L. V. Technology Public Company Limited

L. V. Technology Public Company Limited

719 KPN Tower, 9th, 23rd and 24th Floor Rama IX Road Bangkapi, Huaykwang Bangkok 10310, Thailand

Kent Ege Jensen

MSc. Chemical Engineer

General Manager, Process Design

Tel : +66 2 7170835-40, ext. 210 Fax : +66 2 7170577 E-mail : kent.jensen@lv-technology.com

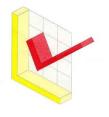
www.lv-technology.com

L. V. Technology Public Company Limited

Kiln system upgrades

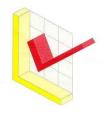

LVT procedure for a kiln system upgrade project

- Data collection (exist. equipment), Layout (available space) and Measurements (exist. operation)
- Simulation of existing operation (project basis)
 - Pinpoint of interesting and beneficiary areas to "attack"
- Implementation of necessary modifications (theoretical)
 - Reaching upgrade target
- Tailor made solutions project by project
 - Short stop time
 - Low investment
- Simulation of the upgraded kiln system (Design basis)



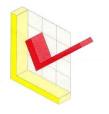
Kiln system upgrade – normal areas for LVT modifications

- New top stage L V Cyclones
 - Tailor made based on simulation result
 - Maintain or improve efficiency, reduced pressure drop
- Other cyclone stages
 - Reduction of pressure drop (increasing inlet areas)
 - Improve efficiency (dip tube, flow controlling cut)
 - Install LV cyclone (or partly)
- Calciner
 - Extension/enlargement (proper retention time)
 - Improve mixing of fuel and comb. Air and hereby the comb. conditions
- Cooler
 - Fixed inlet
 - Additional cooling air fan capacities
- Others
 - Kiln feed system, spreader boxes, DC water injection



Kiln system upgrade – simulation of operation - input

Kiln sim	ulations fo	r SP, ILC,	ILC-E and	SLC-S ki	Ins.	
Plant:	Chinfon line 2	2, exist oper.		Date:	09.03.09	
Kiln type:			ILC			
Main input values:	By:	KEJ			Combustible	Pressure
Hight above sea level	m	4			kcal/kg cl.	mb
Production	tiday	4300				
No. of cyclone stages	n	5	Cyclone no 1			-51
Amblent temperature	Deg. C	20	Cyclone	e no 2		-37
Bypass	96	0	Cyclone			-30
Heat to kin	kcal/kg	310	Cyclone	e no 4		-22
			Cyclone		1	-12.5
Excess air in klin Inlet	96	17	Calciner	routlet		
Excess air after calciner	96	14			Separation	Temp.dlf.
Primary air to klin	96	14		1.	Efficiency	Gas-Mat.
Primary air to calciner	96	4	Cyclone	e no 1	0.96	5
Temperature of raw feed	Deg. C	70	Cyclone		0.84	5
False air with feed	kg/kg cl.	0.02	Cyclone	e no 3	0.83	5
Radiation loss from klin	kcal/kg cl.	34	Cyclone	e no 4	0.81	5
VDZ-standard cooler loss	kcal/kg cl.	114	Cyclone		0.76	10
Heat of reaction	kcal/kg cl.	415	Cyclone	e no 6		
Temp. in lower cyclone	Deg. C	851			False Air	Radiation
Recarbonation heat	kcal/kg cl.	24			kg/kg cl.	kcal/kg cl.
Raw feed:			Cyclone no 1			6
Free water	96	0.2	Cyclone no 2		0.02	4.2
Combined water	96	0.7	Cyclone no 3		0.02	5.7
Loss on Ignition	96	35.5	Cyclone no 4		0.02	5.7
Titration	96	78		Cyclone no 5		5.7
Varios input values:			Cyclone			
Calcination material to kiin	96	90	in klin in		0.03	
ign, loss in material to klin	96	5.2	in kin ou		0.03	
Dust klin to preheater	96	15	Calcining		0.01	14
ign loss dust from klin to preheat.	96	3	Bypace data			
Dust from cooler to calciner	96	5	Dust from		kg/kg cl.	0.003
Moisture in air	kg/kg air	0.0098	L.O.I. I		96	2
Water addition to kiin	kg/kg cl.	0	Temp. in riser a		Deg.C	1000
			Heat of formatic		kcal/kg	430
Type of Fuel:		Actual a	nalysis No. 2	S	tandard Analys	is Gas
Moisture	46	0.70	1,42			
Ash	46	3.80	1.42	15.00		
C	70 46	89.20	70.00		85.20	68.12
8	70	3.04	4.23		11.60	21.03
8	46	0.48	0.99	1.03	2.09	
Ň	46	1.05	0.76		0.88	5.86
0	56	1.73	9.82		0.23	4.99
Gross heat value	kcalikg fuel	8176	5845	6663	10366	
Net heat value	kcalikg fuel	8018	6664	6429	9778	10311
	Nudiring ruler	0010	0004	0443	2//0	10311
Type of fuel to klin						
Type of fuel to calciner					Kiin Calcinef	



