
Demystifying Kubernetes
in less than 100 slides

2

Who am I?
• Developer Relations Manager at Redis Labs

• Worked in Dell EMC, VMware, CGI

• Docker Bangalore Community Leader

• DockerLabs Incubator

• Founder of Docker Labs(4700+ Slack members) http://www.collabnix.com

Let’s start with an analogy..

A Cargo Ship…
Carries containers across the sea

A Cargo Ship…
Host Application as Containers ~ Worker Nodes

6

Overview

Worker Node-1

7

Control Ships..
Managing & Monitoring of the cargo ships

8

Control Ships..
Manage, Plan, Schedule, Monitor ~ Master

9

Overview

Worker Node-1

Master

Let’s talk about Master
Components..

11

Ship Cranes
Identifies the placement of containers

12

Ship Cranes
Identifies the right node to place a containers ~ Kube-Scheduler

14

Overview

Worker Node-1

Master
Scheduler

15

Cargo Ship Profiles
HA database ~ Which containers on which ships? When was it loaded?

16

Cargo Ship Profiles
HA database ~ Which containers on which ships? When was it loaded? ~ The ETCD Cluster

17

Overview

Worker Node-1

Master Scheduler

ETCD

18

Offices in Dock
- Operation Team Office ~ Ship Handling, Control
- Cargo Team Office ~ verify if containers are damaged, ensure that new containers are rebuilt
- IT & Communication Office – Communication in between various ships

19

Controllers
- Node Controllers – Takes care of Nodes | Responsible for onboarding new nodes in a

cluster | Availability of Nodes
- Replicas Controller – Ensures that desired number of containers are running at all times
- Controller Manager - Manages all these controllers in place

20

Overview

Worker Node-1

Master Scheduler

ETCD Controller
Manager

21

How does each of these services communicate with each other?

22

Kube API Server

API Server

- A primary management component of k8s
- Responsible for orchestrating all operations within a cluster
- Exposes K8s API ,used by external users to perform management operation in

the cluster and number of controller to monitor the state of the cluster

23

Overview

Worker NodesMaster

Scheduler

ETCD Controller
Manager

API ServerAPI

kubectl

UI

24

In nutshell…

$kubectl get componentstatus

[node1 install]$ kubectl get nodes -o wide

NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP OS-IMAGE KERNEL-VERSION CONTAINER-RUNTIME

node1 Ready master 92s v1.14.2 192.168.0.18 <none> CentOS Linux 7 (Core) 4.4.0-141-generic docker://18.9.6
node2 Ready <none> 57s v1.14.2 192.168.0.17 <none> CentOS Linux 7 (Core) 4.4.0-141-generic docker://18.9.6
node3 NotReady <none> 39s v1.14.2 192.168.0.16 <none> CentOS Linux 7 (Core) 4.4.0-141-generic docker://18.9.6
node4 NotReady <none> 32s v1.14.2 192.168.0.15 <none> CentOS Linux 7 (Core) 4.4.0-141-generic docker://18.9.6

[node1 install]$ kubectl get componentstatus

NAME STATUS MESSAGE ERROR
scheduler Healthy ok
controller-manager Healthy ok
etcd-0 Healthy {"health":"true"}

Let’s talk about Worker
Components..

26

Overview

A Worker NodeMaster

Scheduler

ETCD Controller
Manager

API ServerAPI

kubectl

UI

27

Captain of the Ship
- Manages all sort of activity on the ship
- Let master ship knows they are interested to join
- Sending reports back to master about the status of the ship
- Sending reports about the status of the containers

28

Captain of the Ship ~ Kubelet
Agent which runs on each nodes of the container

29

Overview

Worker Node-1
Master

Scheduler

ETCD Controller
Manager

API Server

Kubelet

API

kubectl

UI

30

Communication between Cargo Ships
How does two cargo ships communicate with each other?

31

Kube-proxy Service
How will web server running on one worker node reach out to DB server
on another worker node?

Communication between worker nodes

Kube-proxy

32

Overview Worker Node-1

Master

Scheduler

ETCD Controller
Manager

API Server

Kubelet Kube-proxy

Internet

Let’s talk about Pods..

