Demystifying Kubernetes
In less than 100 slides

-
docker



Developer Relations Manager at Redis Labs

Worked in Dell EMC, VMware, CGl

Docker Bangalore Community Leader

DockerLabs Incubator

Founder of Docker Labs(4700+ Slack members) htto://www.collabnix.com

&> docker



Let’s start with an analogy..




Carries containers across the sea




Host Application as Containers ~ Worker Nodes

&> docker



Overview

[ ] <~ Worker Node-1
4 I
\ )




Managing & Monitoring of the cargo ships




Manage, Plan, Schedule, Monitor ~ Master




Overview

/ \ [ ] . Worker Node-1

Master

4 )
- J
\_ !




Let’s talk about Master
Components..




|dentifies the placement of containers

% &




|dentifies the right node to place a containers ~ Kube-Scheduler

% 4

- m'n—{;







-~

\ Worker Node-1
Scheduler

Master e ~
- /
" / : ,




HA database ~ Which containers on which ships? When was it loaded?




HA database ~ Which containers on which ships? When was it loaded? ~ The ETCD Cluster




Worker Node-1

4 R [
Master e ~N

——

S

~
J




- Operation Team Office ~ Ship Handling, Control
- Cargo Team Office ~ verify if containers are damaged, ensure that new containers are rebuilt
- IT & Communication Office — Communication in between various ships




Node Controllers — Takes care of Nodes | Responsible for onboarding new nodes in a
cluster | Availability of Nodes

Replicas Controller — Ensures that desired number of containers are running at all times
Controller Manager - Manages all these controllers in place




Worker Node-1

4 R [
Master e ~N

——

S

~
J




How does each of these services communicate with each other?




A primary management component of k8s
Responsible for orchestrating all operations within a cluster

Exposes K8s API ,used by external users to perform management operation in
the cluster and number of controller to monitor the state of the cluster

API| Server




Overview

wea [ . [ ]

\ 4 )

Q__.- ___________________ :

Ul Controller \_ )
Manager

API Server

~
J

Master Worker Nodes

23 &> docker



$kubectl get componentstatus

[node1 install]$ kubectl get nodes -o wide

NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE KERNEL-VERSION  CONTAINER-RUNTIME

node1 Ready master 92s v1.14.2 192.168.0.18 <none> CentOS Linux 7 (Core) 4.4.0-141-generic docker://18.9.6
node2 Ready <none> 57s v1.14.2 192.168.0.17 <none> CentOS Linux 7 (Core) 4.4.0-141-generic docker://18.9.6
node3 NotReady <none> 39s v1.14.2 192.168.0.16 <none> CentOS Linux 7 (Core) 4.4.0-141-generic docker://18.9.6
node4 NotReady <none> 32s v1.14.2 192.168.0.15 <none> CentOS Linux 7 (Core) 4.4.0-141-generic docker://18.9.6

[node1 install]$ kubectl get componentstatus

NAME STATUS MESSAGE ERROR
scheduler Healthy ok

controller-manager Healthy ok

etcd-0 Healthy {"health":"true"}



Let’s talk about Worker
Components..




Overview

kubectl / \ / \

\ Scheduler

Ul ETCD Controller
Manager

API Server

. /

A Worker Node

Master

26 &> docker



Manages all sort of activity on the ship

Let master ship knows they are interested to join

Sending reports back to master about the status of the ship
Sending reports about the status of the containers 2y

API Server




Kubelet

Agent which runs on each nodes of the container

T =

= Ly Y.
= el
Rl \ J -

Elx

Zamti



Overview

kubectl / \ S  Kubelet

\
o

Controller

Jl Manager
_ y NS )/

Worker Node-1

APl Server B
- a ™

Master

29 &> docker



How does two cargo ships communicate with each other?

fﬂ

mifs

_E !--a-nﬁ ii
-ﬁnl-' -a !-:” W

e wa s = = =1k
ﬂgfg l!, Iu-ﬁ;h 2

- f‘



How will web server running on one worker node reach out to DB server
on another worker node?

Communication between worker nodes

Kube-proxy

.rmg !--E‘mi -
= el




: : Worker Node-1

Master / \ / \
- Kubelet Kube-proxy
Scheduler

4 )

- Y \ .




Let’s talk about Pods..




