
Language Features of C++17

© 2019 Bartlomiej Filipek, https://www.bfilipek.com Last update July 2019

New auto rules for direct-list-initialization
auto x { 1 }; will be now deduced as int, but before it was an

initializer list. For a braced-init-list with only a single element, auto

deduction will deduce from that entry; For a braced-init-list with more

than one element, auto deduction will be ill-formed.

Typename in a template template parameter
You can now use typename instead of class when declaring a

template template parameter.

Nested namespace definition
Allows you to write:

namespace A::B::C { /* … */ }

Rather than:

namespace A { namespace B { namespace C {/* … */ }}}

Fold Expressions
Allows you to write compact code with variadic templates without

using explicit recursion.

template<typename... Args>

auto SumAll(Args... args){ return (args + ...); }

Unary fold expressions and empty param packs
Specifies what to do when the parameter pack is empty for operators:

&&, || and comma. For other operators we get invalid syntax.

Removing Deprecated Exception Specifications
Dynamic exception specifications were deprecated in C++11. In C++17

the feature is removed while retaining the (still) deprecated throw()

specification strictly as an alias for noexcept(true).

Exception specifications part of the type system
Previously exception specifications for a function didn’t belong to the

type of the function, but it will be part of it.

Aggregate initialization of classes with base classes
If a class was derived from some other type you couldn’t use aggregate

initialization. But now the restriction is removed.

Lambda capture of *this
this pointer is implicitly captured by lambdas inside member functions.

Now you can use *this when declaring a lambda and this will create a

copy of the object. Capturing by value might be especially important for

async invocation, parallel processing.

Memory allocation for over-aligned data
C++11/14 did not specify any mechanism by which over-aligned data

can be dynamically allocated (i.e. respecting the alignment of the data).

Now, we get new functions that takes alignment parameters. Like

void* operator new(std::size_t, std::align_val_t);

__has_include in preprocessor conditionals
This feature allows a C++ program to directly, reliably and portably

determine whether or not a library header is available for inclusion.

Template argument deduction for class templates
Before C++17, template deduction worked for functions but not for

classes. std::pair intChar{42, ‘c’}; is now deduced as

std::pair<int, char> in C++17.

Non-type template parameters with auto type
Automatically deduce type on non-type template parameters.

template <auto value> void f() { }

f<10>(); // deduces int

Guaranteed copy elision
Copy elision (e.g. RVO) was a common compiler optimization, now it’s

guaranteed and defined by the standard!

Direct-list-initialization of enumerations
You can now initialize enum class with a fixed underlying type:

enum class Handle : uint32_t { Invalid = 0 };

Handle h { 42 }; // OK

Stricter expression evaluation order
In expression such as f(a, b, c): the order of evaluation of a, b, c is

still unspecified, but any parameter is fully evaluated before the next

one is started. Plus other “practical” changes:

 Postfix expressions are evaluated from left to right.

 Assignment expressions are evaluated from right to left.

 Operands to shift operators are evaluated from left to right.

The code below now evaluates as f, h, g, I (previously any order)

std::cout << f() << g(h()) << i();

constexpr lambda expressions
constexpr can be used in the context of lambdas.

constexpr auto ID = [] (int n) { return n; };

static_assert(ID(3) == 3);

Differing begin and end types in range-based for
Types of __begin and __end iterators (used in the loop) will be

different; only the comparison operator is required. This little change

improves Range TS experience.

Pack expansions in using-declarations
Allows you to inject names with using-declarations from all types in a

parameter pack.

template<class... Ts> struct overloaded : Ts... {

using Ts::operator()...; };

constexpr if-statements
The static-if for C++! Reduces the need to use SFINAE or tag dispatch.

if constexpr (is_floating_point_v<T>) { }

Attribute Features
[[fallthrough]] - indicates that a case in a switch statement can fall-

through.

[[nodiscard]] - specifies that a return value should not be discarded,

there’s warning reported otherwise.

[[maybe_unused]] - the compiler will not warn about a variable that is

not used.

Ignore unknown attributes - compilers which don't support a given

attribute will ignore it. Previously it was unspecified.

Using attribute namespaces without repetition – simplifies using

attributes from the same namespace

Attributes for namespaces and enumerators – Fixes the spec, so now

attributes can be used for most of the declarations, variables, classes,

enums, namespaces, enum values, etc.

Structured Bindings
Automatically decomposes packed structures like tuples structs and

arrays into individual named variables.

auto [a, b, c] = tuple; // or struct or array

Init-statements for if and switch
if (auto val = GetValue(); condition(val))

 // on success

else

 // on false...

val is only present in the scope of the if and the else clause.

Inline variables
Variables can be declared inline in the same way as inline functions.

class MyClass {

 static inline const std::string s_val = "Hello";

Other
 static_assert with no message

 u8 character literals

 Removing trigraphs

 Remove Deprecated Use of the register Keyword

 Remove Deprecated operator++(bool)

 Hexadecimal floating-point literals

 Allow constant evaluation for all non-type template arguments

 New specification for inheriting constructors

 Matching of template template-arguments update

 Removal of std::auto_ptr, std::random_shuffle, and more

References
http://www.bfilipek.com/2017/01/cpp17features.html,

https://isocpp.org/, https://herbsutter.com/,

http://en.cppreference.com/w/cpp/compiler_support,

http://baptiste-wicht.com/, https://tartanllama.github.io/,

https://jonasdevlieghere.com/,

https://leanpub.com/cpp17indetail

https://www.bfilipek.com/
http://www.bfilipek.com/2017/01/cpp17features.html
https://isocpp.org/
https://herbsutter.com/
http://en.cppreference.com/w/cpp/compiler_support
http://baptiste-wicht.com/
https://tartanllama.github.io/
https://jonasdevlieghere.com/
https://leanpub.com/cpp17indetail

