
What’s New in Docker +
Wasm?

Speaker - Developer Advocate at Docker
- Author @ https://collabnix.com
- ex-Docker Captain
- Docker Community Leader, Bangalore
- ARM Ambassador
- Worked @ Dell EMC, VMware, Redis & CGI
-

https://collabnix.com

https://dockerlabs.collabnix.com https://kubetools.collabnix.com https://kubelabs.collabnix.com

https://dockerlabs.collabnix.com
https://dockerlabs.collabnix.com
https://kubelabs.collabnix.com

https://github.com/collabnix/wasmlabs

Introducing WasmLabs Repository

https://github.com/collabnix/wasmlabs

Docker Desktop

Speed ChoiceSecurity

- Docker init
- VirtioFS Support
- Compose File Watch
- Vpnkit ⇒ gVisor

- Docker Scout
- Attestations

- Docker Extensions
- Docker Sponsored

Open Source
Projects

- Rosetta 2
- Wasm

Inner-Loop Development Workflow

DEVELOPERS
(Mac/Win/Linux)

BUILD
IDE

Container Registry
 Code
Commit

Source Control

Define services

docker push
Testing app

A Typical Docker Workflow

“Do’s” “Don’ts”

node:<tag>
node:latest

USER node

USER root
HEALTHCHECK

COPY

Multi-Stage

EXPOSE db_port

.dockerignore

buildx –platform

node_modules

SIGTERM

MEM LIMIT

SCANNING

ADD

Introducing

Docker init

Simplified Docker
Assets Creation

Saves Time and
Effort

Better Project
Organization

Enhanced Portability

Docker init

Simplified Docker
Assets Creation

Saves Time and
Effort

Better Project
Organization

Enhanced Portability

Compose Watch

Compose Watch

- New Experimental Feature
- Automatically updates your compose service containers

while you work
- Blazing-fast file synchronization supporting live update

How it works?

- Automatically builds a new image with BuildKit and replaces the running service
container

- Add an x-develop section to your services in the compose.yaml file
- Configure it with a list of paths to watch and actions to take
- Watch rules allow ignoring specific files or entire directories within the watched

tree.

It’s Demo Time

https://github.com/dockersamples/avatars

https://github.com/dockersamples/avatars

Container Security Monitoring
for Developers

Secure Your Supply Chain at each Layer

- Unified view of securing your container development
- Includes a layer-by-layer view of dependencies, their known

vulnerabilities, and recommended remediation paths.
- Designed with developers in mind
- 1st Class Citizen(integrated directly into Docker)
- Sits as a layer on top of the Docker ecosystem to

help developers build and maintain a secure software supply chain

 “Spend less time search for and fixing vulnerabilities”

Docker Scout

Observability &
Analysis

With one view, your
application’s direct and

transitive dependencies from
all layers are visible. This
layer-based view not only

makes remediation next steps
clear, it also builds

understanding of image
composition.

Vulnerability
Management

When a new CVE is released,
Docker Scout uses your
image’s SBOM to check
whether there’s a positive
correlation between your
image and your CVE – so
your recommendations are
always up to date.

Integrated
Remediation &

Recommendation

Integrated recommendations
are visible in Docker Desktop.

Docker Scout recommends
remediation options for base

image updates, as well as
dependency updates within
your application code layers.

 Dev Environments

Docker Desktop

 Full-Development
 Environments

Volume Management Docker Compose
V2

Docker Scout Docker Extensions Support for
Kubernetes

Support for VirtioFS

Docker Desktop

Support for
Containerd

Support for Wasm x86/amd64 Binary
Emulation

SBOM Indexing

Docker init Compose Include File Watch

Docker & Wasm - Better Together

What is WebAssembly(Wasm)?

Content

Behaviour

Control

JS Frameworks

Adobe used WASM to port Photoshop to the web

Uses the Emscripten compiler to convert Photoshop's C++ code to
WASM. Emscripten is a compiler that takes code written in C/C++ and
converts it to JavaScript, which can then be run in a web browser.

Uses Wasm in the browser and Docker to start an HTTP server

- Render the vector graphics that are used in Figma Designs
- Calculate complex algorithm that are used in Figma
- Allows users to create plugins that extends the app functionality

“Wasm is a binary instruction format
for a stack-based Virtual Machine”

Instructions encoded in binary format

VM that uses a stack data structure to store data

Wasm JavaScript

Wasm is binary-format JavaScript is text-format

Wasm is compiled, wasm code is
converted into machine code before
it is executed

JavaScript is interpreted , code is
interpreted line by line

Wasm is sandboxed(isolated from
rest of the browser)

JavaScript is not sandboxed(has
access to the entire browser)

If you’re developing a
high-performance, portable and
secure application

If you’re developing a simple
application that doesn’t require high
performance

The bytecode for this program is as follows:

When you write a program in JavaScript, the code is first converted into bytecode.
Bytecode is a format that can be interpreted by the JavaScript engine in the browser.
The JavaScript engine then executes the bytecode line by line.

JavaScript is a programming language, and bytecode is a low-level intermediate language.

How Wasm works on Browser?

How Wasm works on Server?

What is WASI?

- WASI is a specification that defines how WASM code can interact with the
host environment

- Provides a set of APIs that allow WASM code to access the browser’s
resources, such as files, network and timers

Wasm and Docker Desktop

Why Docker is supporting Wasm?

- Conquer the app complexity
- Learn and Develop Faster
- Collaborate and Innovate
-

Wasm and Docker Desktop

$ docker run -it --rm --privileged

--pid=host justincormack/nsenter1

/bin/ls /var/lib/wasm/runtimes

containerd-shim-slight-v1

containerd-shim-wasmtime-v1

containerd-shim-spin-v1 libwasmedge.so.0

containerd-shim-wasmedge-v1

libwasmedge.so.0.0.2

Supported Wasm Runtimes on Docker Desktop

WasmEdge
Wasmtime

Slight, DeisLab

.

Spin - A Serverless Wasm Runtime

● Spin is a serverless Wasm
runtime that is designed to be
easy to use and deploy.

● A good choice for running Wasm
workloads that are event-driven
or that need to be scaled
horizontally.

.

WasmEdge - Flexibility and Control

● WasmEdge is a full-featured
Wasm runtime that supports a
wide range of features.

A good choice for running Wasm
workloads that require a high
degree of flexibility and control.

.

Wasmtime

● Wasmtime is a Wasm runtime
that is designed to be compatible
with the WebAssembly

Specification. A good choice for
running Wasm workloads that
need to be portable to different
environments.

.

Slight

● A lightweight Wasm runtime that
is designed to be fast and
efficient.

● A good choice for running Wasm
workloads that require high
performance.

 It’s Demo Time
https://github.com/collabnix/wasmlabs/blob/main/
dockerdesktop/demo/README.md

https://github.com/collabnix/wasmlabs/blob/main/dockerdesktop/demo/README.md
https://github.com/collabnix/wasmlabs/blob/main/dockerdesktop/demo/README.md

Get Connected

https://launchpass.com/collabnix

https://launchpass.com/collabnix