Kiln system upgrade – simulation of operation – output A

Kiln sin	ulations fo	or SP, ILC,	ILC-E and	SLC-S k	ilns.		
Plant:	Chinfon line	2, exist oper.	Date: 09.03.09				
Kiin type	ILC			By:	KEJ		
Heat balance: Ref. 0 Deg C.		koal/kg ol.	Cyclone tem	peratures:	Gas	Material	
Heat in exit gas		157.5	Fee	ed		70	
Evap. of free water in feed		1.6	Cyclone	e no. 1	310	305	
Radiation from preheater					479	474	
Radiation from klin	34.0	Cyclone	e no. 3	627	622		
Cooler loss	127.1		e no. 4	759	754		
Heat loss with bypass		0.0		e no. 5	851	841	
Heat of reaction		415.0	Cyclone	e no. 6			
Combustible in raw feed		0.0	Fueltype to I	din:	Standard OII		
Free heat input			Fueltype to a		Standard Oll		
Heat consumption		747	Air cooler to	kin	0.424	kg/kg cl.	
Heat to kin		310	Air cooler to	calciner	0.630	kg/kg ci	
Heat to calciner	437	Total air from cooler 1.053 kg/l					
Cooler data:		Remarks:					
Total cooler loss	kcal/kg cl.	130.8					
Standard cooler loss	114.0						
Combustion air from cooler	kg airikg ci.	1.053					
	Prehe	ater data (wet	et basis): (Dry,vol basis)				
Gac:	Nm3/kg cl.	kg/kg cl.	m3/sec.	kg/m3	%002 %02		
Cyclone no. 1	1.372	1.948	153.5	0.632	32.03	3.25	
Cyclone no. 2	1.342	1.914	191.1	0.498	32.28	3.03	
Cyclone no. 3	1.317	1.883	222.9	0.420	32.54	2.81	
Cyclone no. 4	1.301	1.863	250.5	0.370	32.96	2.57	
Cyclone no. 5	1,298	1.868	269.5	0.345	34.10	2.31	
Cyclone no. 6							
Kin inlet	0.452	0.602	117.5	0.255	19.09	2.99	
in calciner	1.270	1.823	261.7	0.347	33.84	2.08	
Material:	kg/kg cl.	kg/kg cl.	LOI				
Rawmaterial/Clinker:	1.550	Dust	35.50				
Feed		35.48		low calculatio			
Cyclone no.1	0.080	35.18	temperature in the klin				
Cyclone no.2	1.949	0.371	34.79	inlet = <u>1150 oC.</u>			
Cyclone no.3	2.000	0.410	33.84				
Cyclone no.4	1.962	0.460	29.81				
Cyclone no.5	1.261	0.398	5.20				
Cyclone no.6							

