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Abstract

Purpose Dietary biomarkers can potentially overcome the limitations of self-reported dietary data. While in ecology and 

archaeology, stable isotope ratios of carbon and nitrogen are widely used as biomarkers, this is not the case in nutrition 

research. Since the abundance of the 13C and the 15N isotope differ in food sources from plant and animal origin, stable 

isotope ratios of carbon and nitrogen (δ13C and δ15N) may differ in human biological material. Here, we investigated the 

stable isotope ratios of nitrogen and carbon in serum and urine from vegans and omnivores.

Method Measurement of δ15N and δ13C in serum and 24 h urine was performed by Elemental Analyzer–Isotope Ratio 

Mass Spectrometer in the cross-sectional study “Risks and Benefits of a Vegan Diet”. The study included 36 vegans and 36 

omnivores with a median age of 37.5 years (matched for age and sex), who adhered to their diet for at least 1 year.

Results Both δ15N and δ13C were significantly lower in both the serum and 24 h urine of vegans compared to omnivores. 

δ15N either in serum or urine had 100% specificity and sensitivity to discriminate between vegans and omnivores. Specific-

ity of δ13C was also > 90%, while sensitivity was 93% in serum and 77% in urine.

Conclusion δ15N both in serum and urine was able to accurately identify vegans and thus appears to be a promising marker 

for dietary habits.

Keywords δ15N · δ13C · Stable isotope ratios · Vegan diet · Biomarkers · Dietary intake data. · Nitrogen isotopes

Introduction

Dietary intake is widely recognized as one of the most 

important lifestyle factors that influence both human health 

and planetary health. Meat intake in particular has been 

linked to non-communicable diseases, and its production has 

implications for land and water use, as well as greenhouse 

gas production [1]. Diets that exclude meat, or more radi-

cally all animal products, have attracted increasing attention 

in the Western world.

Even though the importance of diet in relation to health 

outcomes has been identified, challenges concerning the 

validity and reliability of dietary intake data continue to 

undermine research in this field. Methods for assessing die-

tary intake typically involve self-report and rely on memory 

recall and objectivity. Dietary intake methods based on self-

reported data are prone to be influenced by factors such as 

the social desirability of foods, lack of memory or lack of 

consciousness that a food item(s) have been consumed, and 

lack of ability to estimate portion sizes or amounts of foods 
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consumed [2]. Thus, there is a need for a more objective 

assessment of dietary intake, and enormous progress has 

been made during the last decade concerning the use of 

food-specific biomarkers [3, 4].

Stable isotope ratios are among the biomarkers that have 

been investigated as indicators of meat and fish [5], and 

added sugar intake [6]. Stable isotopes are atoms of the same 

element that differ in the number of neutrons in the nucleus 

and thus differ in their atomic mass. In nature, each element 

occurs as a mixture of its isotopic forms, but metabolic rates 

in plants and animals are usually different for certain iso-

topes, resulting in small differences in the permille range. 

The isotope distribution in samples is usually expressed 

relative to the distribution of universal standard material, 

which is usually limestone (V-PDB) for carbon and nitro-

gen in air for nitrogen [7]. The ratio of naturally occurring 

stable isotopes of carbon (13C/12C ratio expressed as δ13C, 

sometimes also called CIR) and nitrogen (15N/14N) ratio 

expressed as δ15N, also called NIR) have been used exten-

sively in archaeological and ecological studies, and their use 

in dietary assessment studies is increasing [5, 7–10].

In biology, stable isotopes have been also used to charac-

terize trophic positions in the food web. Due to greater reten-

tion of the heavier 15N isotope than the lighter 14 N isotope 

in the production of nitrogenous waste, the nitrogen ratio 

of 15N to 14N (δ15N) shows a stepwise enrichment from 

food producers to food consumers and is therefore indica-

tive of relative trophic position [7, 11, 12]. Thus, δ15N can 

differentiate between trophic levels, as the relative abun-

dance of the heavy nitrogen isotope, increases by approxi-

mately 2–4‰ per increasing trophic levels in the food web 

[7]. Although the trophic level or position is a well-known 

concept within biology, it has not been used in the field 

of human nutrition science. Based on the trophic model, 

humans who consume omnivorous diets would accordingly 

be seen as ‘higher predators’, while vegans would be on a 

lower trophic level as they only consume plant-based food. 

