit integers in two’s complement!

i32::MIN    is    -2_147_483_648i32
i32::MAX    is     2_147_483_647i32
abs(i32::MIN) == ???

è Rust does not guarantee functional 
correctness



BEYOND MEMORY SAFETY

• Rust comes with compile-time safety guarantees
• no uninitialized values, no dangling pointers, no data races

• no double-free, null pointer, or use-after-free bugs

• prevents many (but not all) memory leaks

• Memory safety is enforced by checking privileges and obligations
• Ownership, borrowing, lifetimes

• The Rust compiler requires annotations to check safety

è Can we trade writing more annotations for stronger correctness guarantees 

 to also avoid logical security flaws?



THE PRUSTI VERIFIER

• Tool for checking functional correctness 
of Rust functions

• Implemented as a compiler plugin

• Checks may require contract 
annotations written in a subset of Rust

• Open-source VSCode plugin
• Can be installed via marketplace

• Search for “Prusti Assistant”

• Needs Java runtime



ABSOLUTE VALUE REVISITED



ASSERTIONS

• Prusti checks that no Rust assertion fails

• Conservative approach: compilation fails if correctness cannot be proven

è Requires annotations about inputs and outputs of functions



CONTRACTS

• Constrain inputs and results of functions
• requires keyword constrains inputs

• ensures keyword constrains outputs

• Constraints must be side-effect-free, 
terminating Rust expressions

• Function implementors
• Privilege: assume inputs comply with contract

• Obligation: results must comply with contract

• Function clients
• Privilege: assume results comply with contract

• Obligation: inputs must comply with contract

#[requires(x != i32::MIN)]
#[ensures(result >= 0)
#[ensures(result*result == x * x)]
fn abs(x:i32) -> i32

Precondition:
all 32-bit integers but the 
smallest one are ok

Postcondition:
the function’s result will be the 
absolute value of x



MEANING OF CONTRACTS

#[requires(x != i32::MIN)]
#[ensures(result >= 0)
#[ensures(result*result == x * x)]
fn abs(x:i32) -> i32

Precondition (before call):
all 32-bit integers but the 
smallest one are ok

Postcondition (after call):
the function’s result will be the 
absolute value of x

Whenever we execute a function whose parameters satisfy the precondition
and execution terminates, then no run-time error occurs (e.g. an assertion failure) 
during execution and the postcondition holds upon termination. 



ABSOLUTE VALUE WITH CONTRACT

Needed for using contract annotations

Precondition (“requires”):
assume x is not the smallest integer

Postcondition (“ensures”):
Prusti proves that the returned result is the 
absolute value of x

OK: precondition of abs allows this value



A CLIENT OF ABS

OK: precondition of abs allows this value

assertions are known to hold due to 
postcondition of abs

ERROR: precondition of abs does not allow 
passing the smallest integer!



MODULAR CONTRACT VERIFICATION

• Prusti proves that every function meets its contract

• Default: pre- and postcondition are true

• Modular verification

• To check calls, Prusti relies solely on the called
function‘s contract

• Pros: Implementation changes è clients do not have to 
be re-checked

• Cons: Possible false negatives if we do not write 
sufficiently strong contracts

#[requires(x != i32::MIN)]
#[ensures(result >= 0)
#[ensures(result*result == x * x)]
fn abs(x:i32) -> i32 {
   x * sign(x)
}

#[requires(x != i32::MIN)]
#[ensures(result >= 0)
#[ensures(result*result == x * x)]
fn abs(x:i32) -> i32 {
   if x >= 0 { x } else { -x }
}



EXAMPLE: SWAP BY REFERENCE

old(*y) refers to the value y points to before 
calling the swap function



EXAMPLE: CLIENT OF SWAP



EXAMPLE: FAULTY CLIENT OF SWAP



IGNORING OVERFLOWS

We sometimes do not care about 
overflows for a given contract

To disable overflow checks, add a 
file Prusti.toml with 

check_overflows=false

From now on, we disable overflow 
checks to focus on other features



PURE FUNCTIONS

• Pre- and postcondition can contain arbitrary Rust code as long as it is pure
• i.e. specifications must have no side effects

• Functions marked with the annotation #[pure] 

• can be called in pre-and postconditions

• are checked to have no side effects

• are not modular, i.e. their implementation is inspected during contract verification

#[pure]
#[requires(x != i32::MIN)]
fn abs(x:i32) -> i32 {
    if x >= 0 { x } else { -x }
}

#[requires(y != i32::MIN)]
#[requires(abs(y) > 5)]
fn client(y:i32) -> i32 {
    y*y + 5
}



EXAMPLE

pure function 
length allows 
referring to list 
length in 
specifications



EXAMPLE

Postcondition: 
zipping two 
lists into one 
yields a list 
whose length is 
equal to the 
sum of the two 
input lists



TERMINATION

Prusti verifies contracts for 
partial correctness

è Non-terminating 
executions (via loops or 
recursion) are allowed

è Termination can be shown 
separately (e.g. with ranking 
functions)