Kiln system upgrade – simulation of operation – output B

				ADDITI	ONAL G	AS AN	D FAN DA	AIA	Plant Date: By:		Chinfon line 2, exist op 09.03.09 KEJ	
			Gas D	ata (wet	basis)				1			
	H20		N2		CO2	2	02	1	1			
Gas:	kg/kg cl	wgt %	kg/kg cl.	wgt %	kofkg cl.	wgt %	kofkg cl.	wgt %	kg/Nm3	T		
Cyclone no. 1	0.104	5.33	1.005	51.59	0.781	40.11	0.058	2.96	1.420	1		
Cyclone no. 2	0.095	4.97	0.990	51.71	0.776	40.54	0.063	2.77	1.428	1		
Cyclone no. 3	0.090	4.76	0.974	51.75	0.771	40.92	0.048	2.57	1.430	1		
Cyclone no. 4	0.089	4.80	0.959	51.49	0.771	41.37	0.044	2.35	1.431	1		
Cyclone no. 5	0.089	4.78	0.944	50.54	0.795	42.59	0.039	2.09	1.438]		
Cyclone no. 6		-		-		-		-]		
Kiin inlet	0.037	6.15	0.395	65.63	0.152	25.29	0.017	2.89	1.332]		
In calciner	0.089	4.88	0.929	50.95	0.771	42.28	0.034	1.89	1.435			
Ambient air	-	88.0	-	76.06	-	0	-	22.98	1.281	mbar	kgim3	m3/s
nist, ID-fan	0.104	5.29	1.020	51.83	0.781	39.72	0.082	3.16	1.422	-65	0.635	154.19
Outlet ID-fam	0.104	5.14	1.085	52.54	0.781	38.58	0.076	3.74	1.418	-9.5	0.664	151.913
		DOWN	COMER V	ATER SP	RAY							
		Downco	mer koss	(mbar)	4]	ID-	fan opera	tion
		ID-fan ir	Vout temp	(0C)	305	305	Water Amo	unt	1	Efficiency	80	%
		Water T	emp. (oC)	22		0.00	m3/h		Dp, fan	4550	Pa
		False al	DC/CT (96)	1	1			1	Est. power	913	kW(nt)
		Temp. I	cas radiat	kon (oC)	2	1				Temp Incr.	0	0C
		Faise ai	r, ID-fan (96)	3				•	Dew Polet	44.7	oC .
										10	-fan desi	gn
	Notes: The	"Outlet,	ID fan* (y	silow) can	be		Flow safety	1	1	Flow	154.19	m3/a
	be used in r	new millin	eat belan	ce program	n.		Press. sale		1.00	State Dp	4550	Pa
	The motor :	size unde	r "ID-fan e	tesign" is			Motor safet	ly:	1.1	Motor	1004	KW .
	included du	et and di	rect drive	(no gear b	ciz)		#VALUE!			Dust load	26	g/m3
is considered.									Norm flow	68.85	Nm3/a	

Kiln system upgrade – selection of new LVT std. cyclones

Table no 1		
Standard size	for LVT-Cyclones	

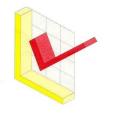
Cale:

Plant: Chinion kiln line 2 upgrade to 5000 TPD

10.02 2008 indicate. HORA .

