
CMake Cheatsheet – A gentle introduction to CMake

This cheatsheet will give you an idea how CMake works and how it can be used
to configure software projects.
The document and the CMake examples are available at https://github.
com/mortennobel/CMake-Cheatsheet.

CMake - Creating a simple C++ project

CMake is a tool for configuring how a cross-platform source code project should
be built on a given platform.
A small project could be organized like this:

CMakeLists.txt
src/main.cpp
src/foo.cpp
src/foo.hpp

This project contains two source files located in the src directory and one header
file in the include directory in the same directory.
When running CMake on this project you are asked to for a binary directory.
It is best practice to create a new directory since this directory will contain all
files related to building the project. If something goes wrong, you can delete
the folder and start over.
Running CMake will not create the final executable, but instead, it will gener-
ate project files for Visual Studio, XCode or makefiles. Use these tools to build
the project.

Understanding CMakeLists.txt

Creating project files using CMake requires a CMakeLists.txt file, which de-
scribes how the project is structured and how it should be built.
For example 1 the file looks like this:

cmake_minimum_required (VERSION 2 . 9)

Setup projectname
p ro j e c t (He l l oPro j e c t)

Compile and l i n k main . cpp and foo . cpp

in to the e x e cu t a b l e He l l o
add_executable (He l lo s r c /main . cpp s r c / foo . cpp)

First, the minimum version of CMake is defined. Then the project name is
defined using the command project(). A project can contain multiple targets
(either executables or libraries). This project defines a single executable target
called Hello, which is created by compiling and linking the two source files
main.cpp and foo.cpp files.
When the two source files are compiled the compiler will search for the header
file foo.h since both source files depend on this using a #include "foo.hpp".
Since the file is located in the same located as the source file, the compiler will
not have any problems finding the file.

The CMake Scripting Language

The CMakeLists.txt describes the build process using a command based pro-
gramming language. The commands are case insensitive and take a list of
arguments.

This i s a comment .
COMMAND(arguments go here)
ANOTHER_COMMAND() # t h i s command has no arguments
YET_ANOTHER_COMMAND(these

arguments are spread # another comment
over s e v e r a l l i n e s)

CMake script also has variables. Variables can either be defined by CMake or
can be defined in the CMake script. The command set(parameter value)
set a given parameter to a value. The command message(value) print out
the value to the console. To get the value of a variable use ${varname}, which
substitutes the variable name with its value.

cmake_minimum_required (VERSION 2 . 9)

SET(x 3) # x = "3"
SET(y 1) # y = "1"
MESSAGE(x y) # d i s p l a y s "xy"
MESSAGE(${x}${y}) # d i s p l a y s "31"

1

https://github.com/mortennobel/CMake-Cheatsheet
https://github.com/mortennobel/CMake-Cheatsheet

All variable values are a text string. Text strings can be evaluated as boolean
expressions (e.g. when used in IF() and WHILE()). The values "FALSE",
"OFF", "NO", or any string ending in "-NOTFOUND" evaluates be false -
everything else to true.
Text strings can represent multiple values as a list by separating entities using
a semicolon.

cmake_minimum_required (VERSION 2 . 9)

SET(x 3 2) # x = "3;2"
SET(y h e l l o world !) # y = " h e l l o ; world ; ! "
SET(z " h e l l o ␣world ! ") # y = " h e l l o world !"
MESSAGE(${x}) # pr i n t s "xy"
MESSAGE("y␣=␣${y}␣z␣=␣${z}")
pr i n t s y = h e l l o ; world ; ! z = h e l l o world !

Lists can be iterated using the command FOREACH (var val):

cmake_minimum_required (VERSION 2 . 9)

SET(x 3 2) # x = "3;2"
FOREACH (va l ${x})

MESSAGE(${ va l })
ENDFOREACH(va l)

pr i n t s :
3
2

Exposing compile options

CMake allows the end user (who runs CMake) to modify some values of some
variables. This is usually used to defined properties of the build such as loca-
tions of files, machine architecture, and string values.
The command set(<variable> <value> CACHE <type> <docstring>) set
the variable to the default value - but allows the value to be changed by the
cmake user when configuring the build. The type should be one of the following:

• FILEPATH = File chooser dialog.

