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ABSTRACT ARTICLE HISTORY
Circulating vitamin B12 concentrations during pregnancy are associated with offspring health. Received 16 July 2022

Foetal DNA methylation changes could underlie these associations. Within the Pregnancy And Revised 22 December 2022
Childhood Epigenetics Consortium, we meta-analysed epigenome-wide associations of circulating Accepted 6 January 2023
vitamin B12 concentrations in mothers during pregnancy (n=2,420) or cord blood (n=1,029),
with cord blood DNA methylation. Maternal and newborn vitamin B12 concentrations were Vitamin B12: DNA
associated with DNA methylation at 109 and 7 CpGs, respectively (False Discovery Rate P-value methy|aﬁon;' epidemiology;
<0.05). Persistent associations with DNA methylation in the peripheral blood of up to 482 children cohort study; meta-analysis;
aged 4-10y were observed for 40.7% of CpGs associated with maternal vitamin B12 and 57.1% of PACE consortium

CpGs associated with newborn vitamin B12. Of the CpGs identified in the maternal meta-analyses,

4.6% were associated with either birth weight or gestational age in a previous work. For the

newborn meta-analysis, this was the case for 14.3% of the identified CpGs. Also, of the CpGs

identified in the newborn meta-analysis, 14.3% and 28.6%, respectively, were associated with

childhood cognitive skills and nonverbal 1Q. Of the 109 CpGs associated with maternal vitamin

B12, 18.3% were associated with nearby gene expression. In this study, we showed that maternal

and newborn vitamin B12 concentrations are associated with DNA methylation at multiple CpGs

in offspring blood (Prpr<0.05). Whether this differential DNA methylation underlies associations of

vitamin B12 concentrations with child health outcomes, such as birth weight, gestational age, and

childhood cognition, should be further examined in future studies.
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in the offspring, including higher risk of low birth
weight and preterm birth, suboptimal cardiometa-
bolic outcomes, and lower kidney function [2-7].
Vitamin B12 concentrations typically decline dur-
ing pregnancy, but a clinical cut-off for deficiency
in pregnancy has not been established [8,9].
Vitamin B12 is a crucial cofactor in one-carbon
metabolism. It interacts closely with folate to guar-
antee the availability of methyl groups by remethy-
lating homocysteine. Methyl groups are essential
for cellular growth and differentiation, nucleic acid
synthesis, and DNA methylation [8]. As such,
DNA methylation may represent a mechanism
underlying the associations of circulating vitamin
B12 concentrations during pregnancy with child
health [8]. Previously, circulating vitamin B12
concentrations during pregnancy have been asso-
ciated with both global and gene-specific cord
blood DNA methylations in two studies among
430 and 99 newborns, respectively [10,11]. Also,
a Mendelian randomization study suggested
a causal role for DNA methylation in the associa-
tion of maternal circulating vitamin B12 concen-
trations during pregnancy with child 1Q [12].
Whereas a meta-analysis of two epigenome-wide
association studies (EWASs) reported associations
of circulating folate concentrations during preg-
nancy with cord blood DNA methylation at 443
cytosine-phosphate-guanine sites (CpGs), a similar
large-scale EWAS on circulating vitamin B12 con-
centrations has not been conducted [13].
Therefore, in the Pregnancy And Childhood
Epigenetics (PACE) Consortium, we meta-analysed
data from four cohorts on the associations of mater-
nal circulating vitamin B12 concentrations during
pregnancy with epigenome-wide cord blood DNA
methylation  (‘maternal meta-analysis’)  [14].
Similarly, using data from two PACE cohorts, we
meta-analysed associations of cord blood vitamin
B12 concentrations with epigenome-wide cord
blood DNA methylation (‘newborn meta-analysis’).

Materials and methods

We aimed to analyse associations of maternal and
cord blood vitamin B12 concentrations with cord
blood DNA methylation, their persistence into
childhood, and their associations with child health
outcomes.

Study population

Six birth cohorts contributed to the analyses
(Table 1): the Avon Longitudinal Study of
Parents and Children (ALSPAC), the Generation
R Study (GENR), the Sabadell subcohort of the
INfancia y Medio Ambiente (INMA) Project, the
Markers of Autism Risk Learning Early Signs
(MARBLES), and two datasets of the Norwegian
Mother Father and Child Cohort Study (MoBal
and MoBa2) [15-21]. Supplementary Methods
provides detailed information on the study popu-
lations. All studies were approved by the local
Medical Ethical Committees, and informed con-
sent was obtained for all participants.

Figure 1 shows a schematic overview of the study
design. We conducted two meta-analyses of EWASs
of vitamin B12 concentrations during foetal devel-
opment, assessed either in the mothers’ peripheral
blood during pregnancy or in newborns’ cord blood,
with cord blood DNA methylation. All included
newborns had cord blood DNA methylation avail-
able and complete information on either maternal
or newborn circulating vitamin B12 concentrations
and all covariates (complete case analysis). Only
GENR had vitamin B12 concentrations available in
both mothers and newborns. All cohorts excluded
participants with circulating vitamin B12 concentra-
tions outside + 5 standard deviations (SD) from the
mean of their study population to avoid undue
influence of a very low number of extreme values
on the identified population-level associations. This
excluded 5 and 6 mother-newborn pairs from the
maternal and newborn analysis, respectively, in the
Generation R Study and four mother-newborn pairs
from MoBal. No participants from ALSPAC,
MoBa2, INMA, or MARBLES were excluded
because of outlying values. In addition, all twins,
and in case of non-twin siblings, one child was
included by selecting on completeness of the data
or, if equal, randomly. We also performed sensitivity
analyses, look-up analyses, and follow-up analyses
using repeated blood DNA methylation data at
older ages (5-17y).