Vegetarians, who do not consume meat, but milk and dairy, 

eggs and honey, would be between vegans and omnivores.

While the δ15N ratio in a food web reflects the trophic 

position, differences in the δ13C are more dependent on the 

type of plants consumed. C3 plants (the majority of food 

plants such as wheat, rice, or beans) to a greater degree than 

C4 plants utilize the 12C rather than 13C in the photosyn-

thesis when trapping/converting C from  CO2 reflected by a 

lower δ13C value. C4 plants, among them sugar cane, corn 

and sorghum, have δ13C values approximately 12–13‰ 

higher than C3 plants. This difference can be used to meas-

ure the consumption of added sugar made from either sugar 

cane or corn while added sugar produced from sugar beet 

(C3 plant) would not show any difference in the δ13C [6, 

13, 14]. However, carbon atoms in the diet are derived from 

all macronutrients and are thus more difficult to interpret. 

Indeed, the feed of husbandry animals like pork is mainly 

based on corn, which would reflect the δ13C of C4 plants. 

Indeed, δ13C has recently been suggested as a marker for 

animal protein intake [15].

Stable isotope ratios as dietary biomarkers can be meas-

ured in different tissues or body fluids, including skin [16], 

urine [5, 17], fingernails [18], exhaled air [13, 19], hair [8, 

20], blood [6] and serum [5, 21]. Stable isotope ratios in 

these biological specimens may reflect different time periods 

and varying nutrient turnover rates [7].

Here, we investigate in an exploratory manner whether 

the stable isotope ratios of δ13C and δ15N in serum and 24 h 

urine can distinguish between healthy vegans and omnivores 

in a cross-sectional study. In addition, we investigate the dis-

criminative power of δ13C and δ15N in comparison to two 

other dietary biomarkers for dairy and meat intake, plasma 

pentadecanoic acid (15:0) and plasma 1-methylhistidine [3].

Subjects and methods

This is a cross-sectional study investigating the nutritional 

status of vegans, compared to omnivores. The recruit-

ment process for healthy volunteers, aged 30–60 years, is 

described elsewhere [22]. Briefly, the 36 vegans and 36 

omnivores of the study “Risks and Benefits of a Vegan 

Diet” (RBVD) were recruited in Berlin (Germany) at the 

German Federal Institute for Risk Assessment (BfR) in the 

period from January to July 2017, matched for age and sex. 

The sample size for this study is based on the power cal-

culation for the primary research question (bone health in 

vegans compared to omnivores) and due to the exploratory 

nature of the current analysis, a sample size calculation is 

not provided here [23]. The study was approved by the Eth-

ics Committee of Charité—Universitätsmedizin Berlin (no. 

EA4/121/16). A flow chart of the study process is shown in 

Supplemental Fig. 1. Written informed consent was obtained 

from all participants during the first visit.

As an inclusion criterion, vegans should follow the vegan 

diet for at least a year, and omnivores should consume at 

least three times meat or two times meat and two times 

processed meat per week. Dietary intakes were recorded 

using three-day weighed food protocols. With the help of 

the German Nutrient Database (BLS, Bundeslebensmittels-

chlüssel) Version 3.02, the mean daily intake of food items, 

macronutrients and micronutrients was calculated. Informa-

tion about age, educational attainment, and lifestyle factors 

were collected using tablet-based questionnaires. Height and 

body weight, waist circumference, and blood pressure were 

measured using standardized methods.