34

Overview Worker Node-1

Master

Scheduler

ETCD Controller
Manager

API Server

Kubelet Kube-proxy

Internet

Pod

35

Overview Worker Node-1

Master

Scheduler

ETCD Controller
Manager

API Server

Kubelet Kube-proxy

Internet

Pod

Container

36

Docker Containers
A popular Container Runtime

37

Overall Kubernetes Architecture

Worker NodeMaster

Scheduler

ETCD Controller
Manager

API Server

Kubelet Kube-proxy

Internet

Pod

Container

API

kubectl

UI

38

Demo

• Setting up a single Node K8s cluster on Docker Desktop for Mac /
Windows

• Setting up 5 Node Kubernetes Cluster on PWK
• Setting up 3 Nodes K8s Cluster on Bare Metal or VM

Let’s Deep Dive into Pods…

40

Pod - Concepts

• What is Pod?
• Pod Deployment
• Multi-Container
• Pod Networking
• Inter-Pod & Intra-Pod Networking
• Pod Lifecycle
• Pod Manifest File

41

Atomic Unit of Scheduling

Virtualization Docker Kubernetes

VM Container Pod

42

How Pods are deployed?

ClusterMaster

Scheduler

API Server

Pod

Container

43

Scaling the Pods to accommodate increasing traffic

Worker NodeMaster

Scheduler

API Server

Pod

Container

44

What if node resources is getting insufficient?

Worker NodeMaster

Scheduler

API Server

Pod

Container

45

What if node resources is getting insufficient?

Cluster Master

Scheduler

API Server

Pod

Container

Worker-2

Worker-1

46

What if node resources is getting insufficient?

Cluster Master

Scheduler

API Server

Pod

Container

Worker-2

Worker-1

47

2 Containers in a same Pod

Cluster Master

Scheduler

API Server

Pod

Container

Worker-2

Worker-1

48

Pod Networking
Pod 1

Main
Controller

:8080

10.0.30.50

Pod 2

Supporting
Controller

:7777

10.0.30.60

Supporting
Controller

:3000

How does these containers
inside Pods communicate with
External World?

50

Network Namespace

Pod 1

Main
Controller

:8080

10.0.30.50

Pod 2

Supporting
Controller

:7777

10.0.30.60

Supporting
Controller

:3000

10.0.30.50:8080 10.0.30.50:3000

How does one Pod talk to
another Pod?
Welcome to Inter-Pod Communication..

52

Pod Networking
Pod 1

Main
Controller

:8080

10.0.30.50

Pod 2

Supporting
Controller

:7777

10.0.30.60

Supporting
Controller

:3000

Pod Network

How does Intra-Pod
communication take place?

54

Intra-Pod Communication
Pod 1

Main Container Supporting
Container

:8080 :3000

10.0.30.50

:8080 :3000

Localhost

55

A Look at Pod Manifest

56

Get a shell to a running Container

Verifying the Operating System

57

Get a shell to a running Container

Verifying the index page

root@nginx-pod:/# echo Hello shell demo > /usr/share/nginx/html/index.html

Stages of Life Cycle of Pod

Lifecycle of a Pod

Pending Running Succeeding

Pod

Pod Pod

Failed

Pod

API ServerManifest

ReplicaSet

How can you ensure that there are 3 Pods instances which are always
available and running at point in time?

What is ReplicaSet all about?
Maintain a stable set of replica Pods running at any given time

- Ensures that a specified number of Pods are running at any time

 a. If there are access Pods, they get killed and vice versa
 b. New Pods are launched when they get failed, get deleted and terminated

- ReplicaSet & Pods are associated with “labels”

Replication Controller Vs ReplicaSets

- ReplicaSet is the next generation of Replication Controller
- Both serve the same purpose

ReplicaSet Replication Controller

Set-based Selectors Equality-based Selectors

Labels & Selectors
When Pods are scaled, how are these Pods Managed at such large scale?

Pods Controllers & Services

Labels
Selectors

#Pod-Spec
apiVersion: v1
kind: pod
metadata:
 name: nginx-Pod
 labels:
 app: guestbook
 tier: frontend
 env: dev
spec:
 replicas: 5..

64

Equality-based Selectors Set-based Selectors
Operators:

= and ==

Examples:

environment = production
tier! = frontend

Commandline:

$kubectl get pods -l environment=production

In Manifest:

..
selector:
 environment: production
 tier: frontend
..