• PATH = Directory chooser dialog.

• STRING = Arbitrary string.

• BOOL = Boolean ON/OFF checkbox.

• INTERNAL = No GUI entry (used for persistent variables).

In the following example, the user can configure if "Hello" or an alterna-
tive string should be printed based on the configuration variables hello and
other_msg.

cmake_minimum_required (VERSION 2 . 9)

SET(h e l l o true CACHE BOOL " I f ␣ t rue ␣wr i t e ␣ h e l l o ")
SET(other_msg "Hi" CACHE STRING "Not␣ h e l l o ␣ value ")
IF (${ h e l l o })

MESSAGE("He l lo ")
ELSE (${ h e l l o })

MESSAGE(${other_msg })
ENDIF (${ h e l l o })

During configuration of the project, the CMake user gets prompted with the
exposed options.

2

The values that the CMake user enters will be saved in the text file
CMakeCache.txt as key-value pairs:

//
// Pr int h e l l o
h e l l o :BOOL=OFF

//Not h e l l o va lue
other_msg :STRING=Guten tag
//

Complex projects

Some project both contains multiple executables and multiple libraries. For
instance when having both unit tests and programs. It is common to separate
these subprojects into subfolders. Example:

CMakeLists.txt
somelib/CMakeLists.txt
somelib/foo.hpp
somelib/foo.cpp
someexe/CMakeLists.txt
someexe/main.cpp

The main CMakeLists.txt contains the basic project settings but then includes
the subprojects:

CMakeLists . t x t
cmake_minimum_required (VERSION 2 . 9)

Setup projectname
p ro j e c t (He l l oPro j e c t)

add_subdirectory (somel ib)
add_subdirectory (someexe)

First the library Foo is compiled from the source in the somelib directory:

somel i b /CMakeLists . t x t

Compile and l i n k foo . cpp
add_library (Foo STATIC foo . cpp)

Finally, the executable Hello is compiled and linked to the Foo library - note
that the target name is used here - not the actual path. Since the main.cpp
references to header file Foo.hpp the somelib directory is added to the header
search path:

someexe/CMakeLists . t x t

add some l i b to header search path
i n c l ud e_d i r e c t o r i e s (. . / somel ib /)

add_executable (He l lo main . cpp)

l i n k to Foo l i b r a r y
t a r g e t_ l i n k_ l i b r a r i e s (He l lo Foo)

Searching for source files

Use the find(GLOB varname patterns) to automatically search for files within
a directory given one or more search patterns. Note that in the example below,
both source files and header files are added to the project. This is not needed
for compiling the project, but it is convenient when using an IDE since this
also adds the header files to the project.

CMakeLists . t x t
cmake_minimum_required (VERSION 2 . 9)

Setup projectname
p ro j e c t (He l l oPro j e c t)

f i l e (GLOB s o u r c e f i l e s
" s r c /∗ . hpp"
" s r c /∗ . cpp")

add_executable (He l lo ${ s o u r c e f i l e s })

Runtime resources

3

Often runtime resources (such as DLLs, game-assets and text files) are read
relative to the executable. One solution is to copy resources into the same
directory as the executable. Example:

CMakeLists.txt
someexe/main.cpp
someexe/res.txt
In this project, the source files assume that the resource is located in the same
directory as the executable:

// main . cpp
#include <iostream>
#include <fstream>

int main (){
std : : f s t ream f (" r e s . txt ") ;
s td : : cout << f . rdbuf () ;
return 0 ;

}

The CMakeLists.txt make sure to copy the file.

CMakeLists . t x t
cmake_minimum_required (VERSION 2 . 9)

Setup projectname
p ro j e c t (He l l oPro j e c t)

add_executable (He l lo someexe/main . cpp)

f i l e (COPY someexe/ r e s . txt DESTINATION Debug)
f i l e (COPY someexe/ r e s . txt DESTINATION Release)

Note: One problem with this approach is if you modify the original resources,
then you need to run CMake again.

External libraries

External libraries basically come in two flavors; dynamically linked libraries
(DLLs) which are linked with the binary at runtime and statical linked libraries
which are linked at compile time.