From all participants in the study, 60 mL of blood was 

obtained. Blood lipids and creatinine were measured in 

a certified routine laboratory (Labor 28 GmbH, Berlin, 
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Germany) by standard methods on the same day of blood 

collection. 24 h urine was collected by the participants, and 

urine creatinine concentrations were determined also deter-

mined on the day of the visit to the study center. All other 

biochemical analyses were performed on samples stored at 

a temperature of − 80 °C. Urine was collected on the days 

prior to the visit to the study center and were done from 

Sunday to Thursday.

Stable isotope ratio and biomarker assessment

Stable isotope ratios δ13C and δ15N were measured at 

the Stable Isotope Laboratory at the University of Oslo 

(UIO:CLIPT), using a method described by Kraft [24]. 

Briefly, serum (8 µL) and urine (15µL) were pipetted into tin 

capsules and air dried. The δ15N and δ13C were measured 

simultaneously using an Elemental Analyzer (EA) IsoLink 

Isotope Ratio Mass Spectrometer (IRMS) System, consist-

ing of a Flash EA and a DeltaV IRMS (Thermo Scientific, 

Germany). The δ13C and δ15N values were normalized to 

the Vienna Pee Dee Belemnite (VPDB) and AIR scales, 

respectively, using two different internal reference materials 

incorporated into each analytical run: JGLUT (L-glutamic 

acid; δ13C = − 13.43 ‰; δ15N − 4.34‰) and POPPGLY 

(glycine; δ13C = − 36.58 ‰; δ15N 11.25 ‰) (both from 

Fisher Scientific). An additional quality control material, 

JALA (alanine, calibrated value δ13C = − 20.62 ‰; meas-

ured value (n = 40) − 20.58 ± 0.07 ‰; calibrated value: 

δ15N − 3.16 ‰, measured value (n = 31) − 3.23 ± 0.06 ‰)

(Fisher Scientific) was incorporated into every run. δ13C 

of both reference materials and quality control sample were 

calibrated to the VPDB scale using LSVEC (lithium car-

bonate, δ13C = − 46.6 ‰) and NBS-19 (calcium carbon-

ate, δ13C = 1.95‰) (both obtained from the International 

Atomic Energy Agency, Austria). The δ15N values were 

calibrated to the AIR scale using USGS40 (L-glutamic 

acid, δ15N − 47.57 ‰) and USGS41 (L-glutamic acid, 

δ15N = 47.57‰) (both obtained from the United States 

Geological Survey). Analytical precision was based on 

repeated analyses of quality assurance material JALA 

(Fisher Scientific).

The fatty acid pentadecanoic acid (15:0) was measured 

as % of all fatty acids in plasma phospholipids at the Ger-

man Institute of Human Nutrition Potsdam-Rehbrücke (Ger-

many). The method for 15:0 measurement was described 

previously by Weitkunat [25]. In addition, we measured 

1-methylhistidine (m1His) in plasma at Bevital AS (Ber-

gen, Norway, http:// www. bevit al. no). 1-methylhistidine was 

quantified using an isotope-labeled internal standard to an 

existing assay utilizing liquid chromatography combined 

with tandem mass spectrometry, as previously described 

[26].

Statistics

The study was powered by a primary research question about 

differences in bone health between vegans and omnivores. 

Data were analysed exploratory to answer the research 

questions.

Variables were reported using mean and standard devia-

tion (SD) for normally distributed variables, median and 

interquartile range (IQR) for non-normally distributed 

variables, and relative percentages for categorical vari-

ables. Differences between vegans and omnivores were 

tested using a Chi-Square test for categorical variables and 

a Student’s T-test (normally distributed) or Kruskal–Wallis 

test (non-normally distributed) for continuous variables. 

Normal distribution of variables was prooven using the 

Shapiro–Wilk test, which indicated the non-normal distri-

bution of δ13C, δ15N, 15:0 and 1-methylhistidine. Spear-

man correlations were calculated to investigate potential 

correlations between isotopes and variables of interest. 