: : Worker Node-1

Master / \ / \
- Kubelet Kube-proxy
Scheduler

Pod

ETCD O O




Master

-

ETCD

\

Scheduler

@ Worker Node-1
Kubelet Kube-proxy

p
)
@

&=

@)
@

\

)

Pod

Container



A popular Container Runtime

-



kubectl

Ul

O

-

\

Scheduler

ETCD

\_

/

Master

Kubelet Kube-proxy

4 )

@ O Pod
Q @ @ Container

\C ~/

Worker Node




Setting up a single Node K8s cluster on Docker Desktop for Mac /
Windows

Setting up 5 Node Kubernetes Cluster on PWK
Setting up 3 Nodes K8s Cluster on Bare Metal or VM



Let's Deep Dive into Pods...




What is Pod?

Pod Deployment

Multi-Container

Pod Networking

Inter-Pod & Intra-Pod Networking
Pod Lifecycle

Pod Manifest File



Atomic Unit of Scheduling

41

-

\_

~

Virtualization

/

-~

\_

Docker

/

-~

\_

Kubernetes

~

/




How Pods are deployed?

42

-~

\_

~

Scheduler

v

"""  API Server |

/

Master

©
(@)

Pod

Cluster

Container



Scaling the Pods to accommodate increasing traffic

-~

\_

g—] B

~

Scheduler

v

""" APl Server 1

/

43

Master

-

~

Pod

Container

,
e
QQ ©



What if node resources is getting insufficient?

-~

\_

g—] B

~

Scheduler

v

"""  API Server 1

/

44

Master

-

/

©
(@)

=)
O

Pod

Container

Worker Node



What if node resources is getting insufficient?

/ \ /L T Worker-2

Scheduler

v

E—] N * " ''''''''''''''' - 4 Q | Worker-1
Q O Pod
O Q Q Container

N / \ ),

Master Cluster

45 &> docker



What if node resources is getting insufficient?

Y
|

Worker-2

Scheduler

; -
E—] . * " ''''''''''''''' - KQQ Q ) V\;oorzer-1
O Q Q Container

N / \ ),

Master Cluster

46 &> docker



2 Containers in a same Pod

-~

\_

g—] B

~

Scheduler

v

"""  API Server 1

/

47

Master

O

|

©
(@)

~

L Worker-2

Worker-1
Pod

=)
Q

—

~/

Cluster

Container



Pod Networking

48

Pod 1

4 N

Main Supporting
Controller Controller
:8080

R T

Pod 2

4 N

Supporting
Controller

S [oomm]



How does these containers

Inside Pods communicate with
External World?




Network Namespace

50

Pod 1

-

~

Main
Controller

Supporting
Controller

Pod 2

Supporting
Controller




How does one Pod talk to
another Pod?

Welcome to Inter-Pod Communication..




Pod Networking

Pod 1 Pod 2

4 N 4 N

Main Supporting S rti
Controller Controller C;ch)nﬁ?olllgg
:8080

NP R

|
|
!
\/

Pod Network

52 &> docker



How does Intra-Pod
communication take place?




Intra-Pod Communication
Pod 1

Supporting
Container

Main Container

Localhost

:8080 :3000

54




A Look at Pod Manifest

apiVersion: vi
kind: Pod
metadata:
name: nginx-pod
labels:
name: nginx-pod
spec:
containers:
- name: nginx
image: nginx:latest
ports:
- containerPort: 80

55

Create the pod as shown below:

$ kubectl create -f templates/pod.yaml
pod "nginx-pod" created

Get the list of pod:

$ kubectl get pods
NAME READY STATUS RESTARTS
nginx-pod 1/1 Running ©

AGE
22s



[nodel labOl-creating-nginx-pod]$ kubectl get po
AME READY STATUS RESTARTS AGE

nginx—-pod 1/1 Running 0 3m22s
[nodel lab0Ol-creating—-nginx-pod]$ kubectl exec -it nginx-pod —-- /bin/bash

Verifying the Operating System
root@nginx-pod:/# 1s
i boot dev etc home 1ib 1ib64 media mnt opt proc root run sbin srv sys tmp usr

RETTY NAME="Debian GNU/Linux 9 (stretch)"
AME="Debian GNU/Linux"

ERSION ID="9"

ERSION="9 (stretch)"

TD=debian

OME URL="https://www.debian.org/"

SUPPORT URL="https://www.debian.org/support"
BUG REPORT URL="https://bugs.debian.org/"




root@nginx-pod:/# echo Hello shell demo > /usr/share/nginx/html/index.html

[nodel labOl-creating—-nginx-pod]$ kubectl get po
READY STATUS RESTARTS AGE
1/1 Running 0 13m
[nodel lab0Ol-creating-nginx-pod]$ kubectl get po -o wide
READY STATUS RESTARTS AGE IP NODE
1/1 Running 0 13m 10.44.0.1 node?2
[nodel lab0Ol-creating-nginx-pod]$ curl 10.44.0.1:80

NOMINATED NODE
<none>

READINESS GATES
<none>



Stages of Life Cycle of Pod




Lifecycle of a Pod

g’ﬂ-@@-

Pod Pod

Pod

&> docker



How can you ensure that there are 3 Pods instances which are always
available and running at point in time?