Vitamin B12 measurements

Cohort-specific descriptions of blood sample col-
lection, transport, storage, and analysis are



Table 1. Subject characteristics.
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Cohort N participants Ancestry

Vitamin B12 concentration
(pmol/L), median (95% range)

Gestational age at

vitamin B12 sampling

(weeks), mean (SD)

Age at DNA methylation
measurement', mean (SD)

Maternal vitamin

B12
concentrations
Meta-analysis Total 2,420
GENR 823 European 180.0 (84.0, 425.2) 13.1 (1.7) 40.2 (1.5)
INMA 372 European 222.5 (138.0, 359.8) 13.5 (1.8) 39.8 (1.4)
MoBa1 1,007 European 297.3 (150.3, 535.9) NA2 39.5 (1.6)
MoBa2 218 European 294.4 (155.7, 529.5) NAZ 39.4 (1.6)
Look-up multi-ethnic MARBLES 48 Mixed 236.3 (150.8, 438.0) 23.0 (9.4) 39.1 (1.2)
population
Look-up early Total 479
childhood (4-7y) GENR 284 European 185.5 (84.3, 435.4) 40.2 (1.5) 6.0 (0.4)
INMA 195 European 2243 (126.5, 351.8) 39.7 (1.5) 4.5 (0.2)
Look-up late Total 482
childhood (8-10y) GENR 267 European 182.0 (78.0, 434.9) 40.1 (1.5) 9.8 (0.3)
INMA 215 European 223.6 (139.0, 360.1) 39.9 (1.4) 8.8 (0.6)
Newborn vitamin
B12
concentrations
Meta-analysis Total 1,029
ALSPAC 81 European 300.0 (120.0, 670.0) 40.2 (1.5) 40.2 (1.5)
GENR 948 European 306.5 (130.2, 818.1) 39.6 (1.3) 39.6 (1.3)
Look-up early Total 417
childhood (4-7y)
ALSPAC 85 European 306.0 (121.3, 665.3) 39.7 (1.2) 7.4 (0.1)
GENR 332 European 315.5 (135.2, 861.5) 40.2 (1.5) 6.0 (0.4
Look-up late GENR 321 European 302.0 (128.2, 869.9) 40.1 (1.5) 9.8 (0.3)
childhood (8-10y)
Look-up adolescence ALSPAC 83 European 306 (120.7, 667.7) 39.6 (1.3) 17.0 (1.0)

(17y)

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; GENR, Generation R Study; INMA, Sabadell subcohort of the INfancia
y Medio Ambiente (INMA) Project; MARBLES, Markers of Autism Risk Learning Early Signs; MoBa, Norwegian Mother, Father, and Child Cohort

Study.

For analyses at birth in weeks gestational age; for analyses in childhood in years.
For MoBa1 and MoBa2, individual data on gestational age at blood sampling (study population median 18, 25th—75th percentile 16-21) weeks were
not available. Gestational age at blood sampling was not included as covariate in the models.

described in Supplementary Methods. Maternal
vitamin B12 concentrations were measured in
venous plasma or serum, and cord blood samples
were venous in GENR (for ALSPAC, it was not
known whether cord blood samples were venous
or arterial). Gestational age at maternal blood

sampling differed between the included cohorts
(Table 1).

DNA methylation

Cohorts extracted DNA from cord blood sam-
ples, which were taken after delivery and subse-
quently stored. DNA was bisulphite converted
using the EZ-96 DNA Methylation kit
(Shallow) (Zymo Research Corporation, Irvine,
USA). Samples were processed with the Illumina
Infinium  HumanMethylation450 or EPIC
BeadChip  assay.  Quality  control  and

normalization were performed independently by
the individual cohorts, using their preferred
method (see Supplementary Methods for
details). Untransformed beta-values were used
as the outcome measure. Outliers in methylation
values, defined as values below the 25™ percen-
tile minus 3 *interquartile range or above the
75" percentile plus 3 * interquartile range, were
excluded (Tukey method) [22]. CpGs located on
the sex chromosomes were removed.

Covariates

Cohort-specific characteristics are shown in
Supplementary Data 1-3. All analyses were
adjusted for maternal confounders (age, educa-
tion, cohort definition), pre-pregnancy body
mass index, smoking during pregnancy (no or
firsttrimester only smoking versus sustained
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Four cohorts (GENR, INMA, MoBa1, MoBa2) with data on
maternal vitamin B12 and cord blood DNA methylation*

l

Maternal meta-analysis: n=2,420*
Fixed effects inverse variance weighted

| l

Two cohorts (ALSPAC, GENR) with data on
cord blood vitamin B12 and cord blood DNA methylation*

l

Newborn meta-analysis: n=1,029*
Fixed effects inverse variance weighted

. l

Sensitivity/secondary analyses:

* Leave-one-out analysis

e Vitamin B12 sampled <14 weeks: n=1,195
(GENR, INMA)

* Folate adj. model: n=2,397 (GENR, INMA,
MoBa1, MoBa2)

* Homocysteine adj. model: n=2,020 (GENR,
MoBa1, MoBa2)

Look-ups:

¢ Perinatal outcomes

* Newborns from mixed ethnicity: n=48 (MARBLES)
* Maternal pregnancy folate and adult homocysteine
related differential methylation

Sensitivity/secondary analyses:

* Leave-one-out analysis

« Folate adj. model: n=898 (GENR)

* Homocysteine adj. model: n=859 (GENR)

v A4

Persistence
o Early childhood (4-7 y): n=479 (GENR, INMA)
o Late childhood (8-10 y): n=482 (GENR, INMA)

and histone marks

Follow up for function & causality
« Functional enrichment (GO and KEGG pathways)
¢ Associations with gene expression (cis-eQTMs in children)

« Enrichment: DNase | hypersensitive sites, chromatin states

Persistence

e Early childhood (4-7 y): n=417 (ALSPAC, GENR)
e Late childhood (8-10 y): n=321 (GENR)

e Adolescence (17 y): n=83 (ALSPAC)

Figure 1. Study design. Schematic representation of the analyses of circulating vitamin B12 concentrations during foetal develop-

ment and epigenome-wide DNA methylation in cord blood.

Abbreviations: adj: adjusted; cis-eQTM: cis-expression quantitative trait methylation; EWAS, epigenome-wide association study

* In this complete-case analysis, cohorts excluded participants with circulating vitamin B12 concentrations outside + 5 standard
deviations (SD) from the mean this complete-case analysis, cohorts excluded participants with circulating vitamin B12 concentrations
outside + 5 standard deviations (SD) from the mean of their study population, all twins, and in case of non-twin siblings, one child
was excluded by selecting on completeness of data or, if equal, randomly. We prioritized CpGs with FDR-P-value <0.05 and showed
low heterogeneity (°<50%) for follow-up analyses. Vitamin B12, folate, and homocysteine were measured in either serum or in

plasma.

smoking), parity (nulliparous versus multipar-
ous), child sex, batch (cohort-specific), and cell-
type proportion (CD8+ T-cells, CD4+ T-cells,
natural killer cells, B cells, monocytes, granulo-
cytes, and nucleated red blood cells), estimated
using the Bioconductor package ‘FlowSorted.
CordBlood.Combined.450K’ [23]. Maternal vita-
min B12 analyses were additionally adjusted for
gestational age at blood sampling, as physiologi-
cally vitamin B12 concentrations decline during
pregnancy [8,9]. Newborn vitamin B12 analyses
were not adjusted for gestational age at birth, as
we considered this to be a potential media-
tor [4].