To study the discrimination performance of biomarkers 

(δ13C, δ15N, 15:0 and 1-methylhistidine) regarding the 

dietary group (vegan vs. omnivorous diet), receiver operat-

ing characteristic curves (ROC) were plotted using the R 

package ROCit with a parametric binormal approach. The 

Fig. 1  Spearman correlation matrix for stable isotope ratios (δ15N, 
δ13C) in urine and serum with age, BMI, dietary intake and serum 
or plasma variables (lipids, 15:0 and 1-methylhistidine) in vegans 
(n = 36) and omnivores (n = 36). δ15N nitrogen stable isotope ratio, 
δ13C carbon stable isotope ratio, 15:0 pentadecanoic acid;

http://www.bevital.no
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ROC curve represents a plot of sensitivity versus false-

positive rate (1-specificity) of logistic regression predic-

tion models (Diet ~ Exposure). The area under the ROC 

curve (AUC) represents the probability that the predic-

tion model assigns a true vegan as vegan compared to an 

omnivore. The AUC may range from 0.5 indicating no 

discrimination to 1.0 indicating perfect discrimination. 

Scatter plots were used to derive cut-offs for the discrimi-

nation analysis (sensitivity and specificity).

For statistical analyses of data, SAS software (version 

9.4, SAS institute, Cary, N.C., USA) and R software (ver-

sion 3.6.3) was used. Even though the analyses in this 

report are exploratory, a p value of 0.05 was regarded as 

significant [27].

Results

Cohort characteristics

In total, 72 healthy volunteers, 36 vegans and 36 omnivores 

(each 50% men) were included. Median age was 37.5 years 

(min–max: 30 –57), and median duration of vegan diet was 

almost 5 years. Main characteristics of the study sample are 

presented in Table 1.

Differences of δ15N and δ13C in serum and urine

Table 2 shows the measured δ13C and δ15N values in 

serum and 24 h urine samples in both vegans and omni-

vores. In both groups, stable isotope ratios for carbon 

Table 1  Characteristics of the 
study sample

Variables expressed as percentage (n), mean (± SD) or median (IQR). Differences between the diet groups 
were assessed using chi-square tests for categorical variables by Chi-Square test, Student’s T-test for nor-
mally distributed continuous variables and Kruskal–Wallis test for not normally distributed continuous 
variables. Education categories are low (no qualifications), middle (vocational training) or high (university 
or other higher education degree), smoking categories are never smokers, former smokers (smoking previ-
ously but stopped) and smoker (current smoker)

Vegans (n = 36) Omnivores (n = 36) p values

Men [n (%)] 18 (50) 18 (50) 1.00

Age (years) 37.5 (32.5–44.0) 38.5 (32.0–46.0) 0.75

Body weight (kg) 70.1 (± 13.9) 73.6 (± 10.3) 0.24

BMI 22.9 (± 3.2) 24.0 (± 2.1) 0.08

Creatinine serum (mg/dL) 0.82 (± 0.15) 0.89 (± 0.15) 0.046

Duration of vegan diet (years) 4.8 (3.1–8.7) n.a

Education [n (%)] 0.60

 Lower 0 (0) 1 (2.8)

 Middle 11 (30.6) 11 (30.6)

 High 25 (69.5) 24 (66.7)

Physical activity (h/week) 2.8 (0.9–3.8) 2.3 (1.2–4.1) 0.69

Smoking behavior [n (%)] 0.3

 Never-smoker 24 (66.7) 21 (58.3)

 Former smoker 8 (22.2) 6 (16.7)

 Smoker 4 (11.1) 9 (25.0)

Dietary intake

 Total energy (kcal) 2270 (1800–2762) 2386 (2081–2737) 0.32

 Protein (g/d) 72 (55–92) 86 (71–107) 0.02

 Fat (g/d) 86 (64–111) 104 (88–143) 0.004

 Carbohydrates (g/d) 259 (212–371) 230 (199–291) 0.12

 Fibre (g/d) 46 (34–58) 24 (19–30)  < 0.0001

Food intake (g/d)

 Poultry 0 (0–0) 15 (0–61)

 Red meat 0 (0–0) 18 (0–85)

 Processed meat 0 (0–0) 32 (3–77)

 Fish 0 (0–0) 0 (0–39)

 Dairy 0 (0–0) 351 (185–481)

 Egg 0 (0–0) 17 (0–40)
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and nitrogen, were lower in urine compared to serum. 