ReplicaSet




Maintain a stable set of replica Pods running at any given time

- Ensures that a specified number of Pods are running at any time

a. If there are access Pods, they get killed and vice versa
b. New Pods are launched when they get failed, get deleted and terminated

- ReplicaSet & Pods are associated with “labels”



- ReplicaSet is the next generation of Replication Controller
- Both serve the same purpose

ReplicaSet Replication Controller

Set-based Selectors Equality-based Selectors



When Pods are scaled, how are these Pods Managed at such large scale?

Pods Controllers & Services

Labels Select
#Pod-Spec electors

apiVersion: v1
kind: pod
metadata:
name: nginx-Pod
labels:
app: guestbook
tier: frontend
env: dev
spec:
replicas: 5..



Operators: Operators:

=and == in notin exists
Examples: Examples:
environment = production environment in (production, qa)
tier! = frontend tier notin(frontend, backend)
Commandline: Commandline:
$kubectl get pods -I environment=production $kubectl get pods -I “enviornment in(production)
In Manifest: In Manifest:
selector: selector:
environment: production matchExpressions:
tier: frontend - {key:environment,operator:in,values:[prod,qal}

- {key:tier,operator:Notin,values:[frontend,backend]}

Supports: Services, Replication Controller Supports: Job, Deployment, ReplicaSet, DaemonSet

A



selector:
matchLabels:
app: nginx
tier: frontend

selector:
app: nginx
tier: frontend

|
J |

Supports on Older Resources such as: Supports on newer resources such as:

« ReplicationControllers, * ReplicaSets

« Services * Deployments

* Jobs

« DaemonSet




Manifest file

Deploy app using RS
Display and validate RS

Test — Node Fails
Test — Scale Up
Test — Scale Down



ReplicaSet Manifest

apiversion: apps/vi
kind: ReplicaSet
metadata:
name: nginx-rs
spec:
replicas: 2
selector:
matchLabels:
app: nginx-app
template:
metadata:
name: nginx-pod
labels:
app: nginx-app
tier: frontend
spec:
containers:
- name: nginx
image: nginx

ports:

- containerPort:

67

File

80



$kubectl create —f nginx-rs.yaml

[nodel lab02-creating-replicaset]$ kubectl get po
STATUS RESTARTS
Running 0
Running 0
Running 0

READY  STATUS RESTARTS AGE
nginx-rs-jl266 1/1 Running 0 2md2s

nginx-rs-jq74j 1/1 Running 0 2md2s

DESIRED CURRENT READY AGE
2 2 1 12m

DESIRED CURRENT READY AGE CONTAINERS
A 1. 12m nginx

IMAGES
nginx

SELECTOR
app=nginx—app



[nodel lab02-creating-replicaset]$ kubectl describe rs
nginx-rs
Namespace: default
Selector: app=nginx—app
<none>
<none>
2 current / 2 desired
Pods Status: 2 Running / 0 Waiting / O Succeeded / 0 Failed
Pod Template:
Labels: app=nginx—-app
tier=frontend
Containers:
nginx:
Image: nginx
Port: 80/TCP
Host Port: 0/TCP
Environment: <none>
Mounts: <none>
<none>

Normal SuccessfulCreate replicaset-controller Created pod: nginx-rs—j
Normal SuccessfulCreate replicaset-controller Created pod: nginx-rs-j1266




[nodel lab02-creating-replicaset]$ kubectl scale rs nginx-rs --replicas=b

replicaset.extensions/nginx-rs scaled



Deployment




A Deployment controller provides declarative updates for Pods and ReplicaSets.

You describe a desired state in a Deployment, and the Deployment controller
changes the actual state to the desired state at a controlled rate. You can define
Deployments to create new ReplicaSets, or to remove existing Deployments and
adopt all their resources with new Deployments.

How is it different from Replicaset?
ReplicaSet doesn’t provide features like updates & roll backs.



A Single Deployment Manifest File

Do we need to create 3 different

manifest files for each on these?

Answer is “No”. We can create all 3
different objects using a single
Deployment manifest file

Deployment

ReplicaSet

Pods



Features of Deployment

* Multiple Replicas
- Upgrade

* Rollback

* Scale Up or Down

- Pause & Resume

74



 Recreate

How it works?

Shutting down version A and then making sure, version A is turned off...
then bringing up version B.