TRUSTED FUNCTIONS

• Some code cannot be checked at compile time

• Examples: unsupported features, foreign code, unsafe Rust, libraries

• Pragmatic workaround: mark such functions as #[trusted]
• Prusti uses the contracts of #[trusted] functions

• Prusti does not check the implementation of #[trusted] functions

èAll results are only valid if trusted functions really adhere their contract

èPut unverifiable code into trusted wrappers and check them by other means



EXAMPLE
A wrapper for an unsafe function from the standard library

#[trusted]
#[requires(src.is_empty())]
#[ensures(dest.is_empty())]
#[ensures(old(dest.len()) == result.len())]
fn replace(dest: &mut Link, src: Link) -> Link {
    
 // library function that cannot be verified
 // because it needs unsafe Rust code
 mem::replace(dest, src)

}



LOOP INVARIANTS

• To verify loops, Prusti needs invariants

è Property that holds whenever reaches the annotation body_invariant!(…)



SUMMARY: PRUSTI SPECIFICATIONS 

• Specifications: pure fragment of Rust’s Boolean expressions

• #[requires(B)]: B must hold right before a function call

• #[ensures(B)]: B must hold after a function call
• old(x) refers to the value of x at the beginning of a function

• result refers to a function’s returned value

• #[pure] marks a function as usable in specifications
• Needs to be free of side effects

• #[trusted] lets Prusti ignore checking a function’s implementation

• In implementations: body_invariant!(B), assert!(B), unreachable!()



EXERCISE
Consider the following Rust implementation 
of Bank accounts. Add annotations such that 
Prusti can prove that no money is illegally 
redirected from an account.

use prusti_contracts::*;

struct Account {
    bal: u32,
}

impl Account {

  // # TODO
  fn balance(&self) -> u32 {
    self.bal
  }

// # TODO
fn deposit(&mut self, amount: u32) {
  self.bal = self.bal + amount;
}

// # TODO
fn withdraw(&mut self, amount: u32) {
  self.bal = self.bal - amount;
}

// # TODO
fn transfer(&mut self, 
    other: &mut Account, amount: u32) {
      self.withdraw(amount);
      other.deposit(amount);
  }
}

fn main() {}



SOLUTION
#[pure]
fn balance(&self) -> u32 {
  self.bal
}

#[ensures(self.balance() == old(self.balance()) + amount)]
fn deposit(&mut self, amount: u32) {
  self.bal = self.bal + amount;
}

#[requires(amount <= self.balance())]
#[ensures(self.balance() == old(self.balance()) - amount)]
fn withdraw(&mut self, amount: u32) {
  self.bal = self.bal - amount;
}

#[requires(amount <= self.balance())]
#[ensures(self.balance() == old(self.balance()) - amount)]
#[ensures(other.balance() == old(other.balance()) + amount)]
fn transfer(&mut self, other: &mut Account, amount: u32) {
      self.withdraw(amount);
      other.deposit(amount);
}



SUMMARY



WHAT ARE THE MAIN TAKEAWAYS FOR THIS 
CONTENT? 

• There is no security without safety.

• Rust‘s ownership and borrowing system statically guarantee safety by ensuring
that references are either mutable or shared; for exceptions, a synchronization
mechanism must enforce safety.

• Flows provide a useful mental model for understanding how the Rust compiler
checks memory safety and, in particular, lifetimes.

• Program verification tools, such as Prusti, can provide stronger functional
correctness guarantees but require additional annotations.

trade-off: writing more annotations è more compile-time guarantees



FURTHER READING

• The Rust programming language

• Gjengset, J. Rust for Rustaceans: Idiomatic Programming for 
Experienced Developers. No Starch Press, 2021.

• www.prusti.org 

https://doc.rust-lang.org/book/
http://www.prusti.org/


WHO IS BEHIND

Partners behind the project

Collaborators

Supported by



CHALLENGES



CHALLENGES

Challenges will be similar to the examples and exercises on the slides:

1. Use the flow model to identify memory safety issues in Rust code.
• To capture the flag, one has to provide a unique solution consisting of a flow annotation for 

every line of source code and a judgment of whether there is a conflict.

• We will have three challenges of this form covering ownership, borrows, and lifetimes

2. Provide Prusti annotations at the marked places of a program to verify a 
functional correctness property, similar to the Bank account.
• We will have three challenges, including recursive and loopy code

3. Use Prusti to implement a proven-correct program
• We fix the function signatures and Prusti annotations and ask participants to write Rust 

implementations that satisfy the given contracts.



COMMENTS ON CHALLENGES

A fourth challenge would ask participants to write a proven-correct Rust code by 
themselves. While this would be the most challenging and arguably most intriguing task, 
we cannot guarantee that we can automatically provide a flag for all correct solutions.

We thus opted to fix either the code or the annotations to simplify checking whether a 
solution is correct.