Compared to omnivores, vegans had lower levels of δ13C 

and δ15N in urine and serum, respectively. The δ15N 

in vegans was approximately 2 ‰ lower in urine and 

approximately 1.5 ‰ lower in serum than in omnivores. 

For δ13C, the difference between vegans and omnivores 

was approximately -1‰ in urine and -1.5‰ in serum.

The biomarkers 15:0 (% of total fatty acids) and 

1-methylhistidine in plasma were also highly signifi-

cantly different between vegans and omnivores, with 

higher values in omnivores compared to vegans for both 

biomarkers.

Correlations of biomarkers

There were no differences between men and women 

for either δ15N nor δ13C. In omnivores, there was a 

strong correlation of δ13C in serum with δ13C in urine 

(r = 0.78), which was much weaker in vegans (r = 0.36). 

Correlation of δ15N in serum with δ15N in urine was, 

however, similar in both omnivores (r = 0.59) and vegans 

(r = 0.58). The strength of the correlations of both δ15N 

and δ13C with other factors such as age, BMI, or lipids, 

differed in the omnivorous group compared with the 

vegan group (Fig. 1).

Sensitivity and specificity analyses for biomarkers

The sensitivity and specificity of the SIR biomarkers, 15:0, 

and 1-methylhistidine to predict whether an individual prac-

tices a vegan or omnivorous diet was evaluated by ROC 

analyses. The δ15N in serum and urine had 100% sensi-

tivity and specificity to discriminate between vegans and 

omnivores. δ13C, 15:0 and m1His also had high sensitivity 

and specificity. Results are shown in Figs. 2, and 3 and in 

Table 3.

Discussion

This cross-sectional study investigated biomarkers of vegan 

or omnivorous diet in plasma and 24 h urine. The main 

results are that δ15N and δ13C from vegans are much lower 

both in plasma and in 24 h urine, compared to omnivores 

with at least three meat consumption occasions per week. 

In particular, δ15N seems to be well suited to discriminate 

between participants following a vegan or an omnivorous 

diet. Further, in a ROC analysis, δ15N performed better than 

1-methylhistidine or 15:0, which are discussed as specific 

biomarkers of meat or dairy intake, respectively.

Stable isotope ratios have been used for several years to 

characterize dietary habits in contemporary humans [8, 9], 

Table 2  Dietary biomarkers in 
vegans and omnivores

Stable isotope ratios (‰) for carbon (δ13C) and nitrogen (δ15N) in serum and 24 h urine in and plasma 
concentrations of pentadecanoic acid (15:0) and 1-methylhistidine of vegans and omnivores.. The stable 
isotope ratios have been obtained against standard material (Vienna Pee Dee Belemnite (VPDB) for carbon 
and air for nitrogen, as described in Methods) which explains the negative values for δ13C. δ15N nitrogen 
stable isotope ratio, δ13C carbon stable isotope ratio

N Median (IQR) Min Max p value

δ15N urine

 Vegans 36 2.74 (2.51; 3.18) 1.76 3.99

 Omnivores 36 4.69 (4.39; 5.06) 4.04 5.67  < 0.0001

δ15N serum

 Vegans 36 7.68 (7.48; 7.87) 6.61 8.43

 Omnivores 36 9.49 (9.32; 9.65) 9.04 10.31  < 0.0001

δ13C urine

 Vegans 36 − 25.38 (− 25.76; − 25.20) − 26.64 − 24.15

 Omnivores 36 − 24.34 (− 24.75; − 23.88) − 25.56 − 21.06  < 0.0001

δ13C serum

 Vegans 36 − 24.35 (− 24.54; − 24.16) − 24.88 − 23.05

 Omnivores 36 − 22.76 (− 23.08; − 22.4) − 23.77 − 22.11  < 0.0001

15:0 (%)