									Table or	subthe for-	distant adapt	of such Cy	dute	
	Table	for calc	iev etcha	acity of a	ach Cycl	118			C1	62	C3 4	C1	a	-C24
Cyshirlar	C1	- 12	C3	CK	CS	CB	Cystone	Cystere	Field	daying	0.00	700		
Charlene?	Sus en ante		Postable	and a short)			Crameter:			22			
Éla	44.25	0			6	6	1000	00	Dianter	ler livade tra	66.02	when which we	fiel areas A	1.04
- 16	#15%	112.76	-1634	18.2.2	183/5	16.92		- 10	- 61	- 10	- ili	612	412	112
2.83	36.2	- ça	60	80	E/0	E ()	-345	1.80	2.83	3.44	3.04	2 194	2.040	28
1.00	15.2	63	60	8.0	8.0	8.0	- 265	2.60	2.02	3.54	2.61	2.890	3.158	2.9
4.00	34.8	6.3	6.0	E-0	8.0	6.0	-045	4.03	4.03	3.64	3.54	2.040	3.309	3.1
4.72	13.2	0.3		8.0	8.0	8.0		6.20	4.22	3.14	3.74			
4.42	12.1	6.9		6.0	8.0	8.0		6.40	4.43	4.04	3.04	3.679	4.113	3.0
4.00	11.0	6.2		80	6.0	8.0		4.63	4.62	4.24	4.54	4.020	4.520	43
4.82	30.5	6.3		8.0	8.0	8.0		6,82	4.82	4.41	4.34			41
1.00	9.3	0.3	0.0	8.0	£0	8.0	- 246	5.00	1.03	4.84	4.54	4.150	1.425	11
1.30	8.2	63	0.0	80	£0	80		5.30	132	4.14	4.84	1.387	£ 150	10
1.00	7.6	0.3	60	80	6.0	8.0		5.60	5.63	5.34	0.14		6.918	6.0
198	67	63	60	60	80	80		5.90	102	5.54	1.64	6.014	2,734	2.4
6.13	62	6.3	6.0	6.0	8.0	8.0		4.10	6.10	5.34	1.04	2.076	8.320	8.0
6.43	87	63	60	80	10	10	- 246	6.60	£43	818	1.14	2.183	8,180	13
6.12	6.2	63		80	8.0	8.0		6.30	6.72	6.24	6.24	8.528	18.128	1.0
2.00	4.8	6.3	6.0	8.0	80	8.0	-005	7.00	2.03	0.84	0.54	8.318	01.101	16.7
7.38	4.6	03	60	50	50	80	165	7.39	2.30	6.94	6.84	10.125	12.107	111
2.60	4.0	6.3	60	8.0	8.0	8.0		7.69	2.63	1.34	7.56	18-004	13.238	12.8
1.00	3.8	0.3	0.0	8.0	8.0	8.0	-065	8.00	8.03	TAN	7.54	12.180	54,728	143
1.42	3.2	63	60	80	80	80	- 265	8.40	8.42	8.04	7.84	12.438	18.290	15.8
1.82	3.3	63	6.0	80	80	8.0		8,90	132	8.44	8.24	14.114	12.001	
12	28	63	60	80	50	8.0	-945	9.20	828	8.14	8.0	18,080	18-090	182
1-50	25	6.3	60	8.0	8.0	8.0	- 245	3.62	543	8.34	0.16	12.5/18-	21.5/6	210
10.00	23	03	00	. EO	80	8.0	365	13.00	18.00	9.84	0.54	18-000	21.478	215

Cyclicite	-61	02	Ca	CK	CS	08	Overlage
Charleser	Cas de tell	K.	Price bills	aler al all pr	0	10+	
Eta .	0.821			0	0	0	kana 2
- 18	lights.	Rend	Kgend -	spind	spind	- Navid	
3.89	742-3	0.0	60	80	8.0	8.0	24
2.90	4858.7	0.2	60	6.0	8.0	80	Pa
4.00	- BM 2	0.3	6.0	8.0	80	8.0	Pa
4.23	481.5	0.0	0.0	80	60	8.0	Pa
4.45	812.8	03	0.0	10	80	80	74
4.00	245.5	0.3	60	8.0	6.0	8-0	24
4.83	201.6	0.0	00	8.0	8.0	8.0	Pa
1.00	247.5	03	00	80	10	EQ	Pia
5.32	198.1	6.3	0.0	8.0	8.0	8.0	Pa
5.00	187.2	0.2	60	8.0	8.0	8.0	P4
1.00	127.2	6.3	6.0	8.0	60	80	24
6.10	511.2	6.0	60	60	8.0	6.0	Pa
6.43	822	0.3	60	80	80	8-0	94
6.12	26.8	0.0	60	8.0	8.0	8.0	Pa
2.00	84.4	0.3	60	80	60	8.0	P4
7.35	54.5	0.3	60	8.0	8.0	8.0	24
2.60	40.4	0.3	60	80	60	80	P6
1.00	21.8	03	00	80	8.0	EO	Pa
1.42	28.5	6.3	0.0	8.0	8.0	6.0	94
1.10	25.8	0.3	0.0	8.0	8.0	8.0	Pa
1.22	21.6	0.2	60	8.0	8.0	8.0	194
8-00	18.2	0.0	0.0	6.0	80	8.0	Pa
10.00	10.5	0.3	0.0	8.0	10	E 0	74


C ges fair care for each cyclone stage in Ned Kots Black aread by converting from to dage cyclone vehicly ligher than 10 m/s of cyclone use same size as top cyclone (or 1 me bigger)

	"Put that Considering each cycline stage in Peel Kints of Table B to saturate Pressure loss and then consider to adjust cycline state for optimum pressure tess.
I	Put samed and advantefactory thomass for each cystome stage in table C
l	PUIDe and Idea
I	All Find method data must be filled to according to the actual patient

beneded gridlened as new top-field party

Alternative if space available But too law pressure chop.

