
Add more
resources

Risk: Mythical
man-month**.

Not to be
recommended

Lessen the
delivery

expectations

Training and mentoring
Downside: Impact only over

time.

Take short-cuts to save time
during the development
Risk: Can result in lower

quality. Not to be
recommended.

Move the delivery forward in
time

Risk: Unhappy customers.

The high priority items can now easier be insured to

have high quality and tested end-to-endRemove low priority items
from backlog.

Change to test-driven development:

Define interfaces clearly based on requirements to

increase productivity

Add more
resources

Risk: Mythical
man-month**.

Not to be
recommended

Lessen the
delivery

expectations

Training and mentoring
Downside: Impact only over

time.

Take short-cuts to save time
during the development
Risk: Can result in lower

quality. Not to be
recommended.

Move the delivery forward in
time

Risk: Unhappy customers.

The high priority items can now easier be insured to

have high quality and tested end-to-endRemove low priority items
from backlog.

Change to test-driven development:

Define interfaces clearly based on requirements to
increase productivity

Increase
productivity of

the team

Add more
resources

Risk: Mythical
man-month**.

Not to be
recommended

Push people to work harder
with incentives
Risk: Burn-out

Change to another way of
working.

Training and mentoring
Downside: Impact only over

time.

Take short-cuts to save time
during the development
Risk: Can result in lower

quality. Not to be
recommended.

Change to agile software development:

Continuous delivery with testing can increase

productivity

Change to test-driven development:

Define interfaces clearly based on requirements to

increase productivity

Increase
productivity of

the team

Add more
resources

Risk: Mythical
man-month**.

Not to be
recommended

Push people to work harder
with incentives
Risk: Burn-out

Change to another way of
working.

Training and mentoring
Downside: Impact only over

time.

Take short-cuts to save time
during the development
Risk: Can result in lower

quality. Not to be
recommended.

Change to agile software development:

Continuous delivery with testing can increase

productivity

Change to test-driven development:

Define interfaces clearly based on requirements to

increase productivity

Have asynchronous
meetings

Use your wiki to report
metrics

Share background
information in your

wiki

Pitch new projects
through forms

Teach people how to
protect their time

People can contribute
to the discussion on

their own time

People can prepare for
the meeting
beforehand

People can read the
information on their

own

Decide on a day when everybody can ”meet”; Create a

page in internal wiki for each meeting

Gets rid of the need to
meet for new ideas

A resource that people
can refer to for

managing their time

Ask your team how they would act on the data at hand;
Use your wiki page’s comments to hold that discussion

Put the backgrond information about your meeting in a
wiki doc; Link the background info doc in the meeting

agenda

Create a page on your wiki where people can submit

tickets; Forms incl. fields for the what, why, and how

behind their project

Teach people how to determine whether to accept a

meeting request or not; Update your wiki posts as you
learn

Have asynchronous
meetings

Use your wiki to report
metrics

Share background
information in your

wiki

Pitch new projects
through forms

Teach people how to
protect their time

People can contribute
to the discussion on

their own time

People can prepare for
the meeting
beforehand

People can read the
information on their

own

Decide on a day when everybody can ”meet”; Create a
page in internal wiki for each meeting

Gets rid of the need to
meet for new ideas

A resource that people
can refer to for

managing their time

Ask your team how they would act on the data at hand;

Use your wiki page’s comments to hold that discussion

Put the backgrond information about your meeting in a

wiki doc; Link the background info doc in the meeting
agenda

Create a page on your wiki where people can submit

tickets; Forms incl. fields for the what, why, and how
behind their project

Teach people how to determine whether to accept a

meeting request or not; Update your wiki posts as you

learn

Increase
productivity of

the team

Add more
resources

Risk: Mythical
man-month**.

Not to be
recommended

Lessen the
delivery

expectations

Push people to work harder
with incentives
Risk: Burn-out

Change to another way of
working.

Training and mentoring
Downside: Impact only over

time.

Take short-cuts to save time
during the development
Risk: Can result in lower

quality. Not to be
recommended.