 Vegans 36 0.15 (0.13; 0.16) 0.09 0.22

 Omnivores 36 0.26 (0.22; 0.30) 0.16 0.40  < 0.0001

1-methylhistidine (µmol/L) 

 Vegans 36 0.38 (0.31; 0.46) 0.10 0.69

 Omnivores 36 3.57 (1.72; 10.25) 0.40 37.2  < 0.0001
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including both vegan or vegetarian diets and different body 

tissues or fluids including hair [8, 9, 21], fingernails [18], 

whole blood [5], or serum [28].

Most of these studies reported lower δ15N in vegans 

compared to omnivores, even though the sample size in most 

Fig. 2  Scatter plots of δ15N and δ13C in urine and serum, separated for the two dietary groups

Fig. 3  Receiver characteristic curve for δ15N, δ13C, 15:0, 1-meth-
ylhistidine to distinguish between vegans (n = 36) and omnivores 
(n = 36). (TPR = true positive rate, FPR = false positive rate)

Table 3  Estimated sensitivity and specificity of δ13C δ15N, 15:0 and 
1-methylhistidine to distinguish between vegans and omnivores based 
on cut-offs

Parameter AND cut-offs Vegan diet Sensitivity Specificity

Yes No

δ13C serum (‰)

 < − 23.5 34 2 94% 94%

 > − 23.5 2 34

δ13C urine (‰)

 < − 24.5 34 12 94% 66%

 > − 24.5 2 24

δ15N serum (‰)

 < 8.5 36 0 100% 100%

 > 8.5‰ 0 36

δ15N urine (‰)

 < 4.0 36 0 100% 100%

 > 4.0 0 36

15:0 (%)

 < 0.2 34 6 94% 83%

 > 0.2 2 30

1-methylhistidine (µmol/L)

 < 1 36 8 100% 78%

 > 1 0 28
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studies was low and not exceeding 16 persons, and the time 

period since these persons followed a vegan diet was only 

occasionally provided [8, 9, 18, 21]. In our study, adherence 

to a vegan diet for at least 1 year was an inclusion criterion. 

Further, diets in the omnivore groups are often not character-

ized in detail [8, 18, 25, 28], unlike our omnivorous partici-

pants who reported consumption of meat or meat products at 

least three times per week [22]. Most studies did not report 

differences between vegans and omnivores for δ13C (9, 18, 

21). Three studies compared also stable isotope ratios of 

vegans and vegetarians and reported either no differences 

between these (21, 28) or lower ratios in vegans for δ15N 

only (8).

Different tissues have been used in nutritional stable iso-

tope ratio research, including hair [9, 21, 29, 30] and urine 

[5, 17], which can both be obtained non-invasively. Indeed, 

stable isotope ratios in different tissues may be different. 

Nash et al. measured both δ15N and δ13C in plasma, red-

blood cells and hair, and reported lower δ15N in erythro-

cytes compared to plasma and hair, while δ13C was higher 

in hair compared to plasma and RBC [29]. Very similar find-

ings were reported for hair, plasma and erythrocytes [30]. 

Kuhnle reported lower δ15N values in urine compared to 

whole blood for δ15N, while differences for δ13C were less 

evident [5]. Hülsemann reported variation in the δ15N of 

urinary urea in 69 samples obtained from 8 omnivorous par-

ticipants over a period of 48 to 104 h, the mean δ15N was 

4.4 ± 0.6‰ [17]. We are not aware of studies that compared 

spot urine and 24 h urine, and how far short-term changes 

in hydration and diuresis affect SIRs in urine.