Operators:

in notin exists

Examples:

environment in (production, qa)
tier notin(frontend, backend)

Commandline:

$kubectl get pods -l `enviornment in(production)

In Manifest:

..
selector:
 matchExpressions:
 - {key:environment,operator:in,values:[prod,qa]}
 - {key:tier,operator:Notin,values:[frontend,backend]}
..Supports: Services, Replication Controller Supports: Job, Deployment, ReplicaSet, DaemonSet

65

66

Demo - ReplicaSet

• Manifest file
• Deploy app using RS
Display and validate RS

• Test – Node Fails
• Test – Scale Up
• Test – Scale Down

67

ReplicaSet Manifest File

68

Creating Nginx-rs Pods
$kubectl create –f nginx-rs.yaml

69

70

Scaling the Nginx Service

Deployment

Deployment

A Deployment controller provides declarative updates for Pods and ReplicaSets.

You describe a desired state in a Deployment, and the Deployment controller
changes the actual state to the desired state at a controlled rate. You can define
Deployments to create new ReplicaSets, or to remove existing Deployments and
adopt all their resources with new Deployments.

How is it different from Replicaset?
ReplicaSet doesn’t provide features like updates & roll backs.

A Single Deployment Manifest File

Pods

Deployment

ReplicaSet
Do we need to create 3 different
manifest files for each on these?

Answer is “No”. We can create all 3
different objects using a single
Deployment manifest file

74

Features of Deployment

• Multiple Replicas

• Upgrade

• Rollback

• Scale Up or Down

• Pause & Resume

Deployment Types - Recreate

• Recreate

How it works?

Shutting down version A and then making sure, version A is turned off...
then bringing up version B.

Demerits:

During this, there will be a downtime of the service.

Easy to setup.

• Blue/Green

Deployment Type – Rolling Updates

• RollingUpdate(Ramped or Incremental)

- Default updating strategy in Kubernetes.
- It can take sometime for a complete update process

How it works?

Slowly rollout a version of app by replacing instances one after the other until all the instances are successfully
rolled out.
Assume that there are 10 instances of version A which is running behind the LB. Then update strategy starts with
one instance of version B is deployed When version B is ready to accept traffic, one instance of version A is
removed from the pool

Deployment Type - Canary

• Canary

- Ideal deployment method for someone who want to test newer version before it is deployed 100%.

How it works?

This method is all about gradually shifting production traffic from version A to version B.

Lets imagine that there are about 10 instances of app version A running inside a cluster. You use Canary
deployment when you dont want to upgrade all of your instances. Let's say you upgraded your 2 instances of ver A
to version B then do some testing. If test results are good, then you upgrade remaining 8 instances to version B.
Say, your version B is ready, then you completely shut down version A.

Deployment Type – Blue Green

• Blue Green

- Instance roll out and roll back.

How it works?

Using this method, version B(which is GREEN) is deployed along side version A(which is BLUE) with exactly
same amount of instances.
After testing new version with all the requirement, the traffic is switched from version A to version B at the LB
level.

Demo - Deployment

- Manifest file

- Deploy app using RS

- Display and validate RS

- Test – Node Fails

- Test – Scale Up

- Test – Scale Down

80

Deployment Manifest File

ReplicaSet

Pods

81

Deployment

82

Deployment => Pods + ReplicaSet

Pods

Deployment

ReplicaSet

83

3 Instances of same Nginx Apps running in the form
of Pods

84

3 Instances of same Nginx Apps running in the form
of Pods

Update Deployment

85

3 Instances of same Nginx Apps running in the form
of Pods

86

Scaling up

87

Listing Pods by Labels

Services

89

Services

• Imagine that, you have been asked to deploy web app

• How does this frontend web app exposed to outside world?
• How do front end app connected to backend database?
• How do we resolve Pod IP changes, when they die?

90

Agenda

• Why do we need services?

• What is Service?

• Type of Services

91

Services
192.168.1.1

app:db
Backend
Pod

Node

Service(backend)

Service(frontend)

Frontend
Pod

User

Frontend Service:

A Service which stays between user and
frontend pod

Backend Service:

A Service which communicate between
frontend Pod and backend end

92

Types of Services

Node-1

ClusterIP NodePort
Node-1

LoadBalancer

Node-1 Node-1 Node-1- Reachable within the
cluster.

- Connects Frontend
Pods to Backend Pods

- Exposing Frontend app
to external world

- Equally distribute the loads

Services: ClusterIP

94

Services

• Imagine you need to deploy one full fledge app which consists of
frontend app & backend app

• How can we restrict access of backend database to only within the
kubernetes cluster?

95

192.168.1.1:31000

Services
10.210.1.1:8080

User

NodePort

ClusterIP

96

Guestbook Demo

• Frontend Web app
• Backend DB - Redis

Thank You