Move the delivery forward in
time

Risk: Unhappy customers.

Change to agile software development:
Continuous delivery with testing can increase

productivity

The high priority items can now easier be insured to
have high quality and tested end-to-end

Remove low priority items
from backlog.

Change to test-driven development:

Define interfaces clearly based on requirements to
increase productivity

Increase
productivity of

the team

Add more
resources

Risk: Mythical
man-month**.

Not to be
recommended

Lessen the
delivery

expectations

Push people to work harder
with incentives
Risk: Burn-out

Change to another way of
working.

Training and mentoring
Downside: Impact only over

time.

Take short-cuts to save time
during the development
Risk: Can result in lower

quality. Not to be
recommended.

Move the delivery forward in
time

Risk: Unhappy customers.

Change to agile software development:
Continuous delivery with testing can increase

productivity

The high priority items can now easier be insured to
have high quality and tested end-to-end

Remove low priority items
from backlog.

Change to test-driven development:

Define interfaces clearly based on requirements to
increase productivity

Increase
revenues

Decrease
costs

Increase the volume

Increase price per unit sold

Reduce rental cost

Reduce salary expenses

Change to cheaper products

Reduce raw material
expenses

Marketing promotions

Negotiate raw material expenses

Shift to cheaper locations

Reduce the salary of the employees

Fire redundant employees

Make the product more exclusive

Increase
revenues

Decrease
costs

Increase the volume

Increase price per unit sold

Reduce rental cost

Reduce salary expenses

Change to cheaper products

Reduce raw material
expenses

Marketing promotions

Negotiate raw material expenses

Shift to cheaper locations

Reduce the salary of the employees

Fire redundant employees

Make the product more exclusive

Increa
se

revenu
es

Decre
ase

costs

Increase the volume

Increase price per unit
sold

Reduce rental cost

Reduce salary expenses

Change to cheaper products

Marketing promotions

Shift to cheaper locations

Fire redundant employees

Increa
se

revenu
es

Decre
ase

costs

Increase the volume

Increase price per unit
sold

Reduce rental cost

Reduce salary expenses

Change to cheaper products

Marketing promotions

Shift to cheaper locations

Fire redundant employees

Have asynchronous
meetings

Use your wiki to
report metrics

Pitch new projects
through forms

Teach people how
to protect their

time

People can
contribute to the

discussion on their
own time

Decide on a day when everybody can ”meet”;

Create a page in internal wiki for each

meeting

Gets rid of the
need to meet for

new ideas

A resource that
people can refer to
for managing their

time Teach people how to determine whether to
accept a meeting request or not; Update your

wiki posts as you learn

Have asynchronous
meetings

Use your wiki to
report metrics

Pitch new projects
through forms

Teach people how
to protect their

time

People can
contribute to the

discussion on their
own time

Decide on a day when everybody can ”meet”;
Create a page in internal wiki for each