Generally, it is understood that the overall δ15N and δ13C 

in body fluids and tissues should reflect the stable isotope 

ratios observed in food sources. However, there are not many 

contemporary analyses of stable isotope ratios in foods. 

According to Hülsemann, cereals and legumes have lower 

δ15N values compared to meat and dairy (examples from 

their analyses: whole grain bread 2.3‰, soya Bolognese 

2.4‰, yoghurt 6.0‰, beef roulade 7.4‰) [31].

Thus, lower δ15N in vegans may reflect the consump-

tion of plant-based protein sources instead of animal protein 

with higher δ15N. We observed lower urinary δ15N than 

plasma δ15N (both in vegans and omnivores) which may 

reflect to a stronger extent the preferred excretion of 14 N 

[17]. While 14 N is preferably excreted in urine, 15 N is 

retained and leads to higher δ15N in serum. There are also 

some other noteworthy dietary differences between vegans 

and omnivores. Vegans reported lower total protein intake, 

although on average, it still exceeded 1 g per kg body weight 

and lower fat and higher carbohydrate intake (Table 1). The 

lower protein intake may also lead to differences in urinary 

nitrogen excretion, however, as we did not measure urinary 

nitrogen, this remains speculative.

In comparison to the δ15N ratio, specificity, and sensi-

tivity of the δ13C ratio to distinguish between vegans and 

omnivores were lower, but comparable to two other bio-

markers of animal food intake. The fatty acid, 15:0, has been 

suggested as a biomarker of dairy intake and has shown a 

good correlation with reported dairy intakes in epidemio-

logic studies [32], although it has not been widely used. 

Recently it has been shown that odd-chain fatty acids (15:0 

and 17:0) can also be synthesized internally from propionic 

acid, derived from dietary fiber, which would limit their use 

as a biomarker of dairy intake, although this seemed to be 

more an issue for 17:0 [25]. 1-methylhistidine has recently 

been proposed as a biomarker of cod and salmon intake in a 

randomized controlled trial [33] and as a biomarker of ani-

mal protein intake in clinical [34] and epidemiologic stud-

ies [35]. Significant differences in 1-methylhistidine urinary 

concentrations has also been described in vegans and non-

vegans in the Adventist Health Study 2 [36]. Indeed, highly 

significant differences were observed for both markers upon 

a comparison of the two groups in the present study. Yet, 

both markers showed lower sensitivity and specificity than 

δ15N. To our knowledge, the present study is the first to have 

measured and evaluated these biomarkers in combination.

Although the cross-sectional nature and sample size of 

our study precludes more advanced statistical analyses, the 

findings are nonetheless promising and should inform future 

work investigating reliable biomarkers of dietary intake and 

patterns. The results warrant therefore confirmation in stud-

ies with a more advanced study design. Of note, we relied on 

self-reported dietary habits when grouping the participants 

into a vegan or omnivorous diet. However, the risk of mis-

classification in this study seems to be low as participants 

filled in 3 days of dietary records and the call for participa-

tion was specifically addressing vegan diet and omnivorous 

diet, including the duration of a vegan diet and the require-

ment of 3 or more meat consumption occasions per week.

In conclusion, the RBVD study included strict defini-

tions of a vegan and omnivorous diet, implemented different 

nutritional status measurements, and provided the opportu-

nity for stable isotope ratios and dietary biomarkers such 

as 15:0 percentage or 1-methylhistidine concentration to be 

investigated together for the first time. Using these biomark-

ers in combination may be promising and help to master 

the challenge to distinguish between for instance vegetar-

ian and flexitarian diets, even if the absolute differences in 

stable isotopes between vegans and omnivores were small. 

Further research should focus on the added value of these 

combinations of biomarkers to monitor dietary changes, and 

whether stable isotope ratios alone or in combination with 

other biomarkers provide greater sensitivity, specificity, and 

ultimately reliability and reproducibility when distinguish-

ing between omnivores, vegetarians, and vegans.
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