L. V. Technology PCL, Order reference list – all jobs

Do

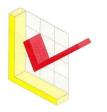
Sr.	Year	Cheut	Country	Type of Mill	Original	Product
No.	Sales	1			Classifier	1
714	2009	Chinfon	Vietnam			Prebezte
	2009	C1: C				Raw, Coal
713	2009	Chinfon	Vietnam			Cement
712	2009	TPI Polene	Thailand			Coal
711	2009	ShanShui Yishui Cement	China	MLS4531A	Chinese	Raw
		ShanDong Anqiu ShanShui	China			
710	2009	Cement		MLS4531A	Chinese	Raw
		ShanShui Liao Yang	China			
709	2009	Qianshan (Xiao Tun)		MLS4531A	Chinese	Raw
706	2009	APODI	Beazil		New Plant	Cement
707	2008	Lafarge Cantagalo	Brazil	Kilu 1		Engineerin
706	2008	Usiminas	Beamil	Coal Mill		Engineerin
705	2008	Usiminas	Beamil	Cyclone		Engineerin
704	2008	Shanxi Yaobai Cement	China			Engineerin
703	2008	Pascasanayo	Beazil	Raw Mill 2		Engineerit
702	2008	Pacasmayo	Beamil	Kiln 3 Upgrade		Engineerin
701	2008	Cimpor Formoso	Beazil	Kiln 2 Upgrade		Engineerin
700	2008	Cimpor Formoso	Beamil	Atox Mill		Engineerin
699	2008	Cimper Formese	Beazil	Kiln l Upgrade		Engineerin
698	2008	Cimpor Candiota	Bearil	Kiln Upgrade		Engineerin
697	2008	Cimpor Candiota	Bearil	Raw Mill		Engineerin
696	2008	Liyang Tianshan Coment	China	Coal Mill		Engineerin
695	2008	Yurz Cement	Pera			Engineerin
60.4	2000	Marian L Carrier	T. F.			Conductin
694	2008	Manigarh Comont	India			Efficiency 1
693	2008	SGMK Uchulensky*	Russia	Atox 37.5	RAR-LVT	Raw
692	2008	Xi'an Chenghe Shifeng*	China	Atox 50	RAR-LVT	Raw
691	2008	Tiaurui Cement, 9*	China	Atox 50	RAR-LVT	Raw
690	2008	Tizurui Cement, S*	China	Atox 50	RAR-LVT	Raw
689	2008	Tizurui Cement, 7*	China	Atox 50	RAR-LVT	Raw
688	2008	Tianrui Cement, 6*	China	Atox 50	RAR-LVT	Raw
687	2008	Tisurui Coment, 5*	China	Atox 50	RAR-LVT	Raw
686	2008	Red Lion Cement*	China	Atox 50	RAR-LVT	Raw
685	2008	Red Lion Cement*	China	Atox 50	RAR-LVT	Raw

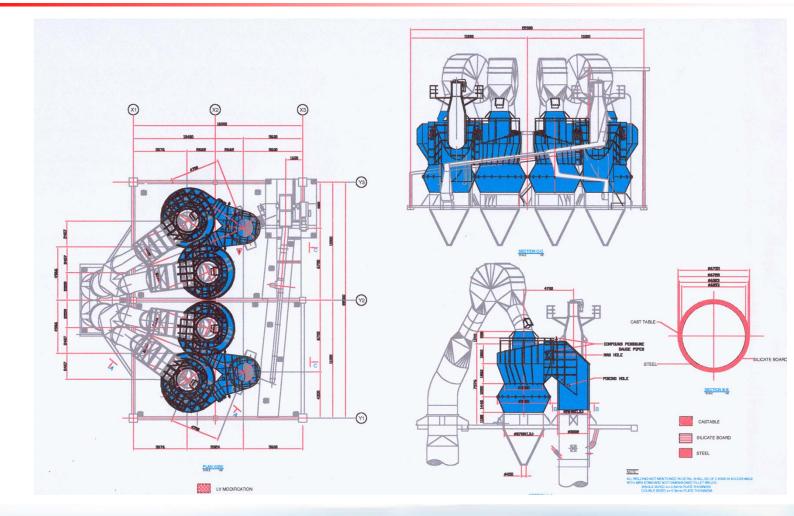
REFERENCES OF L.V. TECHNOLOGY PUBLIC COMPANY LIMITED.

