

EPROC

YOUR TOOL FOR SCIENTIFIC MOULDING

BY EPSILONPLUS

Today, several companies (probably inspired by Nokia), apply the method of Scientific Moulding, and use software like EPROC as a tool. EpsilonPlus has developed several of these solutions.

Products from a robust process do not change quality if the process changes, that is why the primary focus with EPROC is to *obtain a robust process* using Scientific Moulding principles

EPSILON EPSILON	EPROC					
Update materials list	Update Machine list Start new workbook					
Fixed INPUT OUTPUT Conclusion Optional Editable values						
Remarks	PROCEED RETURN					

EPROC can be installed with your customized material-data and machine-list, which can easily be updated and maintained with new information.

EPROC is easy to use with navigation tools and built-in guides.

EPSILON EPILUS	Base Line	
Product data Part Product/group/customer Flow length 100 mm Wall thickness 1 mm Tool data No. Of cavities 4 No. Of favities 4 No. Of favities 4 Cavities 6 Expected cycle 10 ccm Runner volume 1 ccm Runner volume 1 ccm Runner weight 39,77 g	Process units Screw rotational speed m/min Shot size mm Decompression mm Material data M Screw Met Tem Make & Model Engel Screw diameter	Type HDPE Name HDT 60 °C ax shear 40000 sec. ⁻¹ Recom. Mould 40 °C w speed 750 mm/s perature 215 °C
Work book information Purpose Project		Actual setting
E	stimates	3

Scientific Moulding is based on knowledge about each material's thermal and viscous properties.

In EPROC you select your machine, your material and enter specification for your tool.

With different options for your process set up you can use EPROC for FOT, validation or as an improvement tool for existing processes.

Estimates for an initial process setting are calculated from tool-, machine- and material data in base line

This will help set up process and it makes it possible to apply the same starting point for tools at multiple sites.

A repeatable homogenous melt is a prerequisite for product- and process stability Optimization of the back pressure at the recommended temperatures and screw speed will provide the best possible starting point before filling the cavities Injection speed optimization is guided through a viscosity analysis of the specific

material. Supplementary information about machine capacity and gate shear will help you make

the right decision about the optimal speed.

A large cavity imbalance can be sign of tooling problems, EPROC helps you with the evaluation.

The correct packing is critical for dimensions and the shape (warpage) of the final part. In EPROC you will get guidance towards selection of pressure and gate freeze time Additionally, you have the options to apply either a Pack & Hold (useful for polyolefines) or a packing-profile (useful for side-gated parts).

Like the packing phase, EPROC will guide you through the optimization of either of these two options

EPSILON	E PLUS					Ρ	roc	ess wi	ndow	V	
Process window	v	low	No	minal	High						
Barrel temp		22 °C	2	15 °C	208 °C	Nominal					
Cooling time	4	5 sec	5	0 sec	6.2 sec	8 test runs			;		
Pack time end	1	4,5 Sec		0 sec	1.0 sec		Nominal				
Pack pressure	2	200 har		0 bar	400 bar		1	onnial			
Injection speed	-	60	50	80	100	-					
Water temp		10.00		6.00	16.%						
water temp.		10 0		0.0	10 C						
	run	Pack	pressure	Cooling time	e Barrel temp.	Pack t	ime end	Injection speed	Water temp.		
_	1 (nominal) 3	00 bar	5,0 sec	215 °C	1,0) sec	80	16 °C	L	
-	2	2	00 bar	4,5 sec	222 °C	1,0) sec	100	16 °C	+	
-	3	4	00 bar	4,5 sec	222 °C	1,0	sec	100	16 °C	+	
	5	4	00 bar	6,2 sec	222 °C	1,0) sec	60	16 °C	+	
	6	2	00 bar	4,5 sec	208 °C	1,(sec	60	16 °C	Ī	
	7	4	00 bar	4,5 sec	208 °C	1,0) sec	100	16 °C	I.	
-	8	2	00 bar	6,2 sec	208 °C	1,0	sec	60	16 °C	+	
-	9 10 (nomina	4	00 bar	5.0 sec	208 °C	1,0	sec	80	16 °C	+	
-	10 (110111110	1/ J	00 001	5,6300	215 0	-,-	Jec	00	10 0	L	
					Tim	e effect	0,49	6 0,033	DOE succ	esful	
					Pack p	ressure	0,0%	6			
					Cooli	ng time	0,59	6 -0,048			
					Barre	el temp.	0,09	6	Irellevant	nottested	
					Injection	speed	0,09	6	menevant	, not tested	
					Wate	r temp.	0,09	6	Irellevant	, not tested	
											6

A predetermined DOE with potentially significant parameters will help you to determine a valid process window.