Statistical analyses

All analyses were described in a pre-specified
analysis plan. Cohorts used a common script to
perform independent epigenome-wide robust
linear regression analyses in R 3.6.1 to assess
associations of maternal or newborn circulating
vitamin B12 concentrations (continuously, per
SD increase) with cord blood DNA methyla-
tion, adjusting for covariates [24].

Meta-analyses

To minimize the chance of human error, ana-
lysts from two cohorts independently performed
fixed-effects inverse-variance weighted (IWV)
meta-analyses using METAL and compared
results [25]. We removed CpGs that were avail-
able in one cohort only and 44,960 cross-
reactive CpGs [26,27]. In the result files of
both meta-analyses, we flagged probes that map
to DNA containing a single nucleotide poly-
morphism (SNP), to repetitive sequence ele-
ments, or to DNA harbouring an INDEL
[26,27]. The final datasets included 429,952
(maternal meta-analysis) and 415,481 (newborn
meta-analysis) CpGs. We accounted for multiple
testing by controlling the FDR at 5%, imple-
menting the method of Benjamini and
Hochberg [28]. CpGs that were associated after
applying the more stringent Bonferroni correc-
tion (two-sided P-value <1.2x1077) were also
noted. We annotated the nearest gene for all
CpG based on the UCSC Genome Browser
build GRCh37/hgl9 as provided in the
Illumina annotation file [29]. For both meta-
analyses, we assessed inter-study heterogeneity.



A priori, we decided that only CpGs with Prpr
<0.05 that showed no major evidence of inter-
study heterogeneity, as reflected by an I* value
<50%, would be taken forward for follow-up
analyses. We call these ‘prioritized” CpGs.

Sensitivity analyses

We performed some sensitivity analyses
(Figure 1). First, we ran a leave-one-out analysis
for the prioritized CpGs of both meta-analyses,
in which we re-ran the meta-analysis repeatedly
with one of the contributing studies removed
each time. We constructed forest plots to visua-
lize the results for each CpG. Second, we re-ran
the maternal meta-analysis restricted to cohorts
with maternal vitamin B12 sampled in early
pregnancy (<14 weeks gestational age), likely
showing more comparable vitamin B12 concen-
trations [8,9]. We calculated Pearson’s correla-
tion between effect estimates of the primary
model versus the early-pregnancy model and
examined the consistency in the direction of
associations. For the prioritized CpGs of the
maternal meta-analysis, we tested for interac-
tions between circulating vitamin B12 concen-
trations and newborn rs3742801 ATP binding
cassette subfamily D member 4 (ABCD4) geno-
type, by meta-analysing data from GENR,
MoBal, and MoBa2. ABCD4 may be biologically
relevant for foetal circulating vitamin B12 con-
centrations as it is involved in the intracellular
transport of vitamin B12 [30]. It has been asso-
ciated with adult circulating vitamin B12 con-
centrations in a large genome-wide association
study [31].

Secondary analyses

Among cohorts with these data available
(Figure 1), we additionally adjusted the analyses
for either circulating folate or homocysteine con-
centrations measured concurrently with vitamin
B12, to examine whether this potential confounder
and mediator, respectively, explained any findings.
We calculated Pearson’s correlation between effect
estimates of the primary models versus these sec-
ondary models and examined the consistency in
the direction of associations.
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Look-up analyses

We performed several look-ups in the results of
related analyses (Figure 1). First, we examined the
prioritized CpGs of the maternal meta-analysis in
newborn meta-analyses and vice versa. Second, we
examined whether the prioritized CpGs from the
maternal meta-analysis showed similar associa-
tions in a smaller genetic multi-ethnic population
from the MARBLES study after adjusting for
ancestry principal components [18]. Third, we
explored persistence of differential methylation at
birth (Figure 1). We meta-analysed whether the
prioritized CpGs from the maternal meta-analysis
with cord blood DNA methylation were also dif-
ferentially methylated if measured in peripheral
blood sampled in both early (4-7y) and late (9-
10y) childhood (GENR and INMA). Similarly, we
meta-analysed whether the prioritized CpGs from
the newborn meta-analysis were also differently
methylated if measured in peripheral blood DNA
methylation data sampled in early childhood
(ALSPAC and GENR), late childhood (GENR),
and adolescence (17 y, ALSPAC). Childhood mod-
els were additionally adjusted for childhood at
blood sampling. The ‘Houseman’ blood reference
set was used for cell-type estimation (CD8+
T-cells, CD4+ T-cells, natural killer cells, B-cells,
monocytes, and granulocytes) [32].

Comparison with previous findings

First, for both meta-analyses, we examined
whether there was enrichment among the priori-
tized CpGs and, using a less stringent cut-off,
among CpGs with uncorrected P-values <0.05
and 1°<50%, for CpGs previously identified at
FDR-significance in two large meta-analyses (n =
2000) of EWASs on circulating concentrations of
either maternal folate during pregnancy or adult
homocysteine [13,33]. Enrichment was calculated
using a hypergeometric test in the phyper function
in the R Stats package [24]. For vitamin B12,
previous studies assessed vitamin B12 intake or
supplementation rather than concentrations with
gene-specific or global DNA methylation, and as
such, we did not perform a similar analysis with
results from those previous studies [34]. We did
perform a look-up of the three CpGs in cord blood
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that were previously associated with maternal vita-
min B12 concentrations as proxied by maternal
fucosyltransferase 2 (FUT2-) genotype [12]. We
also explored whether the prioritized CpGs from
both meta-analyses were differentially methylated
in previous EWASs of birth weight, gestational
age, childhood overall cognitive skills, and child-
hood nonverbal I1Q [35-37].