L. V. Technology PCL, Order reference list – PYRO jobs

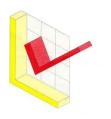
	-	REFERENCES OF L.V. TECHNOLOGY PUBLIC COMPANY LIMITED							
C.			For Kiln U	pgrade Projects					
Sr.	Year			Number of LVT	From	To			
No.	Sales	Client	Country	Top Stage Cyclones	(TPD)	(TPD)			
678	2008	Hanil Cement Kiln #5	Korea	4	4400	4800			

				Cyclones		1 1
678	2008	Hanil Cement Kiln #5	Korea	4	4400	4800
677	2008	NSCI - Perlis	Malaysia	2	2125	2750
656	2008	Bodoquena	Brazil	5	1620	1900
626	2008	APIAI	Brazil	2	2200	3000
578	2007	Khamseh Cement	Iran	New Line (1)	0	3500
577	2007	Mondedashti Cement	Iran	New Line (1)	0	3500
574	2007	Yura Cement Phase II	Peru	New SCL String	1400	3300
549	2007	Bojnourd Cement	Iran	2	2150	2850
523	2007	Yura Cement Phase I	Peru	2	1150	1400
516	2007	Negeri Sembilan	Malaysia	4	3600	4000
427	2005	Hoang Mai Cement	Vietnam	4	4150	4500
399	2005	Cosmos Niebla	Spain		950	1010
391	2005	Fecto Cement	Pakistan	4	2000	2600
200	2005	Al Abbas Kiln #1	Pakistan	2	500	1300
390	2005	Al Abbas Kiln #2	Pakistan	2	1000	1950
372	2005	Hanil Cement Kiln #6	Korea	4	4400	4800(5000)
367	2004	Khash Cement	Iran	2	2000	2800
332	2004	Thatta Cement	Pakistan	2	1000	1550
329	2004	Bestway Cement	Pakistan	2	3800	4200
319	2004	Kordestan Cement	Iran	2	2300	3200
331	2004	Chinfan Usinhang	Vietnam	4	4500	4800
271	2003	Chinfon Haiphong	Vietnath	-	4300	4500
302	2004	Cemex Saraburi Kiln #1	Thailand	2	900	1200
210	2003	Qayen Cement	Iran	0	2350	2650
208	2003	Shahroud Cement	Iran	0	2350	2800
118	2002	Chinfon Haiphong	Vietnam	4	4200	4500


Via LNV India


396	2005	Manikgarh Cement	India			Upgrade
395	2005	Century Cement	India			Upgrade
394	2005	Century Cement	India			Upgrade
393	2005	Maihar Cement	India		1100	1250
351	2004	Holcim Lanka	Sri Lanka	Chloride bypass	1000	1000
341	2004	Holcim Lanka	Sri Lanka	2	880	1000
308	2004	Laksmhi Cement	India		1600	1800
307	2004	Maihar Cement	India		1100	1250
		NCL	India		1500	New Kiln line
		NCL	India		3000	New Kiln line
		Shree Jayajhoddi	India		5000	New Kiln line

Updated : 12 May 2009


Change of Top Cyclones At Chinfon Cement - line 1

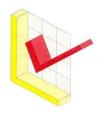
Result from Kiln Upgrade, Chinfon Cement – line 1

THE MODIFICATIONS:

- Additional EP filter fan (in parallel to existing) + PIACS in ESP
- Fixed cooler inlet
- New classifier for Raw mill (production up 17 %)
- New classifier for Coal mill (production + reduced fineness)
- 4 new LVT top stage cyclones decrease top stage pressure loss from 19.5 mbar to 8 mbar