meeting

Gets rid of the
need to meet for

new ideas

A resource that
people can refer to
for managing their

time Teach people how to determine whether to

accept a meeting request or not; Update your

wiki posts as you learn

Increa
se

revenu
es

Decre
ase

costs

Increase the volume

Increase price per unit
sold

Reduce rental cost

Reduce salary expenses

Change to cheaper products

Marketing promotions

Shift to cheaper locations

Reduce the salary of the employees

Fire redundant employees

Make the product more exclusive

Increa
se

revenu
es

Decre
ase

costs

Increase the volume

Increase price per unit
sold

Reduce rental cost

Reduce salary expenses

Change to cheaper products

Marketing promotions

Shift to cheaper locations

Reduce the salary of the employees

Fire redundant employees

Make the product more exclusive

Have
asynchronou
s meetings

Use your
wiki to
report

metrics

Pitch new
projects
through
forms

Teach
people how
to protect
their time

People can
contribute to

the
discussion

on their own
time

People can
read the

information
on their own

Decide on a day when

everybody can ”meet”; Create a

page in internal wiki for each

meeting

Gets rid of
the need to

meet for
new ideas

A resource
that people
can refer to

for
managing
their time

Create a page on your wiki
where people can submit

tickets; Forms incl. fields for the

what, why, and how behind

their project

Teach people how to determine

whether to accept a meeting
request or not; Update your

wiki posts as you learn

Have
asynchronou
s meetings

Use your
wiki to
report

metrics

Pitch new
projects
through
forms

Teach
people how
to protect
their time

People can
contribute to

the
discussion

on their own
time

People can
read the

information
on their own

Decide on a day when
everybody can ”meet”; Create a

page in internal wiki for each

meeting

Gets rid of
the need to

meet for
new ideas

A resource
that people
can refer to

for
managing
their time

Create a page on your wiki
where people can submit

tickets; Forms incl. fields for the

what, why, and how behind

their project

Teach people how to determine

whether to accept a meeting
request or not; Update your

wiki posts as you learn

Increas
e

product
ivity of

the
team
Add

more
resourc

es
Risk:

Mythic
al man-
month*
*. Not
to be

recom
mende

d

Push people to
work harder with

incentives
Risk: Burn-out

Change to
another way of

working.

Training and
mentoring

Downside: Impact
only over time.

Take short-cuts
to save time
during the

development
Risk: Can result
in lower quality.

Not to be
recommended.

Change to agile software
development:

Continuous delivery with
testing can increase

productivity

Change to test-driven
development:

Define interfaces clearly based
on requirements to increase

productivity

Increas
e

product
ivity of

the
team
Add

more
resourc

es
Risk:

Mythic
al man-
month*
*. Not
to be

recom
mende

d

Push people to
work harder with

incentives
Risk: Burn-out

Change to
another way of

working.

Training and
mentoring

Downside: Impact
only over time.

Take short-cuts
to save time
during the

development
Risk: Can result
in lower quality.

Not to be
recommended.

Change to agile software

development:
Continuous delivery with

testing can increase
productivity

Change to test-driven
development:

Define interfaces clearly based

on requirements to increase

productivity

Add more
resources

Risk:
Mythical

man-
month**.
Not to be

recommend
ed

Lessen the
delivery

expectations

Training and mentoring
Downside: Impact only

over time.

Take short-cuts to save
time during the

development
Risk: Can result in lower

quality. Not to be
recommended.

Move the delivery
forward in time
Risk: Unhappy

customers.

The high priority items can now easier be

insured to have high quality and tested end-

to-endRemove low priority
items from backlog.

Change to test-driven development:
Define interfaces clearly based on

requirements to increase productivity

Add more
resources

Risk:
Mythical

man-
month**.
Not to be

recommend
ed

Lessen the
delivery

expectations

Training and mentoring
Downside: Impact only

over time.

Take short-cuts to save
time during the

development
Risk: Can result in lower

quality. Not to be
recommended.

Move the delivery
forward in time
Risk: Unhappy

customers.

The high priority items can now easier be
insured to have high quality and tested end-

to-endRemove low priority
items from backlog.

Change to test-driven development:

Define interfaces clearly based on
requirements to increase productivity

Have
asynchronou
s meetings

Use your
wiki to
report

metrics

Pitch new
projects
through
forms

Teach
people how
to protect
their time

People can
contribute to

the
discussion

on their own
time

People can
read the

information
on their own

Decide on a day when

everybody can ”meet”; Create a

page in internal wiki for each
meeting

Gets rid of
the need to

meet for
new ideas

A resource
that people
can refer to

for
managing
their time

Create a page on your wiki

where people can submit

tickets; Forms incl. fields for the
what, why, and how behind

their project

Teach people how to determine

whether to accept a meeting
request or not; Update your

wiki posts as you learn

Have
asynchronou
s meetings

Use your
wiki to
report

metrics

Pitch new
projects
through
forms

Teach
people how
to protect
their time

People can
contribute to

the
discussion

on their own
time

People can
read the

information
on their own

Decide on a day when

everybody can ”meet”; Create a
page in internal wiki for each

meeting

Gets rid of
the need to

meet for
new ideas

A resource
that people
can refer to

for
managing
their time

Create a page on your wiki

where people can submit
tickets; Forms incl. fields for the

what, why, and how behind
their project

Teach people how to determine
whether to accept a meeting

request or not; Update your
wiki posts as you learn

Have
asynchronou
s meetings

Use your
wiki to
report

metrics

Pitch new
projects
through
forms

Teach
people how
to protect
their time

People can
contribute to

the
discussion

on their own
time

People can
read the

information
on their own

Decide on a day when
everybody can ”meet”; Create a

page in internal wiki for each
meeting

Gets rid of
the need to

meet for
new ideas

A resource
that people
can refer to

for
managing
their time

Create a page on your wiki
where people can submit

tickets; Forms incl. fields for the
what, why, and how behind

their project

Teach people how to determine

whether to accept a meeting
request or not; Update your

wiki posts as you learn

Any symptom – there is no solution of a symptom
Problem picture analysis

Too many meetings

Come away from the daily work

Many
educations

coming
late from

”the side”,
difficult to
know how

to
prioritize,
we missed

many

Less team
feeling

No time for innovation in the last sprint

Meetings are
put to the last

sprint, after
the PI planning
had been done

Other
meetings (high

prio) same
time as the

team meetings

Bad planning and
prioritization

No time to take care of the
problems in the way of workkng

Bad flow through the organization

Re-
prioritization

of teams,
chrisis to

take care of,
fires to put

out, etc.

why? what?

Too many reactive,
unplanned meetings

I/Fs and
models for

external calls
are

implemented
too late

Tools/
performance
tests missing

Many Epics/
Features

related to
each other,
chaos at last

Enabler and
support for
architecture
comes late

for the
increment

Too many
teams

involved with
too many

small parts

© 2018-2021 Karl Rehbinder

The material can be shared, as long as

I am named as the copyright holder.

No proper systems deisgn
made; complexity left

Root cause Symptom ”Solution”

To few resources for
these kind of activities

Solution

Integrated context and domain dependent solution* (systemic)

N
o

 ro
o

t
cau

ses
so

lved
, su

b
-o

p
tim

izin
g

so
lu

tio
n

s (an
ti-system

ic)

*also fulfilling the other organizational principles as well

The delivery time cannot be met

The working time
is not enough

Increase
revenues

Decrease
costs

Increase the volume

Increase price per unit sold

Reduce rental cost

Reduce salary expenses

Change to cheaper products

Reduce raw material
expenses

Marketing promotions

Negotiate raw material expenses

Shift to cheaper locations

Reduce the salary of the employees

Fire redundant employees

Make the product more exclusive

Pyramid principle with MECE analyses

Increase
productivity of

the team

Add more
resources

Risk: Mythical
man-month**.

Not to be
recommended

Lessen the
delivery

expectations

Push people to work harder
with incentives
Risk: Burn-out

Change to another way of
working.

Training and mentoring
Downside: Impact only over

time.

Take short-cuts to save time
during the development
Risk: Can result in lower

quality. Not to be
recommended.

Move the delivery forward in
time

Risk: Unhappy customers.

Change to agile software development:
Continuous delivery with testing can increase

productivity

The high priority items can now easier be insured to
have high quality and tested end-to-end

Remove low priority items
from backlog.

Change to test-driven development:

Define interfaces clearly based on requirements to
increase productivity

Our organization is not profitable

Have asynchronous
meetings

Use your wiki to report
metrics

Share background
information in your

wiki

Pitch new projects
through forms

Teach people how to
protect their time

People can contribute
to the discussion on

their own time

People can prepare for
the meeting
beforehand

People can read the
information on their

own

Decide on a day when everybody can ”meet”; Create a
page in internal wiki for each meeting

Gets rid of the need to
meet for new ideas

A resource that people
can refer to for

managing their time

Ask your team how they would act on the data at hand;