Follow-up analyses of the identified CpG sites
To better understand potential mechanisms link-
ing vitamin B12 and DNA methylation, we exam-
ined in Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses potential functions of the
prioritized CpGs (release December 2020 (GO)
and release 97.0 (KEGG)). Analyses were con-
ducted on the missMethyl R package version
1.25.0, which allows to correct for the number of
probes per gene on the 450k array [38]. We also
explored associations with gene expression, by
comparing the prioritized CpGs with a catalogue
containing 39,749 blood autosomal expression
quantitative trait methylation sites (cis-eQTMs, 1
Mb window centred at the transcription start site).
These were identified using data from 823 children
of European ancestry aged 6-11y from the
Human Early-Life Exposome (HELIX) project
after adjustment for sex, age, cohort, cell types,
and correcting for multiple testing and are avail-
able at https://helixomics.isglobal.org/ [39]. We
explored tissue or cell-type-specific signals by
examining whether the prioritized CpGs of both
meta-analyses were enriched in  DNase
I hypersensitive sites, chromatin states, and his-
tone marks, using eFORGE v2.0. with its default
settings, using data from either Consolidated
Roadmap Epigenomics, ENCODE, or Blueprint
[40]. We also examined the enrichment of specific
transcription factor motifs using eFORGE TF [40].

Results
Study characteristics

We included 2,420 mother-newborn pairs of
European ancestry in the maternal meta-
analysis (Table 1). Maternal pregnancy circulat-
ing vitamin B12 concentrations were measured
between 13 and 18 weeks gestational age and

differed moderately between contributing
cohorts (Table 1). We included 1,029 newborns
of European ancestry in the newborn meta-
analysis (Table 1). Cord blood vitamin B12 con-
centrations were comparable between the two
contributing cohorts (Table 1) [21]. Across
cohorts with these data, the correlations of
maternal vitamin B12 with folate (r<0.15) and
homocysteine (r<-0.26) were
(Supplementary Data 4). The same was
observed in newborns from GENR. Maternal
and newborn vitamin B12 correlated moderately
(r=0.45) in GENR.

Two cohorts with maternal vitamin B12 con-
centrations and both cohorts with newborn vita-
min B12 concentrations had repeated blood DNA
methylation data for a subgroup of the children at
older ages (4-17y) and contributed to look-up
analyses (Figure 1 and Table 1).

low

Maternal meta-analysis

Maternal vitamin B12 concentrations were asso-
ciated with differential DNA methylation at 119
CpGs (P-value False Discovery Rate (Prpr) <0.05)
in offspring cord blood after adjusting for mater-
nal age, education, pre-pregnancy body mass
index, smoking during pregnancy, parity, child
sex, batch, cell-type proportions, and gestational
age at blood sampling (Figures 2-3). Among all
CpGs, similar numbers of positive and negative
associations were observed (Figure 2). The associa-
tion with the lowest P-value (7.49 x 107'%) was
observed for ¢g25327343 (Mal, T Cell
Differentiation ~ Protein 2 gene  (MALZ;
MIM:609684)). Per standard deviation score
(SDS) (weighted mean 88.8 pmol/L) increase in
vitamin B12 concentrations, DNA methylation at
this CpG increased 0.60% (standard error (SE)
0.10%). Cgl2889195 (Paired box 8 gene (PAXS,
MIM:167415)) had the largest effect size (increase
in DNA methylation per SDS vitamin B12: 1.45%;
SE: 0.29%; P-value: 6.02 x 1077). We observed little
evidence of inter-study heterogeneity as 109/119
(92%) CpGs had I°<50% (Table 2). We prioritized
these 109 CpGs for follow-up analyses.
Supplementary Figure S1 shows the QQ plot of
the maternal meta-analysis. There was no evidence
of genomic inflation (lambda, A=0.98).


https://helixomics.isglobal.org/

EPIGENETICS (&) 7

Volcano plot
(e}
Oo ®
© -
© -
0
=
©
>
o
S
IS
o
&
o~ O
o 4
I I I I I
-0.02 -0.01 0.00 0.01 0.02
Effect Size .
Maternal meta-analysis
Volcano plot
N~ 0
(e}
o o
© -
o -
T
=1 < —
= o
>
o
=%
> o -
S
o - o
o 4
I | I I I I
-0.03 -0.02 -0.01 0.00 0.01 0.02

Effect Size .
Newborn meta-analysis

Figure 2. Volcano plots show the directions of associations in epigenome-wide meta-analyses of circulating vitamin B12 concentra-
tions during foetal development.

Abbreviations: B12, vitamin B12; CpG, cytosine-phosphate-guanine site; FDR, false discovery rate; SDS, standard deviation score.
Upper panel: maternal meta-analysis;Lower panel: newborn meta-analysis
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Supplementary Data 5 shows the lambdas of all
cohort-specific analyses and meta-analyses.

Newborn meta-analysis

Newborn vitamin B12 concentrations were asso-
ciated with differential DNA methylation at 10
CpGs (Pgpr<0.05, Figures 2-3) in cord blood
after adjusting for the same covariates as in the
maternal meta-analysis, except gestational age,
which we considered a mediator in this case.
Among all analysed CpGs, similar numbers of
positive and negative associations were observed
(Figure 2). We prioritized 7/10 CpGs with 1’<50%
(Table 3). The association with the lowest P-value
(1.12x1077) was observed for cgl13863764
(Dispatched RND transporter family member 3
gene (DISP3, also known as PTCHD2Z;
MIM:611251)), with a decrease in DNA methyla-
tion per SDS (weighted mean 171.2 pmol/L)
increase in vitamin B12 of —-0.94% (SE: 0.18%).
Cg08243619 (PTCHD?2) had the largest effect size
(decrease in DNA methylation per SDS vitamin
B12: —-1.09%; SE: 0.21%; P-value: 2.85x107).
Supplementary Figure S1 shows the QQ plot of
the newborn meta-analysis. There was no evidence
of genomic inflation (A = 1.05).

Comparison of maternal and newborn
meta-analyses

Epigenome-wide, the correlation between effect
estimates from the maternal and newborn meta-
analyses was low (r=0.36), but for the prioritized
CpGs from both analyses, it was high (r>0.92). In
a look-up of the 109 prioritized CpGs from the
maternal meta-analysis, 19 (17.6%) of 108 avail-
able CpGs were also associated with newborn vita-
min B12 concentrations at Bonferroni-significance
(P-value <0.05/108 tests, i.e., P-value <4.63 x 107%;
Supplementary Data 6), and all had the same

direction of effect. In total, 77/108 (71.3%) CpGs
were associated with newborn vitamin B12 con-
centrations with uncorrected P-values <0.05
(Penrichment = 3.19 x 107°%).  The seven newborn
prioritized CpGs were not associated with mater-
nal vitamin B12 concentrations at Bonferroni sig-
nificance (P-value <0.05/7 tests; i.e., P-value
<0.007) although one had an uncorrected P-value
<0.05 and all had the same direction of effect
(Supplementary Data 7).