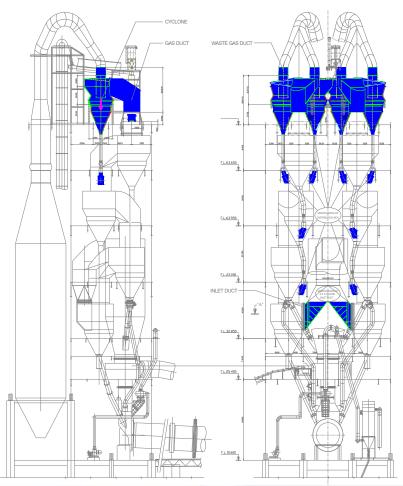
	Before	After (today)
Production (tpd)	4300	4800 (4900)
Heat cons. (kcal/kg)	815	800 (~780)
Pres. Preheater out (mbar)	68	59 (~59)

Kiln Upgrade, Chinfon Cement – line 2


THE MODIFICATIONS:


- Additional EP filter fan (in parallel to existing)
- Speed up most of the cooler fans
- Upgrade (speed up) Kiln feed system and clinker transport
- New main burner

• 4 new LVT top stage cyclones - decrease top stage pressure loss from 13 mbar (today at 4300 TPD) to 9 mbar (at 5000 TPD) for cyclone alone


	Before	After (expect)
Production (tpd)	4300/4376	5000 (5200)
Heat cons. (kcal/kg)	~ 750	A bit less
Pres. Preheater out (mbar)	51/53	61 (65)

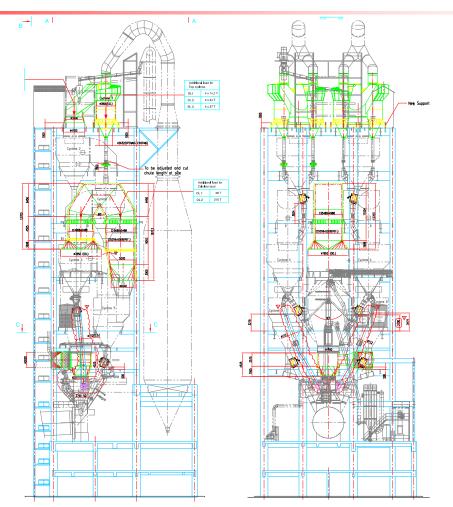


Preheater Modifications at Hanil Cement – kiln 6

Result from Kiln Upgrade, Hanil – kiln 6

THE MODIFICATIONS:

- 4 new LVT top stage cyclones
- Modification to bottom stage cyclone inlets
- New LVT spreader boxes throughout the preheater


	Before	After
Production (tpd)	4425	5000
Heat cons. (kcal/kg) (*)	697	647
Pres. Preheater out (mbar)	50	55
ID fan power cons. (kWh/t)	5.9	6.6

(*) not including the (not constant) amount of combustibles added to the raw meal

Preheater Modifications at Hanil Cement – kiln 5

Result from Kiln Upgrade, Hanil – kiln 5

THE MODIFICATIONS:

- 4 new LVT top stage cyclones
- Large calciner extension
- Modification of TAD inlet to calciner and installation of LVT mixing chamber
- Lovering of the coal firing in the calciner

	Before	After
Production (tpd)	4461	4800
Heat cons. (kcal/kg) (*)	657	A bit less
% firing of waste (of total)	20	20
Pres. Preheater out (mbar)	51	54
ID fan power cons. (kWh/t)	NA	NA

(*) not including the (not constant) amount of combustibles added to the raw meal

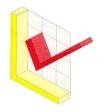
L. V. Technology Product Summary

- Modification of Vertical Roller mills
 LV Classifier
- Modification of Ball Mills

 LV Classifier + Fluidized Bed
- Modification of cyclones
 - LV Cyclone
 - Increase of inlet area

Total kiln line upgrades

- Calciner modifications
- Cooler improvements
- By pass installations
- NOx reduction technology


Vertical Mill Installations

- Mitsubishi VRM with LV Classifier

Plant evaluations and consultancy

- Thinking of untraditional solutions?
- Thinking of saving equipment cost, operation cost and/or installation time ?

• Think: L. V. Technology PCL. – we find a solution to your new project.

• Thank you for listening.