Demerits:

During this, there will be a downtime of the service.

Easy to setup.

* Blue/Green



» RollingUpdate(Ramped or Incremental)

- Default updating strategy in Kubernetes.
- It can take sometime for a complete update process

How it works?

Slowly rollout a version of app by replacing instances one after the other until all the instances are successfully

rolled out.
Assume that there are 10 instances of version A which is running behind the LB. Then update strategy starts with

one instance of version B is deployed When version B is ready to accept traffic, one instance of version A is
removed from the pool



« Canary

- Ideal deployment method for someone who want to test newer version before it is deployed 100%.

How it works?

This method is all about gradually shifting production traffic from version A to version B.

Lets imagine that there are about 10 instances of app version A running inside a cluster. You use Canary
deployment when you dont want to upgrade all of your instances. Let's say you upgraded your 2 instances of ver A
to version B then do some testing. If test results are good, then you upgrade remaining 8 instances to version B.

Say, your version B is ready, then you completely shut down version A.



 Blue Green

- Instance roll out and roll back.

How it works?

Using this method, version B(which is GREEN) is deployed along side version A(which is BLUE) with exactly

same amount of instances.
After testing new version with all the requirement, the traffic is switched from version A to version B at the LB

level.



Demo - Deployment

- Manifest file

- Deploy app using RS

- Display and validate RS
- Test — Node Fails

- Test — Scale Up

- Test — Scale Down



Deployment Manifest File

apiversion: apps/vi
kind: Deployment
metadata:
name: nginx-deploy
labels:
app: nginx-app
spec:
replicas: 3
selector:
matchLabels:
app: nginx-app
template:
metadata:
name: nginx-pod
labels:
app: nginx-app
spec:
containers:
- name: nginx
image: nginx

ports:

- containerPort:

80

80

ReplicaSet

Pods



[nodel lab03-creating-deployment-3replicas—-nginx]$ 1ls

README.md nginx—-deploy.yaml

[nodel lab03-creating-deployment-3replicas—-nginx]$ kubectl create -f nginx-deploy.yaml
deployment.apps/nginx-deploy created

[nodel lab03-creating-deployment-3replicas—-nginx]$ kubectl get deploy

AME READY UP-TO-DATE AVATLABLE AGE

nginx—-deploy 0/3 3 0 6s

[nodel lab03-creating-deployment-3replicas—-nginx]$ kubectl get deploy -o wide

READY UP-TO-DATE AVATILABLE AGE CONTAINERS IMAGES SELECTOR
nginx—-deploy 0/3 3 0 les nginx nginx app=nginx—app
[nodel lab03-creating-deployment-3replicas—-nginx]$ kubectl get deploy -o wide

READY UP-TO-DATE AVAILABLE AGE CONTAINERS IMAGES SELECTOR
nginx—-deploy 3/3 3 3 57s nginx nginx app=nginx-—-app




[nodel lab03-creating-deployment-3replicas-nginx]$ kubectl get po,rs,deploy
READY  STATUS RESTARTS AGE
1/1 Running 0 2m25s
1/1 Running 0 2m25s
1/1 Running 0 2m25s

DESIRED  CURRENT READY AGE
eplicaset.extensions/nginx-deploy-c9d474fc 3 3 3 2m25s

READY UP-TO-DATE AVAILABLE AGE
deployment.extensions/nginx-deploy  3/3 3 3 2m25s

Deployment

ReplicaSet

Pods



[nodel lab03-creating-deployment-3replicas-nginx]$ kubectl get po,rs,deploy -o wide
STATUS RESTARTS IP NODE NOMINATED NODE RE

Running 10.47.0.1 node3 <none> <n
Running 10.44.0.1 node?2 <none> <n

Running 10.36.0.1 nodeb <none> <n

DESTRED CURRENT READY AGE CONTAINERS IMAGES SELECT

replicaset.extensions/nginx-deploy-c9d474fc 3 3 3 4m21s nginx nginx app=ng
inx—app, pod-template-hash=c9d474fc

AME READY
nginx—-deploy 3/3 3
[nodel lab03-creating—-deplo




[nodel lab03-creating-deployment-3replicas-nginx]$ kubectl get rs -1 app=nginx-app
AME DESTRED CURRENT READY AGE

ginx—-deploy-c9d474fc 3 3 3 8m33s

Update Deployment

[nodel lab03-creating-deployment-3replicas-nginx]$
[nodel lab03-creating-deployment-3replicas-nginx]$ kubectl set image deploy nginx-deploy nginx=nginx:1.9.1
deployment.extensions/nginx—-deploy image updated