Sensitivity analyses

The leave-one-out analysis for the 109 prioritized
CpGs of the maternal meta-analysis showed that
no single cohort disproportionately influenced the
results. The change in effect estimate when leaving
out one cohort was <20% for 83/109 (76%) CpGs.
The confidence intervals of all studies overlapped
for the 26/109 CpGs with >20% change in effect
estimate as shown in Supplementary Figures
§2.1-2.26. The leave-one-out analysis for the
seven prioritized CpGs of the newborn meta-
analysis suggested that the much larger GENR
was driving the findings (Supplementary Figures
$3.1-3.7). The direction of the effect was consis-
tent between ALSPAC and GENR for 5/7 priori-
tized CpGs (Supplementary Data 8) [15,16].

Because vitamin B12 concentrations decline
during pregnancy, we additionally restricted the
maternal meta-analysis to 1,195 (49.4% of total
meta-analysis population) mothers from GENR
and INMA with vitamin B12 sampled in early
pregnancy (<14 weeks gestational age) [8,9,17].
Early-pregnancy associations were largely consis-
tent with anytime associations, with Pearson’s cor-
relation coefficients for the effect estimates r=0.78
(epigenome-wide) and r=0.99 (prioritized CpGs)
(Supplementary Data 9).

The ATP binding cassette subfamily D member
4 gene (ABCD4) gene is involved in the intracel-
lular transport of vitamin B12 [30]. For the

The X-axis represents the difference in DNA methylation per SDS increase in circulating vitamin B12 concentrations; the
Y-axis represents the —logqo(P). The red dotted line and the blue line represent the thresholds below which we considered
associations significant using a Bonferroni correction (absolute P-value <1.2 X 10~7) and FDR-P-value <0.05, respectively, to account
for multiple testing. In total, 56.1% of all analysed CpGs in the maternal meta-analysis showed increased methylation in relation to
maternal vitamin B12 concentrations during pregnancy. Similarly, 51.4% of all analysed CpGs in the newborn meta-analysis showed
increased methylation in relation to higher newborn circulating vitamin B12 concentrations.
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Figure 3. Manhattan plots of epigenome-wide meta-analyses of circulating vitamin B12 concentrations during foetal development.
Abbreviations: B12, vitamin B12; CpG, cytosine-phosphate-guanine site; FDR, false discovery rate.

Upper panel: maternal meta-analysis;Lower panel: newborn meta-analysis

The X-axis represents chromosomes; the Y-axis represents the —log;o(P). The black dotted line and the red dashed line represent the
thresholds below which we considered associations significant using a Bonferroni correction (absolute P-value <1.2 x 10~7) and FDR-
P-value <0.05, respectively, to account for multiple testing. Models were adjusted for maternal confounders during pregnancy (age,
education, body mass index, smoking, parity, and gestational age at blood sampling in maternal meta-analysis), child sex, cell-type
proportion, and batch.

prioritized CpGs of the maternal meta-analysis, we  rs3742801 (ABCD4) genotype in a meta-analysis
tested for interaction between maternal circulating among GENR, MoBal, and MoBa2 [19,20]. None
vitamin B12 concentrations and newborn  of the interaction terms had uncorrected P-values
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<0.05. This did not justify stratifying the analyses
on ABCD4 genotype.

Findings of maternal meta-analysis in a
multi-ethnic population

Of the 109 prioritized CpGs from the maternal-
B12 meta-analysis, cord blood DNA methylation
measurements were available in a multi-ethnic
population (n=48) from MARBLES for 103
CpGs [18]. Of these, two CpGs were differentially
methylated in relation to maternal pregnancy cir-
culating vitamin B12 concentrations (P-value
<0.05/103 tests, ie., P-value <4.85x107%
Supplementary Data 10) and 56/103 (54.4%)
CpGs had consistent direction of effect.

Persistence at older ages

We also analysed whether pregnancy and cord
blood vitamin B12 concentrations were still asso-
ciated at Bonferroni-significance with DNA
methylation at the CpGs identified in the maternal
and newborn meta-analyses in peripheral blood of
older children. First, 108/109 prioritized CPSs
from maternal meta-analysis were available in
GENR and INMA in childhood. In early child-
hood (ages 4-7y; n=479), 44 (40.7%) of 108
CpGs were still associated with maternal early-
pregnancy circulating vitamin B12 concentrations
(P-value <0.05/108, i.e., P-value <4.63x107%). In
late childhood (ages 9-10; n =482), 7 (6.5%) CpGs
were still associated with maternal early-pregnancy
circulating vitamin B12 concentrations (Table 2
and Supplementary Data 11). Five CpGs were
differentially methylated in children’s blood at
both time points. These were ¢g26393629,
cg20581874 (both not «close to a gene),
cg06324373 (annotated to CRTACI, Cartilage
Acidic Protein 1), cg24554151 (annotated to
PANXI1, Pannexin 1), and ¢g05010260 (annotated
to C7o0rf52). The vast majority of the 108 CpGs
had a consistent direction of effect as compared to
the maternal meta-analysis of newborn DNA
methylation (early childhood: 97.2%; late child-
hood: 91.7%).

Second, in early childhood blood DNA methy-
lation data (n=417, ALSPAC and GENR), 1
(14.3%) of 7 prioritized CpGs of the newborn

meta-analysis was still associated with newborn
vitamin B12 concentrations (P-value <0.05/7; i.e.,
P-value <0.007). In blood DNA methylation data
sampled in late childhood (n =321, GENR) and
adolescence (age 17; n =283, ALSPAC), 4 (57.1%)
and 0 CpGs, respectively, were still associated with
newborn vitamin B12 concentrations
(Supplementary Data 12). The top hit from the
meta-analysis of newborn DNA methylation,
cgl3863764, was still differentially methylated in
early and late childhood (Table 3). Most of seven
CpGs had consistent directions of effect as com-
pared to the newborn meta-analysis of newborn
DNA methylation in early (100%) and late child-
hood: (85.7%) but not adolescence (42.9%).