Use your wiki page’s comments to hold that discussion

Put the backgrond information about your meeting in a

wiki doc; Link the background info doc in the meeting
agenda

Create a page on your wiki where people can submit
tickets; Forms incl. fields for the what, why, and how

behind their project

Teach people how to determine whether to accept a

meeting request or not; Update your wiki posts as you

learn

Have
asynchronou
s meetings

Use your
wiki to
report

metrics

Pitch new
projects
through
forms

Teach
people how
to protect
their time

People can
contribute to

the
discussion

on their own
time

People can
read the

information
on their own

Decide on a day when
everybody can ”meet”; Create a

page in internal wiki for each

meeting

Gets rid of
the need to

meet for
new ideas

A resource
that people
can refer to

for
managing
their time

Create a page on your wiki
where people can submit

tickets; Forms incl. fields for the
what, why, and how behind

their project

Teach people how to determine

whether to accept a meeting

request or not; Update your
wiki posts as you learn

Have asynchronous
meetings

Use your wiki to
report metrics

Pitch new projects
through forms

Teach people how
to protect their

time

People can
contribute to the

discussion on their
own time

Decide on a day when everybody can ”meet”;

Create a page in internal wiki for each

meeting

Gets rid of the
need to meet for

new ideas

A resource that
people can refer to
for managing their

time Teach people how to determine whether to

accept a meeting request or not; Update your

wiki posts as you learn

Add more
resources

Risk: Mythical
man-month**.

Not to be
recommended

Lessen the
delivery

expectations

Training and mentoring
Downside: Impact only over

time.

Take short-cuts to save time
during the development
Risk: Can result in lower

quality. Not to be
recommended.

Move the delivery forward in
time

Risk: Unhappy customers.

The high priority items can now easier be insured to
have high quality and tested end-to-endRemove low priority items

from backlog.

Change to test-driven development:

Define interfaces clearly based on requirements to
increase productivity

Increase
productivity of

the team

Add more
resources

Risk: Mythical
man-month**.

Not to be
recommended

Push people to work harder
with incentives
Risk: Burn-out

Change to another way of
working.

Training and mentoring
Downside: Impact only over

time.

Take short-cuts to save time
during the development
Risk: Can result in lower

quality. Not to be
recommended.

Change to agile software development:

Continuous delivery with testing can increase
productivity

Change to test-driven development:

Define interfaces clearly based on requirements to
increase productivity

Increa
se

revenu
es

Decre
ase

costs

Increase the volume

Increase price per unit
sold

Reduce rental cost

Reduce salary expenses

Change to cheaper products

Marketing promotions

Shift to cheaper locations

Reduce the salary of the employees

Fire redundant employees

Make the product more exclusive

Increa
se

revenu
es

Decre
ase

costs

Increase the volume

Increase price per unit
sold

Reduce rental cost

Reduce salary expenses

Change to cheaper products

Marketing promotions

Shift to cheaper locations

Fire redundant employees

Add more
resources

Risk:
Mythical

man-
month**.
Not to be

recommend
ed

Lessen the
delivery

expectations

Training and mentoring
Downside: Impact only

over time.

Take short-cuts to save
time during the

development
Risk: Can result in lower

quality. Not to be
recommended.

Move the delivery
forward in time
Risk: Unhappy

customers.

The high priority items can now easier be

insured to have high quality and tested end-
to-endRemove low priority

items from backlog.

Change to test-driven development:
Define interfaces clearly based on

requirements to increase productivity

Increas
e

product
ivity of

the
team
Add

more
resourc

es
Risk:

Mythic
al man-
month*
*. Not
to be

recom
mende

d

Push people to
work harder with

incentives
Risk: Burn-out

Change to
another way of

working.

Training and
mentoring

Downside: Impact
only over time.

Take short-cuts
to save time
during the

development
Risk: Can result
in lower quality.

Not to be
recommended.

Change to agile software

development:
Continuous delivery with

testing can increase

productivity

Change to test-driven

development:
Define interfaces clearly based

on requirements to increase

productivity