Sat, 13 Jul 2019 18:50:48 +0000

app=nginx-app

deployment.kubernetes.io/revision: 2

app=nginx-app

3 desired | 3 updated | 3 total | 3 available | 0 unavailable

RollingUpdate
0
ollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
Labels: app=nginx-app
Containers:

nginx:

Image: nginx:1.9.1
Port: 80/TCP
Host Port: 0/TCP




reationTimestamp: Sat, 13 Jul 2019 18:50:48 +0000
app=nginx-app
deployment. kubernetes.io/revision: 2
app=nginx-app
3 desired | 3 updated | 3 total | 3 available | 0 unavailable
trategyType: RollingUpdate
inReadySeconds: 0
ollingUpdateStrategy: 25% max unavailable, 25% max surge
Pod Template:
Labels: app=nginx-app
Containers:
nginx:
Image: nginx:1.9.1
Port: 80/TCP
Host Port: 0/TCP
Environment: <none>
Mounts: <none>
Volumes: <none>
onditions:

[nodel lab03-creating-deployment-3replicas-nginx]$ kubectl rollout status deployment/nginx-deploy
deployment "nginx-deploy"™ successfully rolled out
[nodel lab03-creating-deployment-3replicas—-nginx]$ I




[nodel lab03-creating-deployment-3replicas-nginx]$ kubectl scale deployment nginx-deploy —--replicas=6
deployment.extensions/nginx-deploy scaled
[nodel lab03-creating-deployment-3replicas-nginx]$ kubectl get deploy
READY UP-TO-DATE AVATLABLE AGE
nginx—-deploy 5/6 6 5 22m
[nodel lab03-creating-deployment-3replicas—-nginx]$ I

[nodel lab03-creating-deployment-3replicas—-nginx]$ kubectl get po

AME READY STATUS RESTARTS
ginx—deploy—-5985c6547d—g8nf4 1/1 Running
ginx—deploy—-5985c6547d-jmfcS 1/1 Running
ginx—-deploy-5985c6547d-jnzhh 1/1 Running
ginx—-deploy-5985c6547d—-nbfd8 1/1 Running
ginx—deploy—-5985c6547d—qr8re6 1/1 Running
ginx—deploy—-5985c6547d-rvkné6 1/1 Running

[nodel lab03-creating-deployment-3replicas—-nginx]$ I




[nodel lab03-creating-deployment-3replicas—-nginx]$ kubectl get po -1 app=nginx-app
AME READY STATUS RESTARTS AGE
ginx—-deploy-5985c6547d-g8nf4 1/1 Running 8m25s
ginx—-deploy-5985c6547d-jmfcS 1/1 Running 9m3s
ginx—deploy-5985c6547d-jnzhh 1/1 Running 2m23s

ginx—-deploy-5985c6547d—-nbfd8 1/1 Running 2m23s
ginx—-deploy-5985c6547d—qr8r6 1/1 Running 2m23s
ginx—deploy-5985c6547d-rvknb 1/1 Running 9mils
[nodel lab03-creating-deployment-3replicas—-nginx]$
[nodel lab03-creating-deployment-3replicas—-nginx]$
[nodel lab03-creating-deployment-3replicas—-nginx]$




Services




Imagine that, you have been asked to deploy web app

How does this frontend web app exposed to outside world?
How do front end app connected to backend database?
How do we resolve Pod IP changes, when they die?



Why do we need services?

What is Service?

Type of Services



Q User

Frontend Service:

A Service which stays between user and >
app:webserver
frontend pod 00 OO II;:)odntend

Backend Service: | |

A Service which communicate between

frontend Pod and backend end \ _CL)@)@@ }—‘ / Eggkend

Node



92

[ Types of Services ]

ClusterlIP NodePort

Node-1 Node-1

- Exposing Frontend app

Reachable within the
to external world

cluster.
Connects Frontend
Pods to Backend Pods

LoadBalancer

“1 1

Equally distribute the loads



Services: ClusterlP




Imagine you need to deploy one full fledge app which consists of
frontend app & backend app

How can we restrict access of backend database to only within the
kubernetes cluster?



@ User

192.168.1.1:31000

(
§

10.210.0.1:8080

Service J

10.210.0.2:8080 10.210.0.3:8080
Frontend Pod Frontend Pod

10.210.1.1:8080

10.210.0.2:8080 10.210.0.3:8080

Backend Pod Backend Pod

]
J
NodePort
10.210.0.4:8080
Frontend Pod
ClusterlIP
10.210.0.4:8080
Backend Pod




Guestbook Demo

* Frontend Web app
- Backend DB - Redis

96



Thank You