Relationship with folate and homocysteine

The findings of the primary maternal and new-
born meta-analysis were largely robust to adjust-
ment for circulating folate concentrations. In the
maternal meta-analysis (n = 2,397, all cohorts), 89/
109 (81.7%) findings remained significant at epi-
genome-wide level (Pgpr<0.05, Supplementary
Data 9). Pearson’s correlation coefficient for effect
estimates between the primary and folate-adjusted
models was high (r=0.99, both epigenome-wide
and prioritized CpGs). In the newborn meta-
analysis, only GENR had folate concentrations
available (n=898). Although all seven findings
had Pppr>0.05, Pearson’s correlation for the effect
estimates between the primary and folate-adjusted
models was high (r=0.95: epigenome-wide; r=
0.99: prioritized CpGs, Supplementary Data 8).
We also ran models additionally adjusted for
concentrations of homocysteine, an indicator of
vitamin B12 status and potential mediator in the
identified associations. In the maternal meta-
analysis, only the top hit, cg25327343, remained
FDR-significant at epigenome-wide level (n=
2,020; meta-analysis without INMA; uncorrected
P-value =2.31 x 10°% Supplementary Data 9).
Pearson’s correlation for the effect estimates
between the primary and homocysteine-adjusted
models was high (epigenome-wide: r = 0.85; prior-
itized CpGs: r=0.99). In newborns, only GENR
had homocysteine concentrations available (n =
859). Although all seven findings had Pgpr>0.05,
Pearson’s correlation coefficient for effect
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estimates between the primary and homocysteine-
adjusted models was high (r=0.90 epigenome-
wide; r=0.99: prioritized CpGs, Supplementary
Data 8).

A hypergeometric test showed that among the
109 prioritized CpGs from the maternal meta-
analysis, there were significantly more of the 443
CpGs previously identified for their association
with maternal pregnancy circulating folate concen-
trations than expected by chance, with 15/109
CpGs (13.8%; Penrichment = 1.15 x 107%7; Table 2)
overlapping between the two analyses, which all
had the same direction of effect [13]. Of these, 11/
15 overlapping CpGs had Prpr<0.05 after adjust-
ment for vitamin B12 in the previously published
folate EWAS meta-analysis [13]. Also, 10/15 had
Prpr<0.05 in our folate-adjusted meta-analysis
(Supplementary Data 9) [13]. For the newborn
meta-analysis, none of the seven identified CpGs
were among the 443 hits from the previous folate
meta-analysis [13]. The three differentially methy-
lated CpGs reported by a previous meta-analysis of
circulating homocysteine concentrations in adults
were not among the CpGs with uncorrected
P-values <0.05 and 1°<50% in either the maternal
or newborn vitamin B12 meta-analysis [24,33].
The prioritized CpGs of the maternal and new-
born meta-analyses did not overlap with the three
CpGs in cord blood that were previously asso-
ciated with maternal vitamin B12 concentrations
as proxied by maternal fucosyltransferase 2
(FUT2-) genotype [12].

Perinatal and childhood health outcomes

To explore whether the identified CpGs may
represent pathways underlying associations of vita-
min B12 concentrations during foetal development
with child health outcomes, we examined associa-
tions of our findings with birth weight and gesta-
tional age at birth, and with childhood overall
cognitive skills and childhood nonverbal IQ,
using previously published EWASs [35-37]. Of
the prioritized CpGs in the maternal and newborn
meta-analysis, 4/109 (P-value <0.05/109 tests; i.e.,
P-value <4.59x10™*) and 1/7 CpGs (P-value
<0.05/7 tests; i.e., P-value <0.007), respectively,
were also differentially methylated in relation to
birth weight, with a similar direction of effect
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(Tables 2-3 and Supplementary Data 13-14)
[35]. Of the prioritized CpGs in the maternal
meta-analysis, 1/109 CpGs (cg27181142) was also
differentially methylated in relation to gestational
age, with a similar direction of effect (Tables 2-3
and Supplementary Data 13-14) [36]. None of
the prioritized CpGs in the maternal meta-
analysis were differentially methylated in relation
to childhood overall cognitive skills and childhood
nonverbal IQ (Supplementary Data 13) [37]. Of
the prioritized CpGs in the newborn meta-
analysis, 5/7 were available in the meta-analyses
on childhood cognitive skills and childhood non-
verbal intelligence [37]. Of these, 1/5 and 2/5
CpGs, respectively, were differentially methylated
in relation to these traits, with a similar direction
of effect (Supplementary Data 14). None of the
five CpGs that were differentially methylated in
children’s blood in either early or late childhood
were associated with childhood health outcomes.
Follow-up analyses of the identified CpG sites
The 109 and 7 prioritized CpGs from the maternal
and newborn meta-analysis, respectively, showed
little evidence for functional enrichment of GO
terms (smallest P-value=9.8x10"*) or KEGG
terms  (smallest P-value=4.9x107) terms
(Supplementary Data 15-19). For the 109 prior-
itized CpGs from the maternal meta-analysis, we
identified 57 unique CpG-gene expression pairs
(cis-eQTM) using data from the HELIX project
[39]. These cis-eQTMs involved 18 unique tran-
script clusters (equivalent to putative genes) with
transcription start sites within + 500kb of any of
20/109 (18.3%) prioritized CpGs (Tables 1-2;
Supplementary Data 19). Most associations (41/
57, 71.9%) were negative, indicating that higher
methylation was associated with lower gene
expression. The association with the lowest
P-value (9.48x107'®®) was observed between
methylation at cg21482265 and gene expression
of PAX8, with a log, fold change in expression
per 10% increase in DNA methylation of —0.096
(SE 0.025). DNA methylation at ¢g20581874 and
cg24554151 was associated with expression of
RNASE6 (Ribonuclease A Family Member K6)
and PANXI, respectively. There was no evidence
for enrichment in the DNase I hypersensitive sites
for the prioritized CpGs of both meta-analyses
[40]. Among the 109 prioritized CpGs of the
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maternal meta-analysis, we observed evidence for
enrichment for several chromatin states and his-
tone marks and one transcription factor motif
(Supplementary Figure $S4.1-4.2 and 5.1-5.2).