Static libraries have the most simple setup. To use one, the compiler needs to
know the location of where to locate the header files and the linker need to
know the location of the actual library. Unless the external libraries are dis-
tributed along with the project it is usually not possible to know their location
- for this reason, it is common to use cached variables, where the CMake user
can change the location. Static libraries have the file ending .lib on Windows
and .a on most other platforms.

CMakeLists . t x t
cmake_minimum_required (VERSION 2 . 9)

Setup projectname
p ro j e c t (He l l oPro j e c t)

set (f o o i n c l ud e "/ usr / l o c a l / in c lude "
CACHE PATH "Locat ion ␣ o f ␣ foo ␣header ")

set (f o o l i b "/ usr / l o c a l / l i b / foo . a"
CACHE FILEPATH "Locat ion ␣ o f ␣ foo . a")

i n c l ud e_d i r e c t o r i e s (${ f o o i n c l ud e })

add_executable (He l lo someexe/main . cpp)
t a r g e t_ l i n k_ l i b r a r i e s (He l lo ${ f o o l i b })

Dynamically linked libraries work similar to statical linked libraries. On Win-
dows, it is still needed to link to a library at compile time, but the actual linking
to the DLL happens at compile time. The executable file needs to be able to
find the DLL file in the runtime linkers search path. If the DLL is not a system
library, an easy solution is to copy the DLL next to the executable. Working
with DLL often requires platform specific actions, which CMake support using
the built-in variables WIN32, APPLE, UNIX.

CMakeLists . t x t
cmake_minimum_required (VERSION 2 . 9)

Setup projectname
p ro j e c t (He l l oPro j e c t)

set (f o o i n c l ud e "/ usr / l o c a l / in c lude "
CACHE PATH "Locat ion ␣ o f ␣ foo ␣header ")

4

set (f o o l i b "/ usr / l o c a l / l i b / foo . l i b "
CACHE FILEPATH "Locat ion ␣ o f ␣ foo . l i b ")

set (f o o d l l "/ usr / l o c a l / l i b / foo . d l l "
CACHE FILEPATH "Locat ion ␣ o f ␣ foo . d l l ")

i n c l ud e_d i r e c t o r i e s (${ f o o i n c l ud e })

add_executable (He l lo someexe/main . cpp)
t a r g e t_ l i n k_ l i b r a r i e s (He l lo ${ f o o l i b })

IF (WIN32)
f i l e (COPY ${ f o o d l l } DESTINATION Debug)
f i l e (COPY ${ f o o d l l } DESTINATION Release)

ENDIF(WIN32)

Automatically locating libraries

CMake also contains a feature to automatically find libraries (based on a num-
ber of suggested locations) using the command find_package(). However,
this feature works best on macOS and Linux.
https://cmake.org/Wiki/CMake:How_To_Find_Libraries.

C++ version

The C++ version can be set using the commands:

set (CMAKE_CXX_STANDARD 14)
set (CMAKE_CXX_STANDARD_REQUIRED ON)
set (CMAKE_CXX_EXTENSIONS OFF)

Defining preprocessor symbols

Use the add_definitions() to add preprocessor symbols to the project.

. . .
add_de f in i t i ons (−DFOO=\"XXX\")
add_de f in i t i ons (−DBAR)

This will create the symbols FOO and BAR, which can be used in the source
code:

#include <iostream>

using namespace std ;

int main (){
#ifde f BAR

cout << "Bar"<< endl ;
#endif

cout << "He l lo ␣world␣"<<FOO << endl ;

return 0 ;
}

Links and information

https://cmake.org/Wiki/CMake/Language_Syntax
https://cmake.org/cmake/help/v3.0/command/set.html

Created by Morten Nobel-Jørgensen, mnob@itu.dk, ITU, 2017

Released under the MIT license.

Latex template by John Smith, 2015
http://johnsmith.com/

Released under the MIT license.

5

https://cmake.org/Wiki/CMake:How_To_Find_Libraries
https://cmake.org/Wiki/CMake/Language_Syntax
https://cmake.org/cmake/help/v3.0/command/set.html
http://johnsmith.com/