Discussion

This comprehensive analysis on the associations of
circulating vitamin B12 concentrations during foe-
tal development and epigenome-wide cord blood
DNA methylation was a joint effort of six birth
cohorts. Maternal pregnancy and newborn circu-
lating vitamin B12 concentrations were associated
with differential methylation at 109 and 7 CpGs,
respectively, in newborns. We observed persis-
tence for up to 40.7% (44 of 108 available CpGs)
of the CpGs associated with maternal vitamin B12
(‘maternal vitamin B12-related CpGs’) and 57.1%
(4 of 7 CpGs) of the CpGs associated with new-
born vitamin B12 (‘newborn B12-related CpGs’) at
school-age. Furthermore, 3.7% (4 of 109 CpGs)
and 14.3% (1 of 7 CpGs) of differentially methy-
lated CpGs in the maternal and newborn meta-
analysis, respectively, were previously related to
birth weight. Also, 0.9% (1 of 109 CpGs) of differ-
entially methylated CpGs in the maternal meta-
analysis were previously related to gestational age.
Of the differentially methylated CpGs of the new-
born meta-analysis, 14.3% (1 of 7 CpGs) and
28.6% (2 of 7 CpGs), respectively, were previously
related to childhood cognitive skills and childhood
nonverbal intelligence. Associations with nearby
gene expression were observed for 18.3% (20 of
109 CpGs) of maternal vitamin B12-related CpGs.

Vitamin B12 is involved in one-carbon metabo-
lism, which supplies the methyl groups for DNA
methylation by guaranteeing the availability of
methionine [8]. Differential foetal DNA methyla-
tion may underlie the known associations of cir-
culating vitamin B12 concentrations during foetal
development with childhood health [2-5,8].
Previously, circulating vitamin B12 concentrations
during pregnancy have been associated with global
and gene-specific, but not epigenome-wide cord
blood DNA methylation [10,11].

We observed associations of maternal circulat-
ing vitamin B12 concentrations during pregnancy
with differential DNA methylation at 109 CpGs in
offspring cord blood. The associations were largely
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similar in leave-one-out analyses, among mothers
with vitamin B12 sampled in early pregnancy only,
and when additionally adjusted for circulating
folate concentrations. In total, 15/109 CpGs were
also differentially methylated in relation to mater-
nal pregnancy folate concentrations in previous
work [13]. This meta-analysis used data from
MoBa and GENR and thus is not independent
from our findings. The overlap emphasizes that
not all associations of folate and vitamin BI2
with differential cord blood DNA methylation are
specific to one of these vitamins. This seems plau-
sible as vitamin B12 and folate closely interact.
After adjustment for homocysteine, a functional
marker of vitamin B12 status, only the top CpG
site still had Pppr<0.05 (P-value =2.31x 107%). As
this analysis included 16.5% fewer participants, the
absolute effect estimates only changed mildly, and
the correlations between effect estimates of the
findings were high, low power may explain the
attenuation of the identified associations. Yet, it
may also be biologically plausible that homocys-
teine, donor of methyl groups and a functional
marker of vitamin B12 status, acts as a partial
mediator in associations between vitamin B12
and DNA methylation. In one-carbon metabolism,
homocysteine is remethylated into methionine via
two complementary and interacting, cyclic enzy-
matic pathways. One of these pathways is folate-
dependent and requires vitamin B12 as catalyser
[8]. Furthermore, only two of the findings from
the maternal meta-analysis were also observed in
a look-up among a small, multi-ethnic population
of newborns, the MARBLES cohort. The limited
replication in this specific population may indicate
that not all findings can be extrapolated to parti-
cipants from non-European ancestry, but it may
also simply be due to low power. Thus, further
exploration in larger studies and more diverse
populations is needed.

The maternal meta-analysis included about
twice as many participants as the newborn meta-
analysis. Nonetheless, 17.6% of the prioritized
maternal vitamin B12-related CpGs were also dif-
ferentially methylated in a look-up in the newborn
meta-analysis and 71.3% had an uncorrected
P-value <0.05. Additionally, all prioritized CpGs
had consistent directions of association across
both meta-analyses, and effect estimates were
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highly correlated. Furthermore, we observed per-
sistence of a large number of maternal vitamin
Bl2-related differentially methylated CpGs across
childhood. Thus, we may have been underpowered
in the newborn meta-analysis to find associations
at the same loci as those identified in the maternal
meta-analysis. Based on our findings, we consider
it likely that this explains the majority of the dif-
ferences between maternal and newborn meta-
analyses. Alternatively or additionally, maternal
and offspring circulating vitamin B12 concentra-
tions may be associated with cord blood DNA
methylation at different CpGs. Maternal and new-
born vitamin B12 concentrations seem to correlate
moderately [41]. The placenta produces transco-
balamin II, a protein that can bind vitamin B12.
This complex is called active B12 and is the meta-
bolically active form of vitamin B12. Vitamin B12
is actively transported from mother to foetus by
specific placental transport-carriers. These bind
active B12 from maternal blood and transport it
to foetal circulation. The placenta can further reg-
ulate foetal vitamin B12 uptake by changing the
rate of cobalamin II synthesis [8,41,42].
Furthermore, it has to be noted that as maternal
vitamin B12 was sampled in the first half of preg-
nancy and offspring samples were taken at birth,
associations may be time-specific. This may be
plausible from a biological perspective. Vitamin
B12 concentrations vary in different stages of preg-
nancy [41]. Vitamin B12 has been associated with
neurodevelopment. This complex, dynamic pro-
cess involves precisely orchestrated molecular and
cellular events [8,12,43]. For the hypothesized
inverse association with neural tube defects, vita-
min B12 status during early pregnancy seems
more relevant than during late pregnancy [41].
Also, inconsistent associations with child cardio-
metabolic outcomes have been previously reported
for maternal versus newborn circulating vitamin
B12 concentrations [2,44]. Finally, the different
findings for maternal and newborn meta-analyses
may be explained by differences between the
cohorts included in both meta-analyses, such as
vitamin B12 intake from diet or multivitamins,
which might be used less frequently in late preg-
nancy, as compared to early pregnancy. Yet,

a previous meta-analysis of EWAS on vitamin
B12 dietary intake in 5,841 adults reported no
association with methylation in leukocytes [45].
Associations of multiple maternal and newborn
vitamin B12-related CpGs in newborns persisted
in childhood. The CpGs that were differentially
methylated at both time points in childhood were
annotated to CRTACI, PANX1I, and C7orf52. Two
of them, ¢g20581874 and cg24554151, were asso-

ciated with the expression of RNASE6
(Ribonuclease A Family Member K6) and
PANXI,  respectively. CRTACI encodes

a glycosylated extracellular matrix protein that is
found in the interterritorial matrix of cartilage. It
may be involved in cell-cell or cell-matrix inter-
actions. PANX1 belongs to the innexin family and
is a structural component of gap junctions. This
protein is abundantly expressed in the central ner-
vous system. C7orf52 is predicted to enable acyl-
transferase activity. RNASE6 plays a role in the
urinary tract [46]. We had no data to examine
whether maternal vitamin B12-related differential
methylation persisted into adolescence. Such per-
sistence was not observed for the prioritized CpGs
from the newborn meta-analysis, but we only had
data on 83 adolescents. Thus, this could be power
related. Alternatively, differential DNA methyla-
tion at birth may return to normal levels between
late childhood and adolescence. Persistence of dif-
ferential methylation is not a prerequisite for
effects on long-term health. Vitamin B12-related
differential DNA methylation during organogen-
esis may induce early functional or structural
alterations that cannot be reversed, regardless of
the persistence of differential DNA methylation
itself. However, studies on causality in these asso-
ciations are needed. Whether postnatal exposures,
such as infant vitamin B12 intake, could modify
associations of vitamin Bl2-related differential
methylation with child health also needs further
study [47].

We observed that 3.7% and 14.3% of prioritized
CpGs of the maternal and newborn meta-analysis,
respectively, were also differentially methylated in
relation to birth weight in a previous meta-analysis
of EWASs [35]. One prioritized CpG of the mater-
nal meta-analysis was also differentially



methylated in relation to gestational age at birth in
another meta-analysis of EWASs [36]. A previous
meta-analysis of observational studies reported
associations of maternal pregnancy vitamin BI12
deficiency with higher risk of low birth weight
and prematurity [4]. Of the differentially methy-
lated CpGs of the newborn meta-analysis, 14.3%
and 28.6%, respectively, were also differentially
methylated in relation to childhood cognitive skills
and childhood nonverbal intelligence in a previous
meta-analysis of EWASs [37]. Previously,
a Mendelian randomization study suggested
a causal role for DNA methylation in the associa-
tion of maternal circulating vitamin B12 concen-
trations during pregnancy with child 1Q [12].
Combined, these findings suggest that vitamin
B12-related differential DNA methylation may
underlie associations of vitamin B12 concentra-
tions during foetal life with foetal and childhood
growth and development, but further studies
examining these pathways in more detail need to
be done.

We identified 57 cis-eQTMs among CpGs with
Pppr<0.05 in the maternal meta-analysis. Of
these, 18 eQTMs, including 6 unique CpGs and
3 unique transcript clusters, mapped to PAXS8
and showed an inverse association. Seven prior-
itized CpGs of the maternal meta-analysis were
also annotated to PAX8. Associations annotated
to PAX8 in general had relatively large effect
sizes and showed increased methylation in rela-
tion to higher vitamin B12 concentrations. Thus,
higher vitamin B12 concentrations seem to be
associated with lower expression of PAXS.
PAX8 belongs to the paired box family of tran-
scription factors and is involved in thyroid folli-
cular cell development and expression of thyroid-
specific genes [48]. Thyroid hormones are essen-
tial for normal foetal growth and development
[49]. Our findings annotated to PAX8 were not
associated with birth weight [35]. The top hit of
the maternal meta-analysis, cg25327343, located
in the gene body of MAL2, was not associated
with nearby gene expression. MAL2 encodes
a transmembrane protein belonging to the MAL
proteolipid family. It is part of glycolipoprotein
lipid microdomains of cell membranes and
required for intracellular polarized transport
[50]. This particular CpG has been associated
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with foetal brain development and excessive alco-
hol consumption during pregnancy [51-53]. In
the newborn meta-analysis, 4/7 prioritized CpGs
mapped to the body of PTCHD2 (also known as
DISP3). All were negatively associated with vita-
min B12. PTCHD2 encodes a 13-transmembrane
domain-containing protein and is regulated by
thyroid hormone [54]. It is highly expressed in
neural tissue and involved in neuronal prolifera-
tion and differentiation, and cholesterol metabo-
lism [48,55]. Taken together, the examination of
potential functional relevance of the identified
CpG sites in this work revealed that 18% of the
identified CpGs may be associated with gene
expression. In addition, there was evidence for
enrichment of several chromatin states and his-
tone marks and one transcription factor motif.
These findings indicate that the identified CpGs
may indeed have functional consequences.
However, further experimental work would be
needed to examine this in more detail and estab-
lish the exact role of DNA methylation in these
CpGs in biological processes associated with vita-
min B12 metabolism.

The comprehensive design of this study is
a major strength. We used data from a large
number of participants from prospective birth
cohorts and information on circulating vitamin
B12 concentrations at two stages during foetal
development. We also had repeated DNA methy-
lation measurements available for a substantial
number of children. Importantly, the participants
included in this analysis were from high-income
countries and from relatively high socioeconomic
backgrounds. This limits the generalizability of
the observed associations to populations from
less wealthy countries or people from different
socioeconomic backgrounds. The observed asso-
ciations had small effect estimates. Yet, small
changes in DNA methylation levels may still
have biological effects [56]. We assessed DNA
methylation in cord blood, which is relatively
easy to collect. However, DNA methylation is
tissue-specific. Other tissues may be more rele-
vant for health outcomes, such as brain, which is
not available in population-based studies for
obvious reasons [8]. Also, as in any observational
study, residual confounding may be present,
despite adjustment for relevant confounders. In
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addition, the Illumina 450k array only covers
around 2% of all CpGs across the genome.
Vitamin B12 concentrations during development
may be associated with DNA methylation in non-
measured CpGs.

Conclusions

In summary, we showed that maternal and new-
born vitamin B12 concentrations are associated
with DNA methylation at multiple CpGs in off-
spring blood, many of which are persistent into
childhood and some of which were previously
associated with relevant phenotypes, including
birth weight, gestational age, and cognitive skills.
DNA methylation in a number of the identified
CpGs was associated with gene expression of
nearby genes in an external dataset. Whether
DNA methylation at these CpG sites mediates
associations of vitamin B12 concentrations with
child health outcomes should be further exam-
ined in future studies.